JPS6046242B2 - Reactor - Google Patents

Reactor

Info

Publication number
JPS6046242B2
JPS6046242B2 JP56001558A JP155881A JPS6046242B2 JP S6046242 B2 JPS6046242 B2 JP S6046242B2 JP 56001558 A JP56001558 A JP 56001558A JP 155881 A JP155881 A JP 155881A JP S6046242 B2 JPS6046242 B2 JP S6046242B2
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
reactor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56001558A
Other languages
Japanese (ja)
Other versions
JPS56107906A (en
Inventor
邦雄 芥川
泰宏 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56001558A priority Critical patent/JPS6046242B2/en
Publication of JPS56107906A publication Critical patent/JPS56107906A/en
Publication of JPS6046242B2 publication Critical patent/JPS6046242B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a nuclear reactor.

〔発明の背景〕[Background of the invention]

従来の沸騰水形原子炉では、タービン復水器より原子
炉圧力容器へ至る冷却水をタービンより拙筆された蒸気
を給水加熱器に導くことによつて加 熱している。
In conventional boiling water reactors, the cooling water that flows from the turbine condenser to the reactor pressure vessel is heated by directing the steam produced by the turbine to the feed water heater.

このような給水加熱法では原子炉の起動時や停止時に原
子炉圧力容器内で発生した蒸気がタービンをバイパスし
直接にタービン復水器へ至るような場合、タービンより
拙筆した蒸気による冷却水の加熱がおこなわれず、ター
ビン復水器によつて凝縮された温度の低い冷却水が、温
度の低いまま給水ポンプによつて原子炉圧力容器へ注入
される。 したがつて原子炉の起動時には、給水ポンプ
によつて原子炉圧力容器内への冷却水の供給がおこなわ
れる以前に原子炉圧力容器内の冷却水温度とほぼ同温度
の高温にある原子炉圧力容器内の給水配管(例えばノズ
ル)が、給水ポンプが起動され、タービン復水器内の温
度の低い冷却水が注入されるとただちに低温に冷却され
る。
In this type of feed water heating method, if the steam generated in the reactor pressure vessel during reactor startup or shutdown bypasses the turbine and goes directly to the turbine condenser, the cooling water generated by the steam generated from the turbine is The low-temperature cooling water condensed by the turbine condenser is injected into the reactor pressure vessel at a low temperature by the feedwater pump. Therefore, at the time of reactor startup, the reactor pressure is at a high temperature that is approximately the same as the temperature of the cooling water in the reactor pressure vessel before the water supply pump supplies cooling water to the reactor pressure vessel. The water supply piping (for example, a nozzle) in the vessel is cooled to a low temperature as soon as the water supply pump is activated and the low temperature cooling water in the turbine condenser is injected.

又原子炉停止時には、タービンから拙筆された蒸気によ
つて加熱された高温の冷却水が流れていた給水配管は、
タービンヘの蒸気供給が停止した場合では、タービンよ
り拙筆された蒸気による冷却水の加熱がおこなわれない
ので、タービン復水器から導かれる温度の低い冷却水が
流れるためただちに低温となる。 このように従来の沸
騰水形原子炉では、原子炉一の起動時および停止時等に
、原子炉圧力容器内の給水配管の温度変化が大きくなる
可能性もある。
Also, when the reactor was shut down, the water supply piping, through which high-temperature cooling water heated by the steam generated by the turbine, was flowing.
When the steam supply to the turbine is stopped, the cooling water is not heated by the steam drawn from the turbine, so the low temperature cooling water drawn from the turbine condenser flows, and the temperature immediately becomes low. As described above, in conventional boiling water reactors, there is a possibility that the temperature change in the water supply piping within the reactor pressure vessel becomes large during startup and shutdown of the reactor.

〔発明の目的〕本発明の、原子炉の起動時及び停止時に
おいてタービンから給水加熱器への抽気蒸気の供給状態
を精度良く検出でき、原子炉容器内の給水管への熱衝撃
を著しく抑制できる原子炉を提供することにある。
[Object of the invention] The present invention enables accurate detection of the supply status of extracted steam from the turbine to the feed water heater during startup and shutdown of the reactor, and significantly suppresses thermal shock to the water supply pipes inside the reactor vessel. The goal is to provide a nuclear reactor that can.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、タービンを介することなく原子炉容器
内の蒸気を給水加熱器に導く第2抽気管を設け、第2抽
気管に開閉弁を設け、タービンと給水加熱器を連絡する
第1抽気管の圧力を検出してこの圧力に基づいて開閉弁
の開閉操作を行う第1制御手段を設け、開閉弁の下流側
で第2抽気管に圧力制御弁を設け、第2抽気管の圧力を
検出してこの圧力に基づいて圧力制御弁を操作し第2抽
気管を流れる蒸気圧力を所定圧力に制御する第2制御手
段を設けたことにある。
The features of the present invention are that a second bleed pipe is provided to guide the steam in the reactor vessel to the feedwater heater without going through the turbine, an on-off valve is provided in the second bleed pipe, and a first bleed pipe that connects the turbine and the feedwater heater is provided. A first control means is provided for detecting the pressure in the air bleed pipe and opens and closes the on-off valve based on this pressure, and a pressure control valve is provided in the second air bleed pipe downstream of the on-off valve to control the pressure in the second air bleed pipe. A second control means is provided for detecting the pressure and operating the pressure control valve based on this pressure to control the pressure of steam flowing through the second bleed pipe to a predetermined pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の実施例について説明する
が、これに先立つてまず第1図及び第2図に基づいて従
来の沸騰水形原子炉における動作特性について説明する
Embodiments of the present invention will be described below with reference to the drawings, but first, operating characteristics in a conventional boiling water reactor will be described with reference to FIGS. 1 and 2.

