JPS6353442B2 - - Google Patents

Info

Publication number
JPS6353442B2
JPS6353442B2 JP11944677A JP11944677A JPS6353442B2 JP S6353442 B2 JPS6353442 B2 JP S6353442B2 JP 11944677 A JP11944677 A JP 11944677A JP 11944677 A JP11944677 A JP 11944677A JP S6353442 B2 JPS6353442 B2 JP S6353442B2
Authority
JP
Japan
Prior art keywords
flow rate
fuel flow
fuel
air
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11944677A
Other languages
Japanese (ja)
Other versions
JPS5453323A (en
Inventor
Kazuo Hiroi
Tetsuo Ai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11944677A priority Critical patent/JPS5453323A/en
Publication of JPS5453323A publication Critical patent/JPS5453323A/en
Publication of JPS6353442B2 publication Critical patent/JPS6353442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多数のバーナに対して、燃焼用空気
を一括共通的に供給する炉の空燃比を制御する燃
焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion control device that controls the air-fuel ratio of a furnace that collectively supplies combustion air to a large number of burners.

(従来の技術) 一般に燃焼制御系に対しては、下記のニーズが
強い。
(Prior Art) In general, the following needs are strong for combustion control systems.

(1) 省エネルギー (2) 公害防止 (1)は、炉では大量の燃料を消費しているが、石
油シヨツク以来、燃料コストアツプ、資源の有限
性などによりニーズが強くなつており、 (2)は環境規制が厳しくなり、燃焼系における公
害防止(例えば黒煙の発生防止)が出来る燃焼制
御系が要望されている。
(1) Energy saving (2) Pollution prevention (1) Furnaces consume large amounts of fuel, but since oil shocks, the need for fuel costs has increased and resources are limited, so the need for (2) has become stronger. As environmental regulations become stricter, there is a demand for a combustion control system that can prevent pollution in the combustion system (for example, prevent the generation of black smoke).

上記のニーズを達成するためには、燃焼系にお
ける空燃比を定常状態においても目標値変更、負
荷変化等の外乱変動による過渡状態においても高
精度制御することが必要である。
In order to achieve the above needs, it is necessary to control the air-fuel ratio in the combustion system with high precision both in a steady state and in a transient state due to disturbance fluctuations such as a change in a target value or a change in load.

しかし、従来の燃焼制御系はアナログ制御方式
で複雑な制御系を組むと、誤差の重畳、ドリフト
の重畳により、高精度制御や微妙な制御は出来な
かつたが、マイクロプロセツサによるデイジタル
コントローラの出現によつて高精度な制御が実現
可能となつた。
However, conventional combustion control systems are analog control systems, and when a complex control system is constructed, it is not possible to perform highly accurate or delicate control due to superimposed errors and drifts. However, with the advent of digital controllers using microprocessors, This has made it possible to achieve highly accurate control.

例えば第1図はその従来の制御系の代表例であ
る。この従来の装置において、燃料は各流量計
2.1,2.2……2.n、および燃料調節弁
3.1,3.2……3.nを順々に流れてバーナ
4.1,4.2……4.nに送り込み、これに対
して、燃焼用空気は燃焼用空気流量発信器9、空
気流量調節弁10を通して、各バーナに対し共通
的になるよう炉1に送り込み、炉1内で、燃料と
燃焼用空気とを混合して燃焼させる。温度制御系
では炉に設けられた温度発信器5.1,5.2…
…5.nで温度を検出し、この検出信号を温度調
節計6.1,6.2……6.nに導き、温度調節
計は温度設定値と検出信号とを比較し、その差が
零になるような値を比較調節演算して求め、その
調節出力信号を対応したバーナの燃料調節計7.
1,7.2……7.nに目標値として与える。各
燃料調節計はその目標値と流量計2.1,2.2
……2.nからの燃料流量とを比較演算し、求め
た調節出力信号を燃料調節弁3.1,3.2……
3.nに与え、燃料流量を制御して、炉の温度を
制御している。燃焼用空気制御系では、各バーナ
に供給される総燃料流量を流量計8で検出し、こ
の総燃料流量に空燃比設定手段11で下記の如き
空燃比を乗じると共に、単位燃料流量当りの理論
空気量βを乗じて燃焼空気流量調節計12の目標
値として与える。
For example, FIG. 1 is a typical example of the conventional control system. In this conventional device, fuel is supplied to each flow meter 2.1, 2.2...2. n, and fuel control valves 3.1, 3.2...3. n in order and burners 4.1, 4.2...4. On the other hand, combustion air is sent to the furnace 1 through a combustion air flow rate transmitter 9 and an air flow rate control valve 10 so as to be common to each burner. It is mixed with commercial air and combusted. In the temperature control system, temperature transmitters 5.1, 5.2... installed in the furnace are used.
…5. The temperature is detected by the temperature controller 6.1, 6.2...6. 7.n, the temperature controller compares the temperature setting value and the detection signal, calculates a value that makes the difference zero by comparison adjustment calculation, and sends the adjustment output signal to the fuel controller 7.n of the corresponding burner.
1,7.2...7. Give n as a target value. Each fuel controller has its target value and flowmeter 2.1, 2.2
...2. A comparison calculation is made with the fuel flow rate from n, and the obtained control output signal is sent to the fuel control valves 3.1, 3.2...
3. n, the fuel flow rate is controlled, and the furnace temperature is controlled. In the combustion air control system, the total fuel flow rate supplied to each burner is detected by the flow meter 8, and the air-fuel ratio setting means 11 multiplies the total fuel flow rate by the following air-fuel ratio, and also calculates the theoretical value per unit fuel flow rate. The product is multiplied by the air amount β and given as a target value for the combustion air flow rate controller 12.

