JPS604597B2 - Manufacturing method of infrared sensing element - Google Patents

Manufacturing method of infrared sensing element

Info

Publication number
JPS604597B2
JPS604597B2 JP53065919A JP6591978A JPS604597B2 JP S604597 B2 JPS604597 B2 JP S604597B2 JP 53065919 A JP53065919 A JP 53065919A JP 6591978 A JP6591978 A JP 6591978A JP S604597 B2 JPS604597 B2 JP S604597B2
Authority
JP
Japan
Prior art keywords
sensing element
infrared sensing
manufacturing
forming
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53065919A
Other languages
Japanese (ja)
Other versions
JPS54157096A (en
Inventor
勝 小瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP53065919A priority Critical patent/JPS604597B2/en
Publication of JPS54157096A publication Critical patent/JPS54157096A/en
Publication of JPS604597B2 publication Critical patent/JPS604597B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は多元半導体を用いた赤外線検知素子の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an infrared sensing element using a multi-component semiconductor.

水銀を含む3元合金半導体たとえばH&−xCdxTe
は狭いェネルギ間隙を有しているため赤外線検知素子の
材料として用いられている。
Ternary alloy semiconductors containing mercury, such as H&-xCdxTe
Because it has a narrow energy gap, it is used as a material for infrared sensing elements.

この赤外線検知素子を製造する工程で素子の受光面が外
気と直後接触して外気の水分等によって不安定な層を形
成することを防ぐため、あるいは入射する赤外線の全反
射を防止することを目的として、従来赤外線検知素子の
受光面に硫化亜鉛(ZnS)等を蒸着して保護膜を形成
することが行われている。しかし、このZ脂の蒸着によ
る保護膜は赤外線素子の受光面を形成するHg,一xC
舵Te等の材料に対して密着性が悪く、素子の使用中に
はく離したり、ひび割れしたりする欠点があった。
In the process of manufacturing this infrared sensing element, the purpose is to prevent the light-receiving surface of the element from immediately coming into contact with the outside air and forming an unstable layer due to moisture in the outside air, or to prevent total reflection of incident infrared rays. Conventionally, zinc sulfide (ZnS) or the like is deposited on the light-receiving surface of an infrared sensing element to form a protective film. However, the protective film formed by vapor deposition of Z resin is
It has poor adhesion to materials such as rudder Te, and has the drawback of peeling or cracking during use of the element.

またZnSの蒸着に要する時間が長く、素子形成の工程
が長くなる等の問題点もあった。本発明は上記の問題点
を解決するものであって多元半導体からなる赤外線検知
素子を製造する場合において、多元半導体基板に赤外線
検知素子を形成するための所要の加工を施した後、アセ
トアミドを主成分とする裕中で上記基体を陽極酸化して
、上記検知素子の受光面に表面保護膜を被着形成する新
規な赤外線検知素子の製造方法を提供せんとするもので
ある。
Further, there were also problems such as the time required for vapor deposition of ZnS and the process of forming the element becoming longer. The present invention solves the above-mentioned problems, and when manufacturing an infrared sensing element made of a multi-component semiconductor, after performing the necessary processing to form an infrared sensing element on a multi-component semiconductor substrate, acetamide is mainly used. It is an object of the present invention to provide a novel method for manufacturing an infrared sensing element, which comprises anodic oxidizing the above-mentioned substrate in a bath containing a component to form a surface protective film on the light-receiving surface of the sensing element.

以下本発明の一実施例につき、図面を用いて詳細に説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図〜第6図はシリコン支持板上に2個の赤外線検知
素子を同時に製造する場合の工程を示し第7図以降は各
素子を1個の赤外線検知素子単位に分離した後の製造工
程を説明する図である。
Figures 1 to 6 show the process for simultaneously manufacturing two infrared sensing elements on a silicon support plate, and Figures 7 onwards show the manufacturing process after each element is separated into one infrared sensing element unit. FIG.