第1図において、1は沸騰水形原子炉の原子炉圧力容器
、2は原子炉圧力容器1内にて発生した蒸気が通る主蒸
気配管、3はタービン4への蒸気量を調節する蒸気加減
弁、5はタービン4をバイパスしタービン復水器8へ至
る蒸気量を調節するバイパス弁、6はタービン4をバイ
パスされる蒸気が流れるバイパス配管である。
In Fig. 1, 1 is the reactor pressure vessel of the boiling water reactor, 2 is the main steam pipe through which the steam generated in the reactor pressure vessel 1 passes, and 3 is the steam regulator that adjusts the amount of steam to the turbine 4. The valve 5 is a bypass valve that bypasses the turbine 4 and regulates the amount of steam reaching the turbine condenser 8, and the reference numeral 6 is a bypass pipe through which the steam bypassed by the turbine 4 flows.

タービン4より抽気された蒸気は、抽気配管7を通つて
給水加熱器10の高温側に供給されてさらにタービン復
水器8へ回収される。
The steam extracted from the turbine 4 is supplied to the high temperature side of the feedwater heater 10 through the extraction pipe 7 and then recovered to the turbine condenser 8 .

タービン復水器8はタービン復水器冷却系統9によりタ
ービン4から排出される蒸気を凝縮し冷却する。蒸気の
凝縮によつて得られた温度の低い冷却水は給水配管12
を通り、給水加熱器10にて抽気配管7より供給される
蒸気で加熱される。その後、冷却水は、給水ポンプ11
によつて昇圧され、原子炉内給水配管13および給水散
水管14を経由して原子炉圧力容器1内に導かれる。こ
のような沸騰水形原子炉における原子炉起動時の各部の
状態変化を第2図に示す。
The turbine condenser 8 condenses and cools the steam discharged from the turbine 4 by means of a turbine condenser cooling system 9. The low temperature cooling water obtained by condensing the steam is supplied to the water supply pipe 12.
The water passes through the feed water heater 10 and is heated by steam supplied from the bleed pipe 7. After that, the cooling water is supplied to the water supply pump 11
The pressure of the water is raised by the reactor water supply pipe 13 and the water supply sprinkler pipe 14 to lead into the reactor pressure vessel 1 . FIG. 2 shows changes in the state of each part of such a boiling water reactor when the reactor is started.

第2図に於て横軸は経過時間及び時刻、縦軸は各部の状
態変化を示す。
In FIG. 2, the horizontal axis shows elapsed time and time, and the vertical axis shows changes in the state of each part.

第2図において特性A,BおよびCは、それぞれ原子炉
起動時の原子炉圧力容器1内の蒸気圧力、タービン出力
およびタービン回転速度を示している。
In FIG. 2, characteristics A, B, and C indicate the steam pressure in the reactor pressure vessel 1, the turbine output, and the turbine rotation speed, respectively, at the time of reactor startup.

ここで、タービン出力とは、タービン4に連結されてい
る発電機(図示せず)の電気出力である。又、特性D,
E及びFは、それぞれ給水流量、タービン4からの蒸気
抽気量、および原子炉内給水配管13の温度を示してい
る。原子炉起動時にはまず蒸気加減弁3およびバイパス
弁5を閉じたまま原子炉出力を上昇させる。
Here, the turbine output is the electrical output of a generator (not shown) connected to the turbine 4. Also, the characteristic D,
E and F indicate the water supply flow rate, the amount of steam extracted from the turbine 4, and the temperature of the reactor water supply pipe 13, respectively. When starting up the reactor, first, the reactor output is increased with the steam control valve 3 and bypass valve 5 closed.

このとき原子炉圧力容器1内の蒸気圧力は、第2図の特
性Aのように100%まで上昇する。又、原子炉内給水
配管13の温度は、原子炉圧力容器1内の蒸気圧力の飽
和温度とみなされ、蒸気圧力の上昇とともに特性Fのよ
うに上昇する。次に、原子炉圧力容器1内の蒸気圧力が
100%になつた後に蒸気加減弁3を開いて、タービン
回転速度を特性Cのように100%まで上昇させる。タ
ービン復水器8にはタービン4を通過した蒸気が流れこ
みタービン復水器冷却系統9によりこの蒸気は冷却され
て凝縮される。蒸気加減弁3を開くとともに給水ポンプ
11を起動して原子炉圧力容器1内に冷却水を供給する
ので、給水流量は特性Dのよう−に上昇する。このとき
、特性Eに示されるようにタービン出力が上昇するまで
の間はタービン4からの蒸気抽気量は無く、タービン復
水器8にて凝縮された冷却水が給水加熱器10によつて
加熱されることなく原子炉圧力容器1内へ注入される。
ノしたがつて、原子炉内給水配管13の温度は冷却水の
温度まで直ちに低下する。発電機と電力系統をつなぐ遮
断器を投入するとともに蒸気加減弁3の開度を大きくし
て特性Bのようにタービン出力(電気出力)を上昇させ
る7と、タービン4を通過する蒸気は増し、タービン4
からの蒸気抽気量は特性Eのように増加し始め、給水加
熱器10の高温側に抽気された蒸気が流れるようになり
、原子炉圧力容器1内に導かれる冷却水温度は上昇する
At this time, the steam pressure within the reactor pressure vessel 1 rises to 100% as shown by characteristic A in FIG. Further, the temperature of the reactor water supply pipe 13 is regarded as the saturation temperature of the steam pressure in the reactor pressure vessel 1, and increases as shown in characteristic F as the steam pressure increases. Next, after the steam pressure in the reactor pressure vessel 1 reaches 100%, the steam control valve 3 is opened and the turbine rotational speed is increased to 100% as shown in characteristic C. Steam that has passed through the turbine 4 flows into the turbine condenser 8 and is cooled and condensed by the turbine condenser cooling system 9. Since the steam control valve 3 is opened and the feed water pump 11 is started to supply cooling water into the reactor pressure vessel 1, the feed water flow rate increases as shown in characteristic D. At this time, as shown in characteristic E, there is no amount of steam extracted from the turbine 4 until the turbine output increases, and the cooling water condensed in the turbine condenser 8 is heated by the feed water heater 10. It is injected into the reactor pressure vessel 1 without being injected into the reactor pressure vessel 1.
Therefore, the temperature of the reactor water supply pipe 13 immediately drops to the temperature of the cooling water. When the circuit breaker connecting the generator and the power system is turned on and the opening degree of the steam control valve 3 is increased to increase the turbine output (electrical output) as shown in characteristic B 7, the steam passing through the turbine 4 increases, turbine 4
The amount of steam extracted from the reactor pressure vessel 1 begins to increase as shown in characteristic E, the extracted steam begins to flow to the high temperature side of the feedwater heater 10, and the temperature of the cooling water introduced into the reactor pressure vessel 1 rises.