空燃比(空気過剰率)μ=
単位燃料流量当りの実際空気量/単位燃料流量当りの理
論空気量 この燃焼空気流量調節計12は、この目標値
と、空気流量を測定する燃焼用空気流量発信器9
の出力を開平演算器13で直線化した空気流量信
号FAとを比較調節演算し、その調節出力信号を
空気流量調節弁10に与えて燃焼用空気流量を制
御している。
Air-fuel ratio (excess air ratio) μ=
Actual air amount per unit fuel flow rate/Theoretical air amount per unit fuel flow rate This combustion air flow rate controller 12 uses this target value and a combustion air flow rate transmitter 9 that measures the air flow rate.
The output is compared and adjusted with the air flow signal FA linearized by the square root calculator 13, and the adjustment output signal is given to the air flow rate control valve 10 to control the combustion air flow rate.

(発明が解決しようとする問題点) しかしこの種の装置では、負荷が急増して燃料
が増加する場合には、まず各バーナ4.nに供給
される燃料流量が増加し、これに伴ない総燃料流
量も増加するので、これを流量計8が検出しこれ
に合うように燃焼用空気流量制御系が遅れて追従
制御するので、炉内の空燃比μaが低下して黒煙
が発生してしまう。
(Problems to be Solved by the Invention) However, in this type of device, when the load suddenly increases and the amount of fuel increases, each burner 4. Since the fuel flow rate supplied to n increases and the total fuel flow rate increases accordingly, the flow meter 8 detects this and the combustion air flow rate control system performs follow-up control with a delay to match this. The air-fuel ratio μa in the furnace decreases and black smoke is generated.

この状態は第2図に示す通りとなる。 This state is as shown in FIG.

一般には黒煙が出るのをきらうため、必然的に
空燃比設定手段11で乗じられる空燃比μの値を
大きくして負荷急増時過渡的にも、黒煙が出ない
ようにしているので、相当過剰空気を注入するこ
とになり、煙突からの熱損失が大きくなり熱効率
が低下してしまつている。
In general, in order to avoid producing black smoke, the value of the air-fuel ratio μ multiplied by the air-fuel ratio setting means 11 is inevitably increased to prevent the production of black smoke even temporarily when the load suddenly increases. A considerable amount of excess air was injected, which resulted in large heat loss from the chimney and reduced thermal efficiency.

本発明の目的は、上記欠点を除去し、熱効率を
低下させずに、黒煙の発生も防止し得る燃焼制御
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a combustion control device that eliminates the above drawbacks and prevents the generation of black smoke without reducing thermal efficiency.

