JPS6046336B2 - Boiler combustion control device - Google Patents

Boiler combustion control device

Info

Publication number
JPS6046336B2
JPS6046336B2 JP52149119A JP14911977A JPS6046336B2 JP S6046336 B2 JPS6046336 B2 JP S6046336B2 JP 52149119 A JP52149119 A JP 52149119A JP 14911977 A JP14911977 A JP 14911977A JP S6046336 B2 JPS6046336 B2 JP S6046336B2
Authority
JP
Japan
Prior art keywords
signal
fuel
boiler
flow rate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52149119A
Other languages
Japanese (ja)
Other versions
JPS5481527A (en
Inventor
徹 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP52149119A priority Critical patent/JPS6046336B2/en
Publication of JPS5481527A publication Critical patent/JPS5481527A/en
Publication of JPS6046336B2 publication Critical patent/JPS6046336B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は複数種類の燃料を焚くボイラをボイラ・マスタ
信号に従つて制御する制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device that controls a boiler that burns a plurality of types of fuel according to a boiler master signal.

ボイラの燃焼制御装置においては、燃料の流量と空気の
流量がいずれもボイラ・マスタ信号に従つて制御される
In a boiler combustion control device, both the fuel flow rate and the air flow rate are controlled according to a boiler master signal.

複数種類の燃料を焚くボイラ(製鉄所のボイラなど)に
おいては、各燃料ごとに必要な空気量が異なるために、
かなり多めに空気を投入して完全燃焼をはかるのが普通
である。
In boilers that burn multiple types of fuel (such as boilers in steel plants), the amount of air required for each fuel is different.
Normally, a large amount of air is injected to ensure complete combustion.

しかしこのような方法は効率が悪く、また公害防止の上
からも好ましくない。そこで、ボイラ・マスタ信号に従
つて制御される空気の流量を、燃料の組成に応じた適切
なものにするための工夫が必要とされる。
However, such a method is inefficient and is also undesirable from the standpoint of preventing pollution. Therefore, it is necessary to devise a way to make the flow rate of air controlled according to the boiler master signal appropriate according to the composition of the fuel.

本発明の目的は、複数種類の燃料を焚くホイラにおいて
、燃料流量と空気流量をいずれもボイラ・マスタ信号に
基づいて制御しながら、ボイラを低過剰空気で運転する
燃焼制御装置を提供することにある。
An object of the present invention is to provide a combustion control device for a boiler that burns multiple types of fuel, which operates the boiler with low excess air while controlling both the fuel flow rate and the air flow rate based on a boiler master signal. be.

本発明は、 ボイラ・マスタ信号が設定信号として与えられ、後述す
る第1の加算器の出力信号が入力信号として与えられ、
これら両信号の差に基づく燃料流量制御信号を出力する
燃料流量調節計、ボイラ・マスタ信号が設定信号として
与えられ、後述する掛算器の出力信号が入力信号として
与えられ、これら両信号の差に基づく空気流量制御信号
を出力する空気流量調節計、ボイラに供給される複数の
種類の燃料のおのおのの流量■iを、実質的に、その燃
料による単位蒸発量Ciとボイラ●マスタ信号が100
パーセントのときの熱量Zの逆数との積で重み付けして
加算する第1の加算器、ボイラに供給される複数の種類
の燃料のおのおのの流量Viを、実質的に、その燃料に
対する単位理論空気量Aiと1つの燃料の単位蒸発量d
と同じ1つの燃料の単位理論空気量a1の逆数とボイラ
・マスタ信号が100パーセントのときの熱量Zの逆数
との積で重み付けして加算する第2の加算器、第1の加
算器の出力信号を第2の加算器の出力信号で加算する割
算器、ボイラに供給される空気の流量信号に上記1つの
燃料をボイラで専焼するとしたときの過剰空気率ηの逆
数を掛けた信号を発生する関数発生器、及びこの関数発
生器の出力信号と前記割算器の出力!信号との積を求め
る掛算器を具備するボイラの燃焼制御装置 によつて上記の目的を達成したものである。
In the present invention, a boiler master signal is given as a setting signal, an output signal of a first adder to be described later is given as an input signal,
A fuel flow controller that outputs a fuel flow control signal based on the difference between these two signals, a boiler master signal is given as a setting signal, an output signal of a multiplier to be described later is given as an input signal, and the difference between these two signals is given as a setting signal. An air flow controller that outputs an air flow rate control signal based on the flow rate of each of the plurality of types of fuel supplied to the boiler i, and the unit evaporation amount Ci of that fuel and the boiler master signal of 100
A first adder that weights and adds the product with the reciprocal of the amount of heat Z when expressed as a percentage, substantially calculates the flow rate Vi of each of the plurality of types of fuel supplied to the boiler by the unit theoretical air for that fuel. Quantity Ai and unit evaporation amount d of one fuel
The output of the second adder and the first adder weights and adds the product of the reciprocal of the unit theoretical air amount a1 of one fuel and the reciprocal of the heat amount Z when the boiler master signal is 100%. A divider that adds the signal with the output signal of the second adder, and a signal obtained by multiplying the flow rate signal of the air supplied to the boiler by the reciprocal of the excess air ratio η when the above one fuel is exclusively burned in the boiler. The function generator that generates, and the output signal of this function generator and the output of the divider! The above object has been achieved by a boiler combustion control device equipped with a multiplier for calculating the product of the signal and the signal.