この結果、原子炉内給水配管温度は、タービン出力の上
昇に伴つて特性Fのように上昇する。タービン出力の上
昇に伴つてタービン4に供給すべき蒸気流量を増大させ
る必要があるので、特性Dに示すように途中より給水流
量を増加させる。前述の如く原子炉起動時には特性Fに
示されるように原子炉内給水配管13の温度変化は大巾
となる。
As a result, the temperature of the reactor water supply pipe increases as shown in characteristic F as the turbine output increases. As the turbine output increases, it is necessary to increase the flow rate of steam to be supplied to the turbine 4, so as shown in characteristic D, the flow rate of water supply is increased from the middle. As described above, when the reactor is started, the temperature change in the reactor water supply pipe 13 becomes large as shown by characteristic F.

このため、原子炉内給水配管13に大きな熱衝撃が加わ
る。原子炉停止時の状態変化は上述の状態変化の逆にな
り、原子炉内給水配管13の温度変化は同様に大巾とな
る。
Therefore, a large thermal shock is applied to the reactor water supply pipe 13. The state change when the reactor is shut down is the opposite of the state change described above, and the temperature change in the reactor water supply pipe 13 is similarly large.

従来の貫流式ボイラでは、ボイラ内の冷却水管の焼損を
防止するため、ボイラ起動時に所要の蒸気条件が得られ
るまで冷却水を最少流量流す必要がある。この時のボイ
ラ熱効率を高めるため、貫流式ボイラより発生した蒸気
量の全部をタービン復水器へ導いて冷却せず、一部を給
水加熱器へ導いて、ボイラへの給水を加熱するという方
法がとられている。沸騰水形原子炉の場合、上記の貫流
式ボイラのごとく最少流量を流すような起動法が行なわ
れていなく、又本発明は原子炉内配管の温度変化の緩和
が目的であるので貫流式ボイラの場合と異なる。
In conventional once-through boilers, in order to prevent cooling water pipes within the boiler from burning out, it is necessary to flow cooling water at a minimum flow rate when starting the boiler until the required steam conditions are obtained. In order to increase the boiler thermal efficiency at this time, a method is adopted in which all of the steam generated by the once-through boiler is not guided to the turbine condenser for cooling, but a portion is guided to the feed water heater to heat the water fed to the boiler. is taken. In the case of a boiling water reactor, there is no startup method that allows a minimum flow rate to flow as in the once-through boiler described above, and since the purpose of the present invention is to alleviate temperature changes in the piping inside the reactor, once-through boilers are not used. This is different from the case of

つまり、本発明は、タービンよりの蒸気抽気量が少ない
場合に、冷却水の加熱をおこなうことを考慮したもので
ある。第3図は、本発明の実施例を示す。
In other words, the present invention takes into consideration heating the cooling water when the amount of steam extracted from the turbine is small. FIG. 3 shows an embodiment of the invention.

同図に於て第1図と同じ符号は同じ部分を示すので、こ
れらの部分についての説明は省復する。抽気配管7には
高圧力スイッチ15、低圧力スイッチ16および逆止弁
17が設置される。
In this figure, the same reference numerals as in FIG. 1 indicate the same parts, so the description of these parts will be omitted. A high pressure switch 15, a low pressure switch 16, and a check valve 17 are installed in the bleed pipe 7.

主蒸気配管2と抽気配管7を連絡する蒸気配管21には
、遠隔作動弁22、圧力制御弁20、逆止弁19および
圧力調節器18が設置される。次に、第4図に基づいて
、本実施例の作動状態を説明する。
A remote operated valve 22, a pressure control valve 20, a check valve 19, and a pressure regulator 18 are installed in a steam pipe 21 that connects the main steam pipe 2 and the bleed pipe 7. Next, the operating state of this embodiment will be explained based on FIG. 4.

第4図において、特性A−Fは第2図に示すものと同一
であつて、特性Gは第3図に示されるG点における蒸気
配管21内の蒸気圧力を示す。
In FIG. 4, characteristics A-F are the same as those shown in FIG. 2, and characteristic G represents the steam pressure in the steam pipe 21 at point G shown in FIG.