(問題点を解決するための手段) この目的を達成するための概要は、各バーナに
対する燃料流量指令信号(目標値)を加算した総
燃料流量指令信号Fsと、実測の燃料空気流量信
号FAに基づき設定された炉内に黒煙を発生させ
ないための総燃料流量の上限値とを比較し指令信
号Fsが上限値以上となると、各バーナに対応す
る燃料調節計の制御出力又は目標値をそのときの
値に固定するものである。また実測の燃料流量に
基づき設定された炉内に黒煙を発生させないため
の空気流量の下限値と前記総燃料流量指令信号
Fsとを比較し高い方の値を燃焼空気流量調節計
の目標値とするとさらに良い。
(Means for solving the problem) The outline of how to achieve this objective is to add the total fuel flow command signal Fs, which is the sum of the fuel flow command signal (target value) for each burner, and the actually measured fuel air flow signal FA. When the command signal Fs exceeds the upper limit value, the control output or target value of the fuel controller corresponding to each burner is changed to that value. This value is fixed at the current value. In addition, the lower limit value of air flow rate to prevent black smoke from being generated in the furnace, which is set based on the actually measured fuel flow rate, and the total fuel flow command signal.
It is even better to compare Fs and set the higher value as the target value for the combustion air flow rate controller.

(作用) これによつて、炉内の空燃比μaを黒煙が発生
しない下限値以上に常に保持できる。
(Function) As a result, the air-fuel ratio μa in the furnace can always be maintained above the lower limit value at which black smoke is not generated.

(実施例) 以下、本発明を一実施例を用いて図面を参照し
ながら説明する。尚第1図と同一構成については
同一符号を付し説明は省略する。
(Example) The present invention will be described below using an example with reference to the drawings. Components that are the same as those in FIG. 1 are designated by the same reference numerals and their explanations will be omitted.

第3図は本発明の一実施例の機能構成を示す図
であり、第1図に、加算器101、比較判別器1
02、除算器103、上限係数器104、下限係
数器105、高位選択器106を附加したもので
ある。
FIG. 3 is a diagram showing the functional configuration of an embodiment of the present invention.
02, a divider 103, an upper limit coefficient unit 104, a lower limit coefficient unit 105, and a high order selector 106 are added.

図において、加算器101は各バーナに対応す
る温度調節計6.1,6.2……6.nの出力す
なわち燃料流量指令信号を加算し総燃料流量指令
信号Fsを求めるもので、この出力は比較判別器
102と高位選択器106とに供給される。ま
た、燃料流量上限値演算手段100は除算器10
3と上限係数器104とから構成されており、除
算器103は開平演算器13からの実測燃焼用空
気流量FAを空燃比μ及び単位燃料流量当りの理
論空気量βで除算し、この除算した値に上限係数
器104が燃料過多により炉内に黒煙を発生させ
ないために予じめ設定された係数(1+k1)を
乗じ、この結果得られる下記Aを実測燃焼空気流
量に対する燃料流量の上限値として演算し、比較
判別器102に出力している。
In the figure, an adder 101 includes temperature controllers 6.1, 6.2, . . . 6. corresponding to each burner. The total fuel flow rate command signal Fs is determined by adding the outputs of n, that is, the fuel flow rate command signals, and this output is supplied to the comparator 102 and the high-level selector 106. Further, the fuel flow rate upper limit value calculation means 100 includes a divider 10
3 and an upper limit coefficient unit 104, the divider 103 divides the measured combustion air flow rate FA from the square root calculator 13 by the air-fuel ratio μ and the theoretical air amount β per unit fuel flow rate, and calculates the result of this division. The upper limit coefficient unit 104 multiplies the value by a preset coefficient (1+k1) to prevent black smoke from being generated in the furnace due to excess fuel, and the resulting A below is used as the upper limit value of the fuel flow rate for the actually measured combustion air flow rate. It is calculated as follows and output to the comparison discriminator 102.

A=(1+k1)×FA/β・μ この信号Aを前記比較判別器102は、この信
号Aと前記総燃料流量信号Fsとを比較し、実測
燃焼用空気流量FAで定まる上限燃料流量値より
総燃料流量指令信号の値Fsが少ないとき、即ち 〔Fs≦A=(1+k1)×FA/β・μ〕の場合には、燃 料流量調節計7.1〜7.nに通常の調節動作を
行なわせる信号を出力する。
A=(1+k1)×FA/β・μ The comparison discriminator 102 compares this signal A with the total fuel flow rate signal Fs, and calculates the upper limit fuel flow rate determined by the measured combustion air flow rate FA. When the value Fs of the total fuel flow rate command signal is small, that is, when [Fs≦A=(1+k1)×FA/β・μ], the fuel flow rate controllers 7.1 to 7. outputs a signal that causes n to perform normal adjustment operations.