なお支持坂上に2個以上の素子を多数同時に形成する場
合も同様の工程で実現できる。以下図面に従って順次説
明する。第1図に示すようにポリッシソグ、エッチング
等の必要な表面処理を行なった日9一XCdxTeウェ
フア1をェポキシ系の援着剤2によって高比抵抗のサフ
ァイアの支持板3に接着させてから研磨仕上げして薄層
にする。次に第2図のようにフオトレジスト膜4を日&
‐本dxTeゥェファー上に塗布する。次に第3図のよ
うにフオトリソグラフィ技術によりHg,−xC舷Te
のゥェファ(以下単にゥヱファと言う)のエッチングす
べき箇所のフオトレジストタ膜を除去する。その後単体
ブロム(Br2)をメチルアルコ−ル(CH30H)で
薄めたエッチング液でウヱフア1を所定の大きさにエッ
チングする。その後ウェフア上のフオトレジスト膜を除
去する。次に第3図のゥェファーの下の露出した接着剤
2の×,Yの部分を濃硫酸等の除去剤で除去して第4図
のようにSiの支持板3の面を露出させる。以上の工程
であらかじめウェファを素子形成寸法の大きさもこ近い
長方形の形に分離し、その後第5図に示すようにフオト
リソグラフィの技術を用いてゥェファを素子の最終形状
に必要な寸法にエッチング成形する。この第5図の平面
図を第6図に示す。このようにしてから各素子ごとに分
離するために第5図、第6図の点線1の位置でサファイ
ア支持板を切断する。次に第7図、第8図に示すように
1つの赤外線検知素子として分離して成形したHg,一
xCdxTeからなる素子の電極形成部AB上にメタル
マスク等を用いて金属インジウム(ln)の蒸着層5を
形成する。次に第7図、第8図の受光面C以外にフオト
レジスト膜を塗布して陽極酸化裕中に浸して約1咳欧分
間受光面Cを陽極酸化する。陽極酸化用の格はNーメチ
ルアセトアミドを主成分とするもので、組成は重量比で
N−メチルアセトアミド(CH3C○・NQ)2:エチ
レングリコール(CH20日・C比OH)4:水(日2
0)1の混合液にアンモニア水(NH40H)と修酸(
COO日・COOH)からなる緩衝液を加えてpHを6
〜8に保ったものである。本発明者の実験ではpH値が
上記よりも酸性またはアルカリ性に傾くと生成した陽極
酸化膜が多孔性となり膜の質が低下る。しかし上述した
ほぼ中性附近のpH範囲内で行なったときは良質のガラ
ス状の陽極酸化膜が形成される。このようにして第9お
よび第10図のようにHg,一丈dxTe素子の受光面
上にHg,−xCdxTeの陽極酸化膜6が形成される
。その後受光面以外に被着したフオトレジスト膜を除去
して赤外線検知素子が完成する。このような陽極酸化法
で形成した酸化物保護膜は、ZnSの蒸着によって形成
した保護膜に比較して素子に対する密着性が良く、素子
の使用中にはく雛とかひび割れ等の現象が起こらない。
また蒸着による保護膜形成の場合は工程所要時間が約2
時間必要であるが、本発明の陽極酸化法による保護膜形
成の場合は約10数分と大中に短縮される。またHQ−
xCdxTeの素子を形成するときは、Hgが特に熱に
よって蒸発しやすいので熱の影響を極力さげることが必
要である。
Incidentally, the case where two or more elements are simultaneously formed on the support slope can be realized by the same process. The following will be explained in sequence according to the drawings. As shown in Fig. 1, the 91XCdxTe wafer 1, which has been subjected to necessary surface treatments such as polishing and etching, is bonded to a high resistivity sapphire support plate 3 using an epoxy adhesive 2, and then polished. to make a thin layer. Next, as shown in Fig. 2, the photoresist film 4 is
- Apply onto the real dxTe wafer. Next, as shown in Figure 3, Hg, -xC and Te
The photoresist film at the portion of the wafer (hereinafter simply referred to as wafer) to be etched is removed. Thereafter, the wafer 1 is etched to a predetermined size using an etching solution prepared by diluting simple bromine (Br2) with methyl alcohol (CH30H). After that, the photoresist film on the wafer is removed. Next, the X and Y portions of the adhesive 2 exposed under the wafer in FIG. 3 are removed using a removing agent such as concentrated sulfuric acid to expose the surface of the Si support plate 3 as shown in FIG. Through the above process, the wafer is separated into rectangular shapes that are similar in size to the device forming dimensions, and then, as shown in Figure 5, the wafer is etched to the dimensions required for the final device shape using photolithography technology. do. A plan view of FIG. 5 is shown in FIG. 6. After doing this, the sapphire support plate is cut at the dotted line 1 in FIGS. 5 and 6 in order to separate each element. Next, as shown in Fig. 7 and Fig. 8, metal indium (ln) was added using a metal mask or the like on the electrode forming part AB of the element made of Hg, 1xCdxTe, which was separately molded as one infrared sensing element. A vapor deposition layer 5 is formed. Next, a photoresist film is applied to areas other than the light-receiving surface C shown in FIGS. 7 and 8, and the photoresist film is immersed in an anodizing bath to anodize the light-receiving surface C for about 1 minute. The case for anodic oxidation is mainly composed of N-methylacetamide, and the composition is N-methylacetamide (CH3C○・NQ) 2: ethylene glycol (CH20 days・C ratio OH) 4: water (days) 2
0) Add ammonia water (NH40H) and oxalic acid (
Add a buffer consisting of COO/COOH) to adjust the pH to 6.
It was kept at ~8. According to experiments conducted by the present inventors, when the pH value becomes more acidic or alkaline than the above, the anodic oxide film produced becomes porous and the quality of the film deteriorates. However, when it is carried out within the above-mentioned approximately neutral pH range, a glass-like anodic oxide film of good quality is formed. In this way, as shown in FIGS. 9 and 10, an anodic oxide film 6 of Hg, -xCdxTe is formed on the light-receiving surface of the Hg, -xCdxTe element. Thereafter, the photoresist film deposited on areas other than the light-receiving surface is removed to complete the infrared sensing element. The oxide protective film formed by such anodic oxidation method has better adhesion to the element than the protective film formed by ZnS vapor deposition, and phenomena such as peeling and cracking do not occur during use of the element. .
In addition, in the case of forming a protective film by vapor deposition, the process time is approximately 2
Although it takes time, in the case of forming a protective film by the anodic oxidation method of the present invention, the time is significantly shortened to about 10 minutes. Also HQ-
When forming an xCdxTe element, it is necessary to reduce the influence of heat as much as possible since Hg is particularly easily evaporated by heat.