以下図面によつて本発明を説明する。図は本発明実施例
の概念的構成図である。図において、こCTLlおよび
CT!はそれぞれ燃料流量調節計および空気流量調節計
である。燃料流量調節計CTLlには各燃量の流量がそ
れぞれ流量検出器F1〜F,で検出され加算器S1で重
み付け加算されて、入力信号として与えられる。空気流
量調節計5CTL2には空気の流量が流量検出器Aで検
出され関数発生器FXと掛算器Mで補正されて、入力信
号として与えられる。両調節計にはボイラ・マスタ信号
BMSが共通に設定信号として与えられる。両調節計は
ボイラ・マスタ信号BMSとそれ4ぞれの入力信号との
差に基づいて、それぞれ燃料流量制御信号FCSおよび
空気流量制御信号ACSを生じる。関数発生器FXには
後述のような入出力特性が付与され、空気流量信号AF
Sと所定の関係にある出力信号E4が発生される。
The present invention will be explained below with reference to the drawings. The figure is a conceptual configuration diagram of an embodiment of the present invention. In the figure, this CTLl and CT! are a fuel flow controller and an air flow controller, respectively. The flow rate of each fuel quantity is detected by flow rate detectors F1 to F, respectively, weighted and added by an adder S1, and the result is given as an input signal to the fuel flow rate controller CTL1. The air flow rate is detected by a flow rate detector A, corrected by a function generator FX and a multiplier M, and then provided as an input signal to the air flow rate controller 5CTL2. Both controllers are commonly given the boiler master signal BMS as a setting signal. Both controllers produce a fuel flow control signal FCS and an air flow control signal ACS, respectively, based on the difference between the boiler master signal BMS and their respective four input signals. The function generator FX is given input/output characteristics as described below, and the air flow signal AF
An output signal E4 having a predetermined relationship with S is generated.

割算器Dには加算器Sl,S2によつて各燃量の流量信
号が重み付け加算された結果El,E2が与えられる。
割算器Dは信号E1をE2で割算してその結果E3を掛
算器Mに与える。さて、低過剰空気で燃焼を維持するた
めには空気流量信号AF′Sが適切にボイラ・マスタ信
号BMS相当の信号に変換されて空気流量調節器CTL
2に入力される必要がある。
The divider D is given El, E2 as a result of weighted addition of the flow rate signals of each fuel amount by the adders Sl, S2.
Divider D divides signal E1 by E2 and provides the result E3 to multiplier M. Now, in order to maintain combustion with low excess air, the air flow signal AF'S is appropriately converted into a signal equivalent to the boiler master signal BMS, and the air flow controller CTL
2 must be entered.

ボイラ・マスタ信号BMSは熱量に基づく信号であつて
次式で表わされる。ただし、 Z・・・BMS=100%のときの熱量(Cae/H)
Qi・・・燃料流量計Fiの測定レンジ(Nm3/H)
Cピ・・燃料1による単位蒸発量(Ca′/Nm3)f
ピ・・燃料1の流量(%)これに対する空気の必要量は
次式で表わされる。
The boiler master signal BMS is a signal based on the amount of heat and is expressed by the following equation. However, Z...The amount of heat when BMS=100% (Cae/H)
Qi...Measurement range of fuel flow meter Fi (Nm3/H)
C pi...Unit evaporation amount (Ca'/Nm3) f of fuel 1
Pi...Flow rate (%) of fuel 1 The required amount of air for this is expressed by the following formula.