また実測燃焼用空気流量に対して定まる上限総
燃料流量値より総燃料流量指令信号の値Fsが大
きいとき、即ち 〔Fs>A=(1+k1)×FA/β・μ〕の場合には、燃 料調節計7.1〜7.nの調節動作をFs=Aの
条件になつたときの目標値または操作量の状態に
固定させる(以下、ロツクという。)信号を各燃
料調節計7.1,7.2……7.nに出力する。
Furthermore, when the value Fs of the total fuel flow rate command signal is larger than the upper limit total fuel flow rate value determined for the actually measured combustion air flow rate, that is, when [Fs>A=(1+k1)×FA/β・μ], the fuel Controller 7.1-7. A signal is sent to each fuel controller 7.1, 7.2, . Output to n.

一方、燃焼用空気制御系では燃料流量計8から
の実測総燃料流量FFに、下限係数器105で空
気流量不足により炉内に黒煙が発生しないように
設定された係数(1−k2)が乗じられ、下限実
測総燃料流量B=(1−k2)×FFが高位選択器1
06に出力される。高位選択器106は、この下
限実測総燃料流量信号Bと総燃料流量指令信号
Fsとを比較し高い値を出力するもので、常に燃
焼空気流量調節計12の目標値を下限実測総燃料
値以下にさせないようにしている。
On the other hand, in the combustion air control system, a coefficient (1-k2) set in the lower limit coefficient unit 105 to prevent black smoke from occurring in the furnace due to insufficient air flow is added to the actually measured total fuel flow rate FF from the fuel flow meter 8. The lower limit actual measured total fuel flow rate B = (1-k2) x FF is the higher selector 1.
06. The high-level selector 106 selects this lower limit actually measured total fuel flow rate signal B and the total fuel flow rate command signal.
Fs and outputs a high value, so as to always prevent the target value of the combustion air flow rate controller 12 from falling below the lower limit actually measured total fuel value.

すなわち、高位選択器106は、 Fs>B=(1−k2)×FFの場合(実測総燃料流量
値で定まる上限値より総燃料流量指令信号値Fs
が少ない場合)には、総燃料流量指令信号Fsを
空気流量制御系の目標値として出力し、 Fs≦B(1−k2)×FFの場合(実測総燃料流量
信号値で定まる上限値より総燃料流量指令信号が
大きい場合)には、下限実測総燃料値Bを出力
し、常に空気流量が下限値B以下にならぬよう制
限し、炉内の空燃比の低下による黒煙の発生を防
止している。この高位選択器の出力信号に空燃比
μ及び単位燃料流量当りの理論空気量βを乗じた
信号を空気流量調節計12の目標値として与え、
空気流量調節計12がこの目標値になるように燃
焼用空気流量を制御する。
In other words, the high-level selector 106 selects the total fuel flow rate command signal value Fs from the upper limit determined by the actually measured total fuel flow rate value when Fs>B=(1-k2)×FF.
If Fs≦B(1-k2)×FF (when the total fuel flow rate is less than the upper limit determined by the measured total fuel flow signal value), the total fuel flow command signal Fs is output as the target value of the air flow control system. (When the fuel flow command signal is large), the lower limit actual measured total fuel value B is output, and the air flow rate is always limited so that it does not fall below the lower limit value B, thereby preventing the generation of black smoke due to a decrease in the air-fuel ratio in the furnace. are doing. A signal obtained by multiplying the output signal of this high-level selector by the air-fuel ratio μ and the theoretical air amount β per unit fuel flow rate is given as a target value to the air flow rate controller 12,
The air flow rate controller 12 controls the combustion air flow rate so that it reaches this target value.

次に、このように構成された燃焼制御装置の動
作について説明する。
Next, the operation of the combustion control device configured as described above will be explained.

まず、燃料として重油等の燃料流量の応答が空
気流量より速いものを使用した場合の例を用いて
説明する。
First, an example will be described in which a fuel such as heavy oil whose response to the fuel flow rate is faster than the air flow rate is used.