蒸着によってZnSの保護膜を形成する場合は蒸着装層
のヒータにより素子はある程度加熱される。しかし陽極
酸化法で保護膜を形成するときは、素子が熱による影響
をうけるおそれはない。またこのようにして形成した陽
極酸化膜は赤外線の入射光に対して反射防止膜としての
効果もある。以上の実施例では水銀を含む3元合金半導
体に例をとって述べたが、他の鉛を含む合金半導体から
赤外線検知素子を製造する場合においても利用すること
ができる。
When forming a ZnS protective film by vapor deposition, the element is heated to some extent by the heater of the vapor deposition layer. However, when the protective film is formed using an anodic oxidation method, there is no risk that the element will be affected by heat. The anodic oxide film thus formed also has the effect of acting as an antireflection film against incident infrared light. Although the above embodiments have been described using a ternary alloy semiconductor containing mercury as an example, the present invention can also be used when manufacturing an infrared sensing element from other alloy semiconductors containing lead.

以上述べたようにHg、またはPbの合金半導体を用い
て赤外線検知素子を作製する場合に、検知素子の受光面
に素子を形成する材料の陽極酸化膜を外気に対する保護
膜として用いた場合、従来の蒸着法による保護膜と比較
して素子に対する密着性が良く、素子の使用中にはく離
やひび割れ等の現象が生じないので赤外線検知素子の信
頼度が向上する。
As described above, when an infrared sensing element is manufactured using an alloy semiconductor of Hg or Pb, if the anodic oxide film of the material forming the element is used as a protective film against the outside air on the light-receiving surface of the sensing element, conventional It has better adhesion to the element than the protective film formed by the vapor deposition method described above, and phenomena such as peeling and cracking do not occur during use of the element, improving the reliability of the infrared sensing element.

また素子形成の工程において、蒸着法による保護膜形成
と比較して熱による影響が少ないので信頼度の高い赤外
線検知素子が得られる。また上記陽極酸化膜は赤外光に
対する反射防止膜としての効果も有するので受光面に素
子形成材料の陽極酸化膜を被着することにより赤外線検
知素子の受光効率も向上する。
Furthermore, in the process of forming the element, there is less influence from heat than when forming a protective film by vapor deposition, so a highly reliable infrared sensing element can be obtained. Furthermore, since the anodic oxide film also has an effect as an anti-reflection film against infrared light, the light-receiving efficiency of the infrared sensing element is also improved by coating the anodic oxide film of the element forming material on the light-receiving surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第10図は本発明による赤外線検知素子の製造
工程を説明するための断面図および平面図である。 1:Hg,一xC■Te基板、2:接着剤、3:サファ
イア支持板、4:フオトレジスト膜「 5:電極形成用
蒸着膜「 6:陽極酸化膜、A,B:電極形成部、C:
受光面、1:切断位置、X,Y:接着剤の露出した部分
。 第ー図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 繁ー0図
1 to 10 are a sectional view and a plan view for explaining the manufacturing process of an infrared sensing element according to the present invention. 1: Hg, 1xC Te substrate, 2: Adhesive, 3: Sapphire support plate, 4: Photoresist film 5: Deposited film for electrode formation 6: Anodic oxide film, A, B: Electrode forming part, C :
Light-receiving surface, 1: Cutting position, X, Y: Exposed part of adhesive. Figure - Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 - Figure 0