特.性Hは第3図に示されるH点における抽気配管7内
の蒸気圧力を示す。さらに、特性1は蒸気配管21内の
蒸気流量を示している。原子炉起動時には、ます原子炉
の昇温昇圧運転が開始される(時間T。)。すなわち、
蒸気加減弁3およびバイパス弁5を閉じたまま原子炉出
力を上昇させる。このとき原子炉圧力容器1内の蒸気圧
力は、第4図の特性Aのように100%まで上昇する。
又、原子炉内給水配管温度は、原子炉圧力容器内蒸気圧
力の飽和温度とみなされ、特性Fのように土昇する。遠
隔作動弁22は低圧力スイッチ16からの信号により全
関している。すなわち、低圧力スイッチ16は、抽気配
管7のH点における内蒸気圧力が一定値(設定圧力)以
下になると遠隔作動弁22を全関する信号を発する。原
子炉起動時においては、当然のことながらH点の圧力が
低圧力スイッチ16の設定圧力以下であるので、遠隔作
動弁22は開いている。このため、フ原子炉圧力容器1
で発生した蒸気は、蒸気配管21を通して給水加熱器1
0に供給される。この蒸気は、逆止弁17があるので抽
気配管7をさかのぼつてタービン4には流入しない。原
子炉圧力容器1内の冷却水の水位が蒸気の流出によつて
低下jするのを防止して所定水位に維持するために、給
水ポンプ11が時間T。に駆動されて復水器8より冷却
水が給水配管12を通つて原子炉圧力容器1に供給され
る。給水配管12を流れる冷却水は、給水加熱器10に
おいて蒸気配管21より供給さ”れる蒸気により加熱さ
れる。蒸気は、給水加熱器10にて凝縮されてドレン水
となつて復水器8に導かれる。時間T。から時陣,の間
においては、原子炉圧力容器1から吐出された蒸気は、
蒸気配管21、給水加熱器10(蒸気は給水加熱器10
にて凝縮されて水となるので、給水加熱器10以降は水
の状態て)、復水器8、給水配管12及び原子炉圧力容
器1を連絡する閉ループ内を流動する。G点の圧力は、
第4図の特性Gに示す如く時間ちから時間t1までの間
に蒸気圧力(第4図の特性A)の上昇とともに上昇する
Special. The value H indicates the steam pressure inside the extraction pipe 7 at point H shown in FIG. Furthermore, characteristic 1 indicates the steam flow rate within the steam pipe 21. When the reactor is started, the temperature and pressure increasing operation of the reactor is started (time T). That is,
The reactor output is increased while keeping the steam control valve 3 and bypass valve 5 closed. At this time, the steam pressure within the reactor pressure vessel 1 rises to 100% as shown by characteristic A in FIG.
Furthermore, the temperature of the water supply pipe inside the reactor is regarded as the saturation temperature of the steam pressure inside the reactor pressure vessel, and rises as shown in characteristic F. Remotely operated valve 22 is engaged entirely by a signal from low pressure switch 16. That is, the low pressure switch 16 issues a signal that completely controls the remote operated valve 22 when the internal steam pressure at point H of the bleed pipe 7 falls below a certain value (set pressure). At the time of reactor startup, the pressure at point H is naturally lower than the set pressure of the low pressure switch 16, so the remotely operated valve 22 is open. For this reason, the reactor pressure vessel 1
The steam generated is passed through the steam pipe 21 to the feed water heater 1.
0. Because of the check valve 17, this steam does not flow back through the extraction pipe 7 and into the turbine 4. In order to prevent the level of cooling water in the reactor pressure vessel 1 from dropping due to steam outflow and maintain it at a predetermined level, the water supply pump 11 is activated for a period of time T. Cooling water is supplied from the condenser 8 to the reactor pressure vessel 1 through the water supply pipe 12. The cooling water flowing through the water supply pipe 12 is heated by the steam supplied from the steam pipe 21 in the water supply heater 10.The steam is condensed in the water supply heater 10, becomes drain water, and is sent to the condenser 8. Between time T and time, the steam discharged from the reactor pressure vessel 1 is
Steam piping 21, feed water heater 10 (steam is connected to feed water heater 10)
Since the water is condensed into water at the feedwater heater 10 and thereafter, it flows in a closed loop connecting the condenser 8, the water supply piping 12, and the reactor pressure vessel 1. The pressure at point G is
As shown by characteristic G in FIG. 4, it increases as the steam pressure (characteristic A in FIG. 4) increases from time t1 to time t1.