第4図は炉の負荷が急増した場合の炉内の空燃
比μの変化を示す図である。すなわち負荷が急増
すると、これに伴ない総燃料流量指令信号Fsは
急増するが、空気流量の応答が悪く瞬時に対応し
て変化することはできない。このため空気流量が
応答するため燃料流量の変化を制御しておく必要
があり、総燃料流量指令信号Fsが実測燃焼用空
気流量に基づき定まる上限総燃料流量値A以上に
なると、比較判別器102が各燃料流量調節計
7.1,7.2……7.nをその時点の目標値又
は操作量に固定するロツク信号を出力し、各燃料
調節計の調節動作をロツクして、燃料流量をロツ
ク直前の値に制限する。
FIG. 4 is a diagram showing changes in the air-fuel ratio μ in the furnace when the load on the furnace increases rapidly. That is, when the load increases rapidly, the total fuel flow rate command signal Fs increases rapidly, but the response of the air flow rate is poor and cannot be changed instantaneously. For this reason, since the air flow rate responds, it is necessary to control the change in the fuel flow rate. is for each fuel flow rate controller 7.1, 7.2...7. A lock signal is output that fixes n to the target value or manipulated variable at that time, locks the adjustment operation of each fuel controller, and limits the fuel flow rate to the value immediately before locking.

また燃焼空気流量調節計12には、総燃料流量
指令信号Fsと下限実測総燃料流量信号Bとのう
ち高レベルの信号が空燃比設定11でμ倍されて
空気流量の目標値として与えられる。負荷急増の
場合では各温度調節計6.1,6.2……6.n
からは増加する方向の信号が出されるため経時的
に総燃料流量指令信号Fsが増加していく。この
ため高位信号選択器106からは総燃料流量指令
信号Fsが出力され、焼空気流量調節計12は、
燃焼用空気量を増加する方向に調節動作を行なう
ことになる。そして燃料流量がロツクされた状態
で実測空気流量が増加するにつれて炉1内の空燃
比も上昇し始めることになる。
Further, the higher level signal of the total fuel flow rate command signal Fs and the lower limit actually measured total fuel flow rate signal B is multiplied by μ in the air-fuel ratio setting 11 and is given to the combustion air flow rate controller 12 as a target value of the air flow rate. In case of sudden load increase, each temperature controller 6.1, 6.2...6. n
Since a signal in the increasing direction is output from , the total fuel flow rate command signal Fs increases over time. Therefore, the high-level signal selector 106 outputs the total fuel flow rate command signal Fs, and the firing air flow rate controller 12 outputs the total fuel flow rate command signal Fs.
The adjustment operation will be performed in the direction of increasing the amount of combustion air. As the measured air flow rate increases with the fuel flow rate locked, the air-fuel ratio within the furnace 1 also begins to rise.

これから明らかな通り、総燃料流量指令信号
Fsが実測燃焼用空気流量信号で決定された総燃
料流量の上限値Aより大きくなると、各燃料流量
調節計の調節動作がロツクされてロツク直前の燃
料流量値に維持されると共に、空気流量調節計1
2が総燃料流量指令信号Fsに基づき調節動作を
実行するため、炉内の空燃比の低下がK1によつ
て制御される。
As is clear from this, the total fuel flow command signal
When Fs becomes larger than the upper limit value A of the total fuel flow rate determined by the actually measured combustion air flow rate signal, the adjustment operation of each fuel flow rate controller is locked and maintained at the fuel flow rate value immediately before locking, and the air flow rate adjustment is Total 1
Since K1 executes the adjustment operation based on the total fuel flow command signal Fs, the decrease in the air-fuel ratio in the furnace is controlled by K1.

このような空燃比の低下はK1によつて制御さ
れるため、従来の方法に比べると空燃比の設定幅
を狭くすることができ省エネルギー、黒煙発生に
よる公害防止対策の面で優れている。
Since this reduction in the air-fuel ratio is controlled by K1, the setting range of the air-fuel ratio can be narrowed compared to conventional methods, which is superior in terms of energy saving and prevention of pollution caused by black smoke generation.

また負荷が減少した場合は、総燃料流量指令信
号Fsが減少し、これに伴ない、各燃料調節計7.
1,7.2……7.nの出力も減少する。このた
め比較判別器102は、燃料流量指令信号Fsが A=(1+k1)FA/β・μの値以上になることがな いので、各燃料流量調節計をロツクするような信
号を出力することがない。
Further, when the load decreases, the total fuel flow rate command signal Fs decreases, and accordingly, each fuel controller 7.
1,7.2...7. The output of n also decreases. Therefore, the comparison/discriminator 102 cannot output a signal that locks each fuel flow rate controller because the fuel flow rate command signal Fs never exceeds the value of A=(1+k1)FA/β・μ. do not have.