Claims (1)

【特許請求の範囲】[Claims] 1 多元半導体からなる赤外線検知素子を製造する場合
において、多元半導体基板に赤外線検知素子を形成する
ための所要の加工を施した後、アセトアミドを主成分と
する浴中で上記基板を陽極酸化して、上記赤外線検知素
子の受光面に表面保護膜を被着形成することを特徴とす
る赤外線検知素子の製造方法。
1. When manufacturing an infrared sensing element made of a multi-component semiconductor, after performing the necessary processing to form an infrared detecting element on a multi-component semiconductor substrate, the substrate is anodized in a bath containing acetamide as a main component. . A method of manufacturing an infrared sensing element, comprising: forming a surface protective film on the light receiving surface of the infrared sensing element.
JP53065919A 1978-05-31 1978-05-31 Manufacturing method of infrared sensing element Expired JPS604597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53065919A JPS604597B2 (en) 1978-05-31 1978-05-31 Manufacturing method of infrared sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53065919A JPS604597B2 (en) 1978-05-31 1978-05-31 Manufacturing method of infrared sensing element

Publications (2)

Publication Number Publication Date
JPS54157096A JPS54157096A (en) 1979-12-11
JPS604597B2 true JPS604597B2 (en) 1985-02-05

Family

ID=13300853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53065919A Expired JPS604597B2 (en) 1978-05-31 1978-05-31 Manufacturing method of infrared sensing element

Country Status (1)

Country Link
JP (1) JPS604597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104523A (en) * 1982-12-07 1984-06-16 Fujitsu Ltd Production of infrared-ray detector

Also Published As

Publication number Publication date
JPS54157096A (en) 1979-12-11

Similar Documents

Publication Publication Date Title
US4827326A (en) Integrated circuit having polyimide/metal passivation layer and method of manufacture using metal lift-off
US4220706A (en) Etchant solution containing HF-HnO3 -H2 SO4 -H2 O2
US4152195A (en) Method of improving the adherence of metallic conductive lines on polyimide layers
US4078945A (en) Anti-reflective coating for silicon solar cells
JPH10223497A (en) Manufacture of laminated substrate
US4680243A (en) Method for producing a mask for use in X-ray photolithography and resulting structure
CN109581570B (en) Metal wire grid, manufacturing method thereof, display panel and display device
US4708919A (en) Process for manufacturing a mask for use in X-ray photolithography using a monolithic support and resulting structure
CN108269864B (en) Flexible solar cell and preparation method thereof
US4347264A (en) Method of applying contacts to a silicon wafer and product formed thereby
JPS604597B2 (en) Manufacturing method of infrared sensing element
JPS62142323A (en) Manufacture of mask for x-ray photo-lithography and mask obtained by the manufacture
JPS54136176A (en) Manufacture of beam lead type semiconductor device
JPS5932895B2 (en) Semiconductor device and its manufacturing method
JPH05274917A (en) Conductive transparent film of tin oxide
JPH1160377A (en) Surface treatment of silicon and production of semiconductor device
KR0166787B1 (en) Wiring method of semiconductor device
US4517734A (en) Method of passivating aluminum interconnects of non-hermetically sealed integrated circuit semiconductor devices
JPS63127531A (en) Manufacture of semiconductor device
JPS5821336A (en) Manufacture of semiconductor element
SU1064352A1 (en) Process for manufacturing template
CN116544300A (en) Preparation method of InAs/GaSb II superlattice infrared detector
JPS5950221B2 (en) Manufacturing method of semiconductor device
JPS5857762A (en) Preparation of semiconductor device
JPS5893333A (en) Manufacture of semiconductor device