しかし、G点の圧力は、時間ち以降において一定の圧力
に保持される。この操作は、圧力調節器18及び圧力制
御弁20によつて行われ、圧力制御器18はG点の圧力
が一定になるように圧力制御弁20の開度を調節する。
すなわち、圧力調節器18は、逆止弁19と圧力制御弁
20との間における蒸気配管21の蒸気圧力が設定圧力
(時間t1でのG点の圧力値)より小さい場合には、圧
力制御弁20の開度を増加させ、G点ゐ圧力が上記設定
圧力以上になる楊合には圧力制御弁20の開度を減少さ
せてG点の圧力を設定圧力に調節する。圧力調節器18
に設定された蒸気の設定圧力は、時腓,以降においてタ
ービン4から抽気される蒸気の圧力に等しい。圧力調節
器18及び圧力制御弁20は、、蒸気配管21を通して
給水加熱器10に所定圧力以下の蒸気を供給し、給水加
熱器10の破損を防止する機能を有している。給水加熱
器10の耐圧は、タービン4から抽気配管7した蒸気管
の圧力に耐えるように設計されている。タービンから抽
気された蒸気はタービン4でいくらかの仕事をした後で
抽気されているので、その抽気蒸気の圧力は主蒸気配管
2内の蒸気圧力よりもかなり低くなつている。タービン
4から蒸気が抽気される時間ちよりも前であつても、時
間t1以前における原子炉圧力容器1内の蒸気圧力は、
時i!11T.5以後においてタービン4から抽気配管
7に吐出される抽気蒸気の圧力よりも低くなつているの
で、時間t1以前においては、原子炉圧力容器1内の蒸
気圧力がほとんどそのまま給水加熱器10に加えられる
。しかし、時間t1以降においては、原子炉圧力容器1
、すなわち主蒸気配管2内の蒸気の圧力が、時間ら以後
におけるタービン4からの抽気された蒸気の圧力よりも
高くなる。このように高い圧力の蒸気が圧力制御弁20
にて減圧されずにそのまま蒸気配管21を介して給水加
熱器10に加えられると、給水加熱器10が破損する。
本実施例では、時間ζから原子炉圧力容器1内の蒸気圧
力が100%になる時間までの間においては圧力制御弁
20の開度が徐々に減少され、しかも原子炉圧力容器1
内の蒸気圧力が100%になつた時点から時間らまての
間においては圧力制御弁20の開度が圧力変動のない限
りは一定に保持されることによつて、時間ζ〜T5の範
囲でG点の圧力が設定圧力に抑制されるので、給水加熱
器10が破損することはない。時間T。
However, the pressure at point G remains constant after time. This operation is performed by the pressure regulator 18 and the pressure control valve 20, and the pressure regulator 18 adjusts the opening degree of the pressure control valve 20 so that the pressure at point G is constant.
That is, when the steam pressure in the steam pipe 21 between the check valve 19 and the pressure control valve 20 is lower than the set pressure (pressure value at point G at time t1), the pressure regulator 18 closes the pressure control valve. When the pressure at point G exceeds the set pressure, the opening of pressure control valve 20 is decreased to adjust the pressure at point G to the set pressure. Pressure regulator 18
The set pressure of the steam set in is equal to the pressure of the steam extracted from the turbine 4 from then on. The pressure regulator 18 and the pressure control valve 20 have a function of supplying steam at a predetermined pressure or lower to the feedwater heater 10 through the steam pipe 21 and preventing the feedwater heater 10 from being damaged. The pressure resistance of the feed water heater 10 is designed to withstand the pressure of the steam pipe connected from the turbine 4 to the extraction pipe 7. Since the steam extracted from the turbine is extracted after performing some work in the turbine 4, the pressure of the extracted steam is considerably lower than the steam pressure in the main steam pipe 2. Even before the time when steam is extracted from the turbine 4, the steam pressure in the reactor pressure vessel 1 before time t1 is:
Time i! 11T. Since the pressure is lower than the pressure of the extracted steam discharged from the turbine 4 to the extraction pipe 7 after time t1, the steam pressure in the reactor pressure vessel 1 is applied almost unchanged to the feedwater heater 10 before time t1. . However, after time t1, reactor pressure vessel 1
That is, the pressure of the steam in the main steam pipe 2 becomes higher than the pressure of the steam extracted from the turbine 4 after the time. This high-pressure steam flows through the pressure control valve 20.
If the steam is directly applied to the feed water heater 10 via the steam pipe 21 without being depressurized in the steam pipe 21, the feed water heater 10 will be damaged.
In this embodiment, the opening degree of the pressure control valve 20 is gradually reduced from time ζ to the time when the steam pressure in the reactor pressure vessel 1 reaches 100%.
The opening degree of the pressure control valve 20 is kept constant as long as there is no pressure fluctuation from the time when the steam pressure in Since the pressure at point G is suppressed to the set pressure, the feed water heater 10 will not be damaged. Time T.

−t1の期間では前述したように蒸気が蒸気配管21を
通して給水加熱器10に供給されるので、原子炉圧力容
器1への給水流量、G点での圧力、G点での蒸気流量及
び原子炉内給水配管13の温度は、第4図に示すように
原子炉圧力容器1内の蒸気圧力の上昇に伴つて、特性D
,G,l及びFのように変化する。時間ちになると前述
の如く圧力制御弁20によりG点の圧力上昇が抑制され
るので、G点の蒸気流量は一定に保持される。
- During the period t1, as mentioned above, steam is supplied to the feedwater heater 10 through the steam piping 21, so the flow rate of the feedwater to the reactor pressure vessel 1, the pressure at point G, the steam flow rate at point G, and the reactor As shown in FIG. 4, the temperature of the internal water supply pipe 13 changes to a characteristic D as the steam pressure inside the reactor pressure vessel 1 increases.
, G, l and F. As time elapses, the pressure increase at point G is suppressed by the pressure control valve 20 as described above, so the steam flow rate at point G is kept constant.

このため、時間t1以降ては、所定期間の間、給水流量
(第4図の特性D)及び原子炉内給水配管温度(第4図
の特性F)が一定に保持される。時間ちで蒸気加減弁3
が徐々にあけられて原子炉圧力容器1内で発生した蒸気
が、タービン4に供給される。
Therefore, after time t1, the water supply flow rate (characteristic D in FIG. 4) and the reactor water supply pipe temperature (characteristic F in FIG. 4) are held constant for a predetermined period. Time steam control valve 3
The reactor pressure vessel 1 is gradually opened and steam generated within the reactor pressure vessel 1 is supplied to the turbine 4.