次に、燃料として石炭等の燃料流量の応答が空
気流量より遅いものを使用している場合について
説明する。この場合には、負荷が急増しても燃料
流量の応答が悪いため、空気流量の応答を制限し
て炉内の空燃比μを下限値以上に保持する必要が
ある。
Next, a case will be described in which a fuel such as coal whose response to the fuel flow rate is slower than the air flow rate is used as the fuel. In this case, even if the load suddenly increases, the response of the fuel flow rate is poor, so it is necessary to limit the response of the air flow rate to maintain the air-fuel ratio μ in the furnace above the lower limit value.

このため、総燃料流量指令信号Fsが実測燃料
流量FFに基づき定まる下限実測総燃料流量B以
下になると、高位選択器106がこの下限値Bを
燃焼空気流量調節計の目標値として出力するよう
な構成を追加すると良い。これにより空燃比は下
限値Bを決定するk2によつて制御され、黒煙の
発生が防止される。
Therefore, when the total fuel flow rate command signal Fs becomes equal to or less than the lower limit actually measured total fuel flow rate B determined based on the actually measured fuel flow rate FF, the high-level selector 106 outputs this lower limit value B as the target value of the combustion air flow rate controller. It's good to add configuration. As a result, the air-fuel ratio is controlled by k2, which determines the lower limit value B, and the generation of black smoke is prevented.

このように、本実施例は、負荷が急増し総燃料
流量指令信号Fsが増加した場合には、応答の遅
い空気流量に比べて燃料流量が応答よく増加し、
空燃比が低下して黒煙が発生することを避けるべ
く、燃料流量を空気流量に基づき定められる上限
値に基づき制限すると共に、負荷が急減した場合
に空気流量が減少することを防止するため、総燃
料流量に基づく下限値で制限をするものである。
In this way, in this embodiment, when the load suddenly increases and the total fuel flow rate command signal Fs increases, the fuel flow rate increases with better response than the air flow rate, which has a slower response.
In order to avoid a drop in the air-fuel ratio and the generation of black smoke, the fuel flow rate is limited based on the upper limit determined based on the air flow rate, and in order to prevent the air flow rate from decreasing when the load suddenly decreases, This is a restriction based on a lower limit value based on the total fuel flow rate.

これによつて、負荷変動に伴なう空燃比の低下
を防止し得し、黒煙の発生を常に防止できると共
に高い熱効率を確保できる。
Thereby, it is possible to prevent the air-fuel ratio from decreasing due to load fluctuations, to constantly prevent the generation of black smoke, and to ensure high thermal efficiency.

なお、本発明は一実施例に限定されるものでは
なく、例えば各機器ごとの構成をマイクロプロセ
ツサ応用のデイジタルコントローラを用い各機能
をソフトウエアで処理させて実施してもよい。
Note that the present invention is not limited to one embodiment; for example, the configuration of each device may be implemented using a microprocessor-applied digital controller and each function processed by software.

また、一実施例では、空燃比μが一定値で設定
している場合の例を用いて説明したが、空燃比の
設定値を燃焼量で補正したり、酸素(02)制御、
一酸化炭素(CO)制御、一酸化炭素(CO)/炭
酸ガス(CO2)制御信号により補正したりする場
合は、その補正後の空燃比を用いて処理すればよ
い。さらに一実施例では、燃料基準で説明したが
空気基準で行なつた場合においても空燃比が空燃
比の逆数との相異のため要旨を変更しない範囲で
適用できる。
In addition, in one embodiment, the air-fuel ratio μ is set at a constant value, but the air-fuel ratio setting value may be corrected by the combustion amount,
When correction is performed using carbon monoxide (CO) control or carbon monoxide (CO)/carbon dioxide gas (CO2) control signals, processing may be performed using the air-fuel ratio after the correction. Furthermore, in one embodiment, although the description has been made on a fuel basis, the invention can also be applied to a case where the air fuel ratio is used as long as the gist is not changed since the air-fuel ratio is different from the reciprocal of the air-fuel ratio.