ただし、η・・・過剰空気率 Y・・・AFS=100%のときの空気流量(Nm3/
H)aピ・・燃料1に対する単位理論空気量(Nm3/
Nm3)したがつて空気流量信号AFSをボイラ・マス
タ信号BMS相当の信号に変換する係数は次式で与えら
れるから、空気流量信号AF′Sに(3)式の係数を掛
ければ、空気流量調節信号CTI−2に入力する適正な
信号が次式のように得られる。
However, η...Excess air rate Y...Air flow rate when AFS=100% (Nm3/
H) a pi... Unit theoretical air amount for 1 fuel (Nm3/
Nm3) Therefore, since the coefficient for converting the air flow signal AFS into a signal equivalent to the boiler master signal BMS is given by the following equation, by multiplying the air flow signal AF'S by the coefficient of equation (3), the air flow rate can be adjusted. A proper signal input to signal CTI-2 is obtained as follows.

すなわちこの式が空気流量信号AF′Sをボイラ・マス
タ信号相当の信号に変換する関数となる。
That is, this equation becomes a function for converting the air flow rate signal AF'S into a signal equivalent to the boiler master signal.

いま単一燃料として主燃料1(通常この燃料のみで定格
ボイラ負荷運転が可能な燃料)の専燃状態を仮定すると
(4)式は次のようになる。
Assuming that the main fuel 1 (normally, the rated boiler load can be operated only with this fuel) is in the exclusive combustion state as the single fuel, equation (4) becomes as follows.

ここで、ηとして単一燃料に対して各負荷帯ごとに適正
な過剰空気率を確保できる値が用いられたとすると、変
換関数は次式となるべきである。したがつて、となる。
Here, if a value that can ensure an appropriate excess air ratio for each load zone for a single fuel is used as η, then the conversion function should be as shown in the following equation. Therefore, it becomes.

ηは単一燃料の専焼状態における過剰空気率であるから
、容易に求めることができ、したがつて変換関数AFS
/ηは容易に関数発生器FXに設定することができる。
単一燃料としては主燃料1を選定するのが一般であるが
、他の燃料2〜燃料4を選定しても(7)式に相当する
関係を容易に導くことができる。多種燃料に対しては(
7)式の関係を(4)式に入れることによつて次のよう
な変換関数を得ることができる。
Since η is the excess air ratio in the state of exclusive combustion of a single fuel, it can be easily determined, and therefore the conversion function AFS
/η can be easily set in the function generator FX.
Generally, main fuel 1 is selected as the single fuel, but even if other fuels 2 to 4 are selected, the relationship equivalent to equation (7) can be easily derived. For various fuels (
By inserting the relationship in equation (7) into equation (4), the following conversion function can be obtained.

ここで、とすると、(8)式は次のように書ける。Here, equation (8) can be written as follows.

(9)式のKiは燃料1の流量Fiを燃料1の流量カロ
リーベースに変換する係数、[相]式のH,は燃料iの
流量Fiを理論空気ベースに変換する係数であると言え
る。
It can be said that Ki in equation (9) is a coefficient that converts the flow rate Fi of fuel 1 into a flow rate calorie basis of fuel 1, and H in the [phase] equation is a coefficient that converts the flow rate Fi of fuel i into a theoretical air basis.

ここで、Qf,c,,a,およびzは既知の定数である
から、Ki,h,も定数となる。
Here, since Qf, c,, a, and z are known constants, Ki, h, is also a constant.

そこで加算器S1は(11)式におけるΣK,f,を算
出するもので、燃料流量信号F,を係数K,で重み付け
して加算した出力E1と発生する。
Therefore, the adder S1 calculates ΣK,f in equation (11), and generates an output E1 obtained by weighting and adding the fuel flow signal F by a coefficient K.