この蒸気の供給によりタービン4の回転速度は、第4図
の特性Cの如く上昇して時間ちにて100%に達する。
蒸気加減弁3を通してタービン4に蒸気を供給するので
、原子炉圧力容器1ではその分だけ多くの蒸気を発生す
る必要がある。このため、給水流量も、時腓,〜ちにか
けて第4図の特性Dの如く増加する。H点の圧力は、蒸
気加減弁3が開いてタービン4が回転し始めてタービン
4への蒸気供給量が増すとともに第4図の特性Hの如く
上昇する。時間ち〜ζの範囲では、タービン4の回転数
が一定であつてタービン4に供給される蒸気流量も一定
に保持されるので、給水流量及びH点の圧力も、第4図
の特性D及びHの如く一定になる。逆止弁17より上流
側の抽気配管7内には蒸気が流れていないが、抽気配管
7はタービン4内に連通している。このため、蒸気が流
れていなくても、タービン4の蒸気抽気位置で圧力がほ
とんどそのままH点に加わる。タービン4が回転した後
の所定の時機に、バイパス弁5が完全に閉じられる。時
間ζで、発電機と電力系統をつなぐ遮断器が投入される
By supplying this steam, the rotational speed of the turbine 4 increases as shown by characteristic C in FIG. 4 and reaches 100% after a while.
Since steam is supplied to the turbine 4 through the steam control valve 3, the reactor pressure vessel 1 needs to generate a corresponding amount of steam. For this reason, the water supply flow rate also increases as shown by characteristic D in FIG. 4 over time. The pressure at point H increases as shown by characteristic H in FIG. 4 as the steam control valve 3 opens and the turbine 4 begins to rotate and the amount of steam supplied to the turbine 4 increases. In the range from time ζ to ζ, the rotation speed of the turbine 4 is constant and the steam flow rate supplied to the turbine 4 is also kept constant, so the feed water flow rate and the pressure at point H are also the same as the characteristic D and the pressure at point H in FIG. It becomes constant like H. Although steam does not flow in the bleed pipe 7 upstream of the check valve 17, the bleed pipe 7 communicates with the turbine 4. Therefore, even if no steam is flowing, the pressure is applied almost unchanged to point H at the steam extraction position of the turbine 4. At a predetermined time after the turbine 4 has rotated, the bypass valve 5 is completely closed. At time ζ, the circuit breaker connecting the generator to the power grid is closed.

発電機て発生した電力が、電力系統に送電される。遮断
器の投入とともに蒸気加減弁3の開度を増加させ、第4
図の特性Bの如く時間ちで100%になるようにタービ
ン出力を上昇させる。これに伴つて、給水流量及びH点
の圧力も、)第4図の特性D及びHのように増加する。
しかし、G点の圧力及びG点の蒸気流量は、圧力調節器
18及び圧力制御弁20の機能に基づいて一定に保持さ
れる。タービン出力(電気出力)を特性Bのように上5
昇させると、タービン4を通過する蒸気量は増加し、前
述したようにタービン4の抽気位置の圧力が加わつてい
るH点の圧力は特性Hのように上昇する。
The electricity generated by the generator is transmitted to the power grid. As the circuit breaker is closed, the opening degree of the steam control valve 3 is increased, and the fourth
The turbine output is increased so that it reaches 100% in time as shown in characteristic B in the figure. Along with this, the water supply flow rate and the pressure at point H also increase as shown by characteristics D and H in Figure 4).
However, the pressure at point G and the steam flow rate at point G are held constant based on the functions of pressure regulator 18 and pressure control valve 20. Turbine output (electrical output) as shown in characteristic B
When the pressure is increased, the amount of steam passing through the turbine 4 increases, and as described above, the pressure at point H, where the pressure at the extraction position of the turbine 4 is applied, increases as shown by characteristic H.

しかし、H点の圧力よりもG点の圧力が高い状態では、
タービン4から抽気配管7への蒸気9の流れが生じない
。H点の圧力が高圧力スイッチ15の設定値に至ると、
高圧力スイッチ15は遠隔作動弁22を全閉にする信号
を発する。この結果、その信号を入力して遠隔作動弁2
2が完全にしまり、G点の蒸気流量は零となる。高圧カ
スイツチ15の圧力設定値は、低圧力スイッチ16の圧
力設定値よりも高い。遠隔作動弁22は、低圧力スイッ
チ16の出力信号を入力して開され、高圧力スイッチ1
5の出力信号を入力して閉される。H点の圧力がG点の
圧力より高くなる結果、タービン4から抽気配管7を通
して流れる蒸気の抽気量は、第4図の特性Eのように上
昇する。
However, when the pressure at point G is higher than the pressure at point H,
No flow of steam 9 from the turbine 4 to the bleed pipe 7 occurs. When the pressure at point H reaches the set value of the high pressure switch 15,
High pressure switch 15 issues a signal to fully close remotely operated valve 22. As a result, by inputting that signal, the remote operated valve 2
2 is completely closed, and the steam flow rate at point G becomes zero. The pressure setting of the high pressure switch 15 is higher than the pressure setting of the low pressure switch 16. The remote operated valve 22 is opened by inputting the output signal of the low pressure switch 16, and is opened by inputting the output signal of the low pressure switch 16.
It is closed by inputting the output signal of 5. As a result of the pressure at point H becoming higher than the pressure at point G, the amount of extracted steam flowing from the turbine 4 through the extraction pipe 7 increases as shown by characteristic E in FIG. 4.