(発明の効果) 以上説明したように、本発明は、複数系配置さ
れた燃料制御系の各燃料流量を、空気流量に基づ
き定められる上限値に応じて制御すると共に、必
要に応じて空気流量を総燃料流量に基づく下限値
に制御することにより、負荷変動に伴なう空燃比
の低下を防止し、黒煙の発生を回避することがで
きるものである。
(Effects of the Invention) As explained above, the present invention controls each fuel flow rate of a plurality of fuel control systems arranged according to an upper limit value determined based on the air flow rate, and also adjusts the air flow rate as necessary. By controlling this to a lower limit value based on the total fuel flow rate, it is possible to prevent the air-fuel ratio from decreasing due to load fluctuations and avoid generating black smoke.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃焼制御装置のブロツク構成
図、第2図は従来の燃焼制御系の空燃比の過渡的
変化を示す図、第3図は本願による燃焼制御装置
のブロツク構成図、第4図は本願により燃焼制御
装置の空燃比の過渡的変化を示す図である。 1……炉、21,22…2n……燃料流量発信
器、31,32…3n……燃料流量調節弁、4
1,42…4n……バーナ、51,52…5n…
…温度発信器、61,62…6n……温度調節
計、71,72…7n……流量調節計、8……燃
料流量発信器、9……燃料空気流量発信器、10
……燃料空気流量調節弁、11……空燃比設定手
段、12……空気流量調節計、100……燃料流
量上限値演算手段、101……加算器、102…
…比較判別器、103……除算器、104……上
限係数器、105……下限係数器、106……高
位選択器。
FIG. 1 is a block diagram of a conventional combustion control device, FIG. 2 is a diagram showing transient changes in air-fuel ratio in a conventional combustion control system, FIG. 3 is a block diagram of a combustion control device according to the present application, and FIG. The figure is a diagram showing a transient change in the air-fuel ratio of the combustion control device according to the present application. 1... Furnace, 21, 22... 2n... Fuel flow rate transmitter, 31, 32... 3n... Fuel flow rate control valve, 4
1,42...4n...burner, 51,52...5n...
...Temperature transmitter, 61,62...6n...Temperature controller, 71,72...7n...Flow rate controller, 8...Fuel flow rate transmitter, 9...Fuel air flow rate transmitter, 10
... Fuel air flow rate control valve, 11 ... Air-fuel ratio setting means, 12 ... Air flow rate controller, 100 ... Fuel flow rate upper limit value calculation means, 101 ... Adder, 102 ...
... Comparison discriminator, 103 ... Divider, 104 ... Upper limit coefficient device, 105 ... Lower limit coefficient device, 106 ... High order selector.

Claims (1)