次に加算器ちは(9)式における干H,fiを算出する
もので、燃料流量F,を係数Hiで重み付けして加算し
た出力E2を発生する。Dはこれら出力の商を算出する
割算器でE3=E1/E2を出力するので、E3=Tk
,flギH,f.となる。これを掛算器Mで関数発生器
下Xの出力信号に掛算すると、(11)式に従つた信号
が得られる。したがつて空気流量調節討CTL2には適
正な入力信号が与えられるので、空気流量調節訂CTL
2により空気流量は適正な低過剰状態に制御される。
Next, the adder calculates the coefficient H,fi in equation (9), and generates an output E2 obtained by weighting and adding the fuel flow rate F, with the coefficient Hi. D is a divider that calculates the quotient of these outputs and outputs E3=E1/E2, so E3=Tk
, flgi H, f. becomes. When this is multiplied by the output signal of the function generator lower X by the multiplier M, a signal according to equation (11) is obtained. Therefore, since an appropriate input signal is given to the air flow rate adjustment CTL2, the air flow rate adjustment CTL2 is given an appropriate input signal.
2, the air flow rate is controlled to an appropriately low excess state.

なお、上記の実施例は燃料流量検出器F1〜F4の出力
信号F,がそれぞれの測定レンジQ,の%で得られる例
であるが、Qifiは絶対値流量に他ならないので、こ
れを■として次式により変換を行うようにしてもよい。
Note that the above embodiment is an example in which the output signals F, of the fuel flow rate detectors F1 to F4 are obtained as a percentage of the respective measurement ranges Q, but since Qifi is nothing but the absolute value flow rate, it can be expressed as ■. The conversion may be performed using the following equation.

本発明の特徴は複数の燃料のうちの一つ例えば主燃料に
着目して、他の燃料流量信号を熱量ベースでも理論空気
量ベースでも変換する点にある。つまりボイラ燃料とし
て最も重要な単位燃料当りの発熱量と理論空気量の単純
な物性値のみを使用jするので、他の燃料の比重や流量
の計測方法等に支配されないで適正な空気流量を算出す
ることができる。以上のように、本発明によれば、複数
種類の燃料を焚くボイラにおいて、燃料流量と空気流量
をいずれもボイラ・マスタ信号に基づいて制御しながら
、ボイラを低過剰空気で運転する燃焼制御装置が実現で
きる。
A feature of the present invention is that, by focusing on one of the plurality of fuels, for example, the main fuel, other fuel flow rate signals are converted on either a calorific value basis or a theoretical air amount basis. In other words, since we use only the simple physical property values of the calorific value per unit fuel and the theoretical air amount, which are the most important factors for boiler fuel, the appropriate air flow rate can be calculated without being influenced by other fuel specific gravity or flow rate measurement methods. can do. As described above, according to the present invention, in a boiler that burns multiple types of fuel, the combustion control device operates the boiler with low excess air while controlling both the fuel flow rate and the air flow rate based on the boiler master signal. can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明実施例の概念的構成図である。 CTLl・・・・・・燃料流量調節計、CTL2・・・
・・・空気流量調節計、F1〜F4・・・・・・燃料流
量検出器、A・・・・空気流量検出器、Sl,S2・・
・・・・加算器、D・・・・・・割算器、M・・・・・
・掛算器、FX・・・・・・関数発生器。
The figure is a conceptual configuration diagram of an embodiment of the present invention. CTLl...Fuel flow rate controller, CTL2...
...Air flow rate controller, F1-F4...Fuel flow rate detector, A...Air flow rate detector, Sl, S2...
... Adder, D ... Divider, M ...
・Multiplier, FX...Function generator.

Claims (1)