タービン4からの抽気蒸気が給水加熱器10に供給され
ると、タービン4の抽気位置での蒸気温度は、タービン
4で仕事をした関係上、主蒸気配管2と蒸気配管21と
の合流点での蒸気温度よりも若干低下するので、時間T
5以降において給水加熱器10て加熱された冷却水の温
度がそれ以前に比べて若干低下する。このため、原子炉
内給水配管13の温度が、第4図の特性Fに示すように
時間T5以降においてそれ以前よりも若干低下する。し
かし、この温度変動量は、従来の如く原子炉内給水配管
13に大きな熱衝撃を加える程度のものでなく、原子炉
内給水配管13の安全性を何ら損うものではない。上記
のように原子炉起動時のように、給水加熱器10側の流
体としてタービン抽気が期待できないような状態におい
ても、主蒸気配管2よりの蒸気を用いて給水加熱を実施
できるので、原子炉内一給水配管13の温度変化は大巾
なものとならない。
When the extracted steam from the turbine 4 is supplied to the feed water heater 10, the steam temperature at the extracted position of the turbine 4 will be lower than the temperature at the junction of the main steam pipe 2 and the steam pipe 21 due to the work done by the turbine 4. The temperature of the steam decreases slightly below the temperature of the steam, so the time T
After 5, the temperature of the cooling water heated by the feed water heater 10 is slightly lower than before. For this reason, the temperature of the reactor water supply pipe 13 becomes slightly lower after time T5 than before, as shown by characteristic F in FIG. However, this amount of temperature fluctuation does not apply a large thermal shock to the reactor water supply pipe 13 as in the conventional case, and does not impair the safety of the reactor water supply pipe 13 in any way. As mentioned above, even in a state where turbine bleed air cannot be expected as a fluid on the feedwater heater 10 side, such as during reactor startup, feedwater heating can be performed using steam from the main steam pipe 2, so the reactor The temperature change in the inner water supply pipe 13 will not be large.

このような本実施例によれば、抽気配管7の蒸気圧力を
検出しているので、タービン4から給水加熱器10への
抽気蒸気の供給状態を精度良く検.出てき、しかも遠隔
作動弁22の開閉の切替動作をタービン抽気蒸気の供給
状態に応じて適切に行うことができる。
According to this embodiment, since the steam pressure in the extraction piping 7 is detected, the supply state of the extraction steam from the turbine 4 to the feed water heater 10 can be accurately detected. Moreover, the opening/closing operation of the remotely operated valve 22 can be appropriately performed depending on the supply state of the turbine bleed steam.

前述したような原子炉起動時においては、抽気配管7の
低圧力スイッチ16にて設定された蒸気圧力低を精度良
く検出でき、遠隔ζ作動弁22を適切に開てきる。これ
により、給水加熱器10に蒸気配管21を通して抽気蒸
気を適切に供給でき、従来のような給水流量を零から増
加させる起動時における給水の温度変動が著しく抑制さ
れ、原子炉内配管13の受ける熱衝撃が著しく低下する
。また、高圧力スイッチ15にて設定された抽気配管7
の蒸気圧力高を精度良く検出でき、遠隔作動弁22を適
切に閉できる。このため、蒸気配管原子炉停止時には上
述の状態変化の逆向きとなり、同様に原子炉内給水配管
13の温度変化は大巾とならない。原子炉停止時におい
て、前述したように抽気配管7の蒸気圧力が高圧)スイ
ッチ15にて設定された値に低下したことを精度良く測
定でき、しかも蒸気配管21による抽気蒸気の供給に適
切に切替えることができる。従つて、給水流量を零まで
低下させる原子炉の停止時における給水の温度変動が著
しく抑制され、原.子炉給水配管13の受ける熱衝撃が
著しく低下する。〔発明の効果〕 本発明によれば、タービンから給水加熱器への抽気蒸気
の供給状態を精度良く検出てき、給水加熱器に供給する
抽気蒸気の供給経路をタービン抽気蒸気の供給状態に基
づいて適切に切替えることができる。
At the time of starting up the nuclear reactor as described above, the low steam pressure set by the low pressure switch 16 of the bleed pipe 7 can be detected with high accuracy, and the remote ζ operating valve 22 can be appropriately opened. As a result, extracted steam can be appropriately supplied to the feedwater heater 10 through the steam piping 21, and temperature fluctuations in the feedwater at the start-up time when the feedwater flow rate is increased from zero as in the past are significantly suppressed. Thermal shock is significantly reduced. In addition, the bleed pipe 7 set by the high pressure switch 15
The high steam pressure can be detected with high accuracy, and the remotely operated valve 22 can be appropriately closed. Therefore, when the steam piping reactor is shut down, the above-mentioned state change is reversed, and similarly, the temperature change in the reactor water supply pipe 13 does not become large. When the reactor is shut down, it is possible to accurately measure that the steam pressure in the bleed piping 7 has fallen to the value set by the high pressure switch 15 as described above, and to appropriately switch to the supply of bleed steam through the steam piping 21. be able to. Therefore, temperature fluctuations in the feed water during reactor shutdown, where the feed water flow rate is reduced to zero, are significantly suppressed, and the original temperature is reduced. Thermal shock to which the child reactor water supply pipe 13 is subjected is significantly reduced. [Effects of the Invention] According to the present invention, the supply state of extracted steam from the turbine to the feedwater heater can be detected with high accuracy, and the supply route of the extracted steam to be supplied to the feedwater heater can be determined based on the supply state of the turbine extracted steam. Can be switched appropriately.