【特許請求の範囲】 1 炉内に供給される燃料流量を所定の目標値に
基づき制御する燃料調節計が複数系配置され、炉
内に一括的に供給される空気流量を前記燃料調節
計の総燃料流量に基づき制御する空気調節計が配
置された燃焼制御装置にあつて、前記各燃料調節
計の目標値を加算し総燃料流量指令信号を求める
加算手段と、前記空気流量を空燃比及び単位燃料
流量当りの理論空気量で除した値に前記炉内に黒
煙を発生させないための係数を乗じた総燃料流量
の上限値を求める燃料流量上限値演算手段と、こ
の燃料流量上限値演算手段の上限値と前記加算手
段の総燃料流量指令信号とを比較し、前記上限値
が前記総燃料流量指令信号以下ならば前記各燃料
調節計の制御出力又は目標値をその時点の値に保
持させる信号を出力する比較判別手段とを備え、
前記比較判別手段からの信号に基づき前記各燃料
調節計がロツクされることを特徴とする燃焼制御
装置。 2 炉内に供給される燃料流量を所定の目標値に
基づき制御する燃料調節計が複数系配置され、炉
内に一括的に供給される空気流量を前記燃料調節
計の総燃料流量に基づき制御する空気調節計が配
置された燃焼制御装置にあつて、前記各燃料調節
計の目標値を加算し総燃料流量指令信号を求める
加算手段と、前記空気流量を空燃比及び単位燃料
流量当りの理論空気量で除した値に前記炉内に黒
煙を発生させないための係数を乗じた総燃料流量
の上限値を求める燃料流量上限値演算手段と、こ
の燃料流量上限値演算手段の上限値と前記加算手
段の総燃料流量指令信号とを比較し、前記上限値
が前記総燃料流量指令信号以下ならば前記各燃料
調節計の制御出力又は目標値をその時点の値に保
持させる信号を出力する比較判別手段と前記総燃
料流量に前記炉内に黒煙を発生させないための係
数を乗じた空気流量の下限値を求める空気流量下
限値演算手段と、この空気流量下限値演算手段の
下限値と前記加算手段の総燃料流量指令信号とを
比較し、高い方の値に空燃比及び単位燃料流量当
りの理論空気量を乗じて目標値を得る比較手段と
を備えることを特徴とする燃焼制御装置。
[Scope of Claims] 1. A plurality of fuel controllers are arranged to control the flow rate of fuel supplied into the furnace based on a predetermined target value, and the flow rate of air collectively supplied into the furnace is controlled by the fuel controller. In a combustion control device in which an air controller for controlling based on the total fuel flow rate is arranged, an adding means for adding target values of the respective fuel controllers to obtain a total fuel flow command signal; a fuel flow rate upper limit value calculation means for calculating an upper limit value of the total fuel flow rate by multiplying the value divided by the theoretical air amount per unit fuel flow rate by a coefficient for preventing generation of black smoke in the furnace; and this fuel flow rate upper limit value calculation means. Compare the upper limit value of the means with the total fuel flow rate command signal of the adding means, and if the upper limit value is less than the total fuel flow rate command signal, maintain the control output or target value of each fuel regulator at the value at that point. and a comparison/discrimination means for outputting a signal to
A combustion control device characterized in that each of the fuel regulators is locked based on a signal from the comparison/discrimination means. 2. A plurality of fuel controllers are arranged to control the fuel flow rate supplied to the furnace based on a predetermined target value, and the air flow rate that is collectively supplied to the furnace is controlled based on the total fuel flow rate of the fuel controllers. In the combustion control device, the combustion control device is equipped with an air controller that calculates the total fuel flow rate command signal by adding the target values of the respective fuel controllers; fuel flow rate upper limit calculation means for calculating the upper limit value of the total fuel flow rate by multiplying the value divided by the air amount by a coefficient for preventing the generation of black smoke in the furnace; and a total fuel flow rate command signal of the adding means, and if the upper limit value is less than the total fuel flow rate command signal, a comparison is made that outputs a signal that causes the control output or target value of each of the fuel regulators to be maintained at the value at that point in time. a determination means; an air flow rate lower limit value calculation means for calculating a lower limit value of the air flow rate by multiplying the total fuel flow rate by a coefficient for not generating black smoke in the furnace; and a lower limit value of the air flow rate lower limit value calculation means; A combustion control device comprising comparing means for comparing the total fuel flow rate command signal of the adding means and multiplying the higher value by an air-fuel ratio and a theoretical air amount per unit fuel flow rate to obtain a target value.
JP11944677A 1977-10-06 1977-10-06 Combustion control system Granted JPS5453323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11944677A JPS5453323A (en) 1977-10-06 1977-10-06 Combustion control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11944677A JPS5453323A (en) 1977-10-06 1977-10-06 Combustion control system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP26655886A Division JPS62153623A (en) 1986-11-11 1986-11-11 Combustion control device

Publications (2)

Publication Number Publication Date
JPS5453323A JPS5453323A (en) 1979-04-26
JPS6353442B2 true JPS6353442B2 (en) 1988-10-24

Family

ID=14761593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11944677A Granted JPS5453323A (en) 1977-10-06 1977-10-06 Combustion control system

Country Status (1)

Country Link
JP (1) JPS5453323A (en)

Also Published As

Publication number Publication date
JPS5453323A (en) 1979-04-26

Similar Documents

Publication Publication Date Title
US4498863A (en) Feed forward combustion control system
US4259837A (en) Water and steam injection system for emission control of gas turbines
US3417737A (en) Once-through boiler control system
US4136517A (en) Thrust control system for a gas turbine engine
US4549503A (en) Maximum efficiency steam temperature control system
JPS6248933A (en) Controller for controlling engine of turbine power device
CA1081826A (en) Furnace pressure control
US4505668A (en) Control of smoke emissions from a flare stack
US4531905A (en) Optimizing combustion air flow
JPS6353442B2 (en)
JPH05187271A (en) Control method for gas turbine combustor
JPS63286614A (en) Combustion control of boller
JPS62153623A (en) Combustion control device
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPS5813809B2 (en) Combustion control method using low excess air
JPH11159756A (en) Water injection control device for oil fired dln combustor
JPS5830500B2 (en) Combustion control device and control method
JPS6324359Y2 (en)
JPH03103682A (en) Control device for gas valve device
JPH0228802A (en) Controller
JPS63183230A (en) Control method for combustion temperature of gas turbine
JPS5845411A (en) Combustion control system
SU1339383A1 (en) Method of controlling combustion of fuel in multizone continuous furnace
CN104214792B (en) Realize the compensation method of direct current cooker feedwater flow and fuel quantity dynamically accurate proportioning
JPS6014978B2 (en) Combustion control device