【特許請求の範囲】[Claims] 1 ボイラ・マスタ信号が設定信号として与えられ、後
述する第1の加算器の出力信号が入力信号として与えら
れ、これら両信号の差に基づく燃料流量制御信号を出力
する燃料流量調節計、ボイラ・マスタ信号が設定信号と
して与えられ、後述する掛算器の出力信号が入力信号と
して与えられ、これら両信号の差に基づく空気流量制御
信号を出力する空気流量調節計、ボイラに供給される複
数の種類の燃料のおのおのの流量Viを、実質的に、そ
の燃料による単位蒸発量ciとボイラ・マスタ信号が1
00パーセントのときの熱量Zの逆数との積で重み付け
して加算する第1の加算器、ボイラに供給される複数の
種類の燃料のおのおのの流量Viを、実質的に、その燃
料に対する単位理論空気量aiと1つの燃料の単位蒸発
量clと同じ1つの燃料の単位理論空気量alの逆数と
ボイラ・マスタ信号が100パーセントのときの熱量Z
の逆数との積で重み付けして加算する第2の加算器、第
1の加算器の出力信号を第2の加算器の出力信号で割算
する割算器、ボイラに供給される空気の流量信号に上記
1つの燃料をボイラで専焼するとしたときの過剰空気率
ηの逆数を掛けた信号を発生する関数発生器、及びこの
関数発生器の出力信号と前記割算器の出力信号との積を
求める掛算器を具備するボイラの燃焼制御装置。
1 A boiler master signal is given as a setting signal, an output signal of a first adder to be described later is given as an input signal, and a fuel flow controller, a boiler master signal, which outputs a fuel flow control signal based on the difference between these two signals. A master signal is given as a setting signal, an output signal of a multiplier (described later) is given as an input signal, and an air flow rate control signal is output based on the difference between these two signals. The flow rate Vi of each fuel is substantially equal to the unit evaporation amount ci of the fuel and the boiler master signal 1.
The first adder adds the weighted amount by the product of the reciprocal of the amount of heat Z when the value is 00%, and the flow rate Vi of each of the plurality of types of fuel supplied to the boiler is substantially calculated based on the unit theory for that fuel. The air amount ai, the unit evaporation amount cl of one fuel, the reciprocal of the unit theoretical air amount al of one fuel, and the amount of heat Z when the boiler master signal is 100%
A second adder that weights and adds the product with the reciprocal of , a divider that divides the output signal of the first adder by the output signal of the second adder, and a flow rate of air supplied to the boiler. A function generator that generates a signal multiplied by the reciprocal of the excess air ratio η when the above one fuel is exclusively burned in the boiler, and the product of the output signal of this function generator and the output signal of the divider. A boiler combustion control device equipped with a multiplier that calculates .
JP52149119A 1977-12-12 1977-12-12 Boiler combustion control device Expired JPS6046336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52149119A JPS6046336B2 (en) 1977-12-12 1977-12-12 Boiler combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52149119A JPS6046336B2 (en) 1977-12-12 1977-12-12 Boiler combustion control device

Publications (2)

Publication Number Publication Date
JPS5481527A JPS5481527A (en) 1979-06-29
JPS6046336B2 true JPS6046336B2 (en) 1985-10-15

Family

ID=15468127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52149119A Expired JPS6046336B2 (en) 1977-12-12 1977-12-12 Boiler combustion control device

Country Status (1)

Country Link
JP (1) JPS6046336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048316B (en) * 2014-05-23 2016-09-07 江苏海事职业技术学院 A kind of air feed system being used for the auxiliary boiler of oil tanker based on analog multiplier

Also Published As

Publication number Publication date
JPS5481527A (en) 1979-06-29

Similar Documents

Publication Publication Date Title
CA1191234A (en) Plant control apparatus
US4776301A (en) Advanced steam temperature control
JP2747526B2 (en) Calibration method for systems automatically controlled by valves
US4586893A (en) Control apparatus
CA1079139A (en) Boiler control providing improved operation with fuels having variable heating values
US3417737A (en) Once-through boiler control system
CN104864385A (en) Method and device for calculating feed water flow instruction of supercritical unit
US4074360A (en) Fuel and feedwater-monitoring system of a once-through steam generator
JPS6046336B2 (en) Boiler combustion control device
JPS6046337B2 (en) Boiler combustion control device
US5279263A (en) Cascaded steam temperature control applied to a universal pressure boiler
US4213304A (en) Boiler control system
Thompson A dynamic model of a drum-type boiler system
US4909037A (en) Control system for once-through boilers
US3183897A (en) Superheat control
Clarke et al. The application of Kalman filtering to the load/pressure control of coal-fired boilers
JP2755741B2 (en) Advance signal circuit of boiler plant
RU2044216C1 (en) Automatic superheated steam temperature controller for steam generator
JPH0820071B2 (en) Combustion control device
Schörghuber et al. Control of a biomass-furnace based on input-output-linearization
US3627062A (en) Heat distribution control in once-through boilers
CN104214792B (en) Realize the compensation method of direct current cooker feedwater flow and fuel quantity dynamically accurate proportioning
Waddington Kalman filter applications for coal-fired generating unit control
SU1044885A1 (en) System of automatic control of steam pressure in drum boiler
SU1002728A1 (en) System for automatic control of burning process in steam generator sectionized fire box