原子炉の起動時及び停止時における給水の温度変動を著
しく抑制てき、原子炉容器内の給水管に加わる熱衝撃を
著しく低下てきる。
Temperature fluctuations in the feed water during startup and shutdown of the reactor are significantly suppressed, and the thermal shock applied to the water supply pipes inside the reactor vessel is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の沸騰水形原子炉の系統図、第2図は第1
図に示された沸騰水形原子炉における各部の状態変化を
示す特性図、第3図は本発明の好適な一実施例である沸
騰水形原子炉の系統図、第4図は第3図の実施例の各部
の状態変化を示す特性図である。 1・・・・・・原子炉圧力容器、2・・・・・・主蒸気
配管、4・・・・・タービン、7・・・・・・抽気配管
、8・・・・・・タービン復水器、10・・・・・・給
水加熱器、12・・・・・給水配管、13・・・・・・
原子炉内給水配管、15・・・・・・高圧力スイッチ、
16・・・・・・低圧力スイッチ、18・・・・・・圧
力調節器、20・・・・・・圧力制御弁、21・・・・
・蒸気配管、22・・・・・遠隔作動弁。
Figure 1 is a system diagram of a conventional boiling water reactor, and Figure 2 is a system diagram of a conventional boiling water reactor.
FIG. 3 is a system diagram of a boiling water reactor which is a preferred embodiment of the present invention, and FIG. It is a characteristic diagram which shows the state change of each part of Example. 1... Reactor pressure vessel, 2... Main steam piping, 4... Turbine, 7... Bleed piping, 8... Turbine recovery Water device, 10...Water heater, 12...Water supply piping, 13...
Reactor water supply piping, 15... High pressure switch,
16...Low pressure switch, 18...Pressure regulator, 20...Pressure control valve, 21...
・Steam piping, 22...Remotely operated valve.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉容器と、タービンと、給水加熱器と、前記原
子炉容器で発生した蒸気を前記タービンに導く蒸気管と
、前記給水加熱器を介して前記原子炉容器内に冷却水を
導く給水管と、前記タービンから抽気した蒸気を前記給
水加熱器に導く第1抽気管とからなる原子炉において、
前記タービンを介することなく前記原子炉容器内の蒸気
を前記給水加熱器に導く第2抽気管を設け、前記第2抽
気管に開閉弁を設け、前記第1抽気管の圧力を検出して
この圧力に基づいて前記開閉弁の開閉操作を行う第1制
御手段を設け、前記開閉弁の下流側で前記第2抽気管に
圧力制御弁を設け、前記第2抽気管の圧力を検出してこ
の圧力に基づいて前記圧力制御弁を操作し前記第2抽気
管を流れる蒸気圧力を所定圧力に制御する第2制御手段
を設けたことを特徴とする原子炉。
1. A reactor vessel, a turbine, a feedwater heater, a steam pipe that guides steam generated in the reactor vessel to the turbine, and a water supply pipe that guides cooling water into the reactor vessel via the feedwater heater. and a first bleed pipe that guides steam extracted from the turbine to the feed water heater,
A second bleed pipe is provided to guide steam in the reactor vessel to the feed water heater without going through the turbine, an on-off valve is provided in the second bleed pipe, and the pressure in the first bleed pipe is detected. A first control means for opening and closing the on-off valve based on pressure is provided, a pressure control valve is provided in the second air bleed pipe downstream of the on-off valve, and a pressure control valve is provided in the second air bleed pipe to detect the pressure in the second air bleed pipe. A nuclear reactor characterized in that a second control means is provided for controlling the pressure of steam flowing through the second bleed pipe to a predetermined pressure by operating the pressure control valve based on pressure.
JP56001558A 1981-01-07 1981-01-07 Reactor Expired JPS6046242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56001558A JPS6046242B2 (en) 1981-01-07 1981-01-07 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56001558A JPS6046242B2 (en) 1981-01-07 1981-01-07 Reactor

Publications (2)

Publication Number Publication Date
JPS56107906A JPS56107906A (en) 1981-08-27
JPS6046242B2 true JPS6046242B2 (en) 1985-10-15

Family

ID=11504851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56001558A Expired JPS6046242B2 (en) 1981-01-07 1981-01-07 Reactor

Country Status (1)

Country Link
JP (1) JPS6046242B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096437A2 (en) 2009-02-17 2010-08-26 Cummins Inc. Variable valve actuation apparatus, system, and method

Also Published As

Publication number Publication date
JPS56107906A (en) 1981-08-27

Similar Documents

Publication Publication Date Title
US4208882A (en) Start-up attemperator
AU2009315819B2 (en) Method for operating a waste heat steam generator
JP3132834B2 (en) Gas turbine combustor steam cooling system
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JPS6046242B2 (en) Reactor
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JPS61145305A (en) Control device for turbine plant using hot water
JP3112579B2 (en) Pressure control device
JPS6032082B2 (en) Feed water temperature control device
JPS61118508A (en) Control device for recirculating flow of feed pump
JPS6211283Y2 (en)
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JPH0128202B2 (en)
JPS61138007A (en) Controller for water level and pressure of deaerator
JPS6135441B2 (en)
JP2504939Y2 (en) Boiler level controller
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JPS6334402A (en) Method of starting thermal power plant
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPS6235002B2 (en)
JPH06129208A (en) Composite cycle plant
JPS60219404A (en) Stabilizing device of deaerator output
JPH11351503A (en) Pressure control valve for boiler and device therefor
JPH0250004A (en) Control system of pressure inside deaerator