JPH05274917A - Conductive transparent film of tin oxide - Google Patents

Conductive transparent film of tin oxide

Info

Publication number
JPH05274917A
JPH05274917A JP9881792A JP9881792A JPH05274917A JP H05274917 A JPH05274917 A JP H05274917A JP 9881792 A JP9881792 A JP 9881792A JP 9881792 A JP9881792 A JP 9881792A JP H05274917 A JPH05274917 A JP H05274917A
Authority
JP
Japan
Prior art keywords
film
fluorine
doped
tin oxide
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9881792A
Other languages
Japanese (ja)
Inventor
Yutaka Aikawa
豊 相川
Hideyo Iida
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP9881792A priority Critical patent/JPH05274917A/en
Publication of JPH05274917A publication Critical patent/JPH05274917A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To provide a transparent conductive film of tin oxide having low sheet resistance and high bonding strength. CONSTITUTION:A substrate comprising soda lime glass 1 coated with a SiO2 film is first scribed to a 50mm square and cleaned with a solvent and demineralized water. Then, solution with 25g of SnCl4.H2O dissolved in 150ml of demineralized water is sprayed from an upper level toward to the substrate placed on a heated hot plate, and a transparent conductive film 3 of tin oxide not doped with fluorine is formed thereon to 100nm thickness. Thereafter, solution with 25g of SnCl4.6H2O and 10.58g of NH4F respectively dissolved in demineralized water is sprayed, and a transparent conductive film 4 of tin oxide doped with fluorine is formed to 200nm thickness. Furthermore, the prescribed SnO2 pattern is etched, and a Ni plated layer of 1mum thickness and a Au plated film 6 of 100nm thickness are respectively formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に構成される酸
化錫透明導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tin oxide transparent conductive film formed on a substrate.

【0002】[0002]

【従来の技術】従来より、酸化錫透明導電膜を有するガ
ラス基板は、太陽電池や表示素子など様々な用途に用い
られており、この酸化錫透明導電膜は、例えばシリカコ
ートガラス(S.C.G.)基板の上に、スプレー法ま
たはCMD法(Chemical MistDeposition Method )な
どによって酸化錫を成膜することにより得られる単層膜
であった。
2. Description of the Related Art Conventionally, glass substrates having a transparent conductive film of tin oxide have been used in various applications such as solar cells and display devices. The transparent conductive film of tin oxide is, for example, silica coated glass (SC). (G.) A single layer film obtained by forming tin oxide on a substrate by a spray method or a CMD method (Chemical Mist Deposition Method).

【0003】また、従来の技術においては、上記酸化錫
透明導電膜に弗素をドーピングすることにより、シート
抵抗の低減化を図っていた。
In the prior art, the sheet resistance is reduced by doping the tin oxide transparent conductive film with fluorine.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、弗素を
ドーピングした酸化錫透明導電膜を有する基板は、低い
シート抵抗値を得ることはできるが、1kg/2mm□以上
の高い接着強度(酸化錫透明導電膜の上にNiおよびA
uのメッキを施し、さらにその表面にリード線を半田付
けし、該リード線を引っ張ることにより測定される)を
得ることができず、一方、弗素をドーピングしていない
酸化錫透明導電膜を有する基板は、1kg/2mm□以上の
高い接着強度を得ることはできるが、シート抵抗値が上
記より1桁ほど高くなってしまうという問題点があっ
た。
However, the substrate having the fluorine-doped tin oxide transparent conductive film can obtain a low sheet resistance value, but has a high adhesive strength of 1 kg / 2 mm □ or more (tin oxide transparent conductive film). Ni and A on the film
It is not possible to obtain (as measured by pulling the lead wire by soldering a lead wire to the surface thereof after plating with u), while having a tin oxide transparent conductive film not doped with fluorine. The substrate can obtain a high adhesive strength of 1 kg / 2 mm □ or more, but there is a problem that the sheet resistance value becomes higher by one digit than the above.

【0005】そこで本発明は、上述従来の技術の問題点
を解決し、シート抵抗が低く、高い接着強度を有する酸
化錫透明導電膜を提供することを目的とする。
Therefore, an object of the present invention is to provide a tin oxide transparent conductive film having a low sheet resistance and a high adhesive strength by solving the problems of the above-mentioned conventional techniques.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究の結果、基板上に弗素をドー
ピングしていない酸化錫透明導電膜を成膜し、その上に
弗素をドーピングした酸化錫透明導電膜を成膜して二層
膜とすることにより、上記課題が解決されることを見い
出し、本発明に到達した。
Means for Solving the Problems As a result of earnest studies for achieving the above object, the inventors of the present invention have formed a tin oxide transparent conductive film which is not doped with fluorine on a substrate, and formed a fluorine-containing transparent conductive film thereon. The inventors have found that the above-mentioned problems can be solved by forming a tin oxide transparent conductive film into which the above is doped to form a two-layer film, and have reached the present invention.

【0007】すなわち、本発明は、基板上に成膜され、
弗素がドーピングされていない酸化錫透明導電膜と弗素
がドーピングされた酸化錫透明導電膜からなる二層膜で
あり、基板側に弗素がドーピングされていない酸化錫透
明導電膜が構成されることを特徴とする酸化錫透明導電
膜を提供するものである。
That is, according to the present invention, a film is formed on a substrate,
It is a two-layer film composed of a tin oxide transparent conductive film not doped with fluorine and a tin oxide transparent conductive film doped with fluorine, and a tin oxide transparent conductive film not doped with fluorine is formed on the substrate side. The present invention provides a characteristic transparent conductive film of tin oxide.

【0008】[0008]

【作用】本発明の酸化錫透明導電膜は、まず、基板上に
弗素をドーピングしていない酸化錫透明導電膜を成膜
し、次いでこの膜の上に弗素をドーピングした酸化錫透
明導電膜を成膜することにより得ることができる。
According to the tin oxide transparent conductive film of the present invention, first, a fluorine-doped tin oxide transparent conductive film is formed on a substrate, and then a fluorine-doped tin oxide transparent conductive film is formed on this film. It can be obtained by forming a film.

【0009】例えば、シリカコートガラス基板(ソーダ
ライムガラス1の上にSiO2 被膜2を形成した基板)
上に弗素をドーピングしていない酸化錫透明導電膜3お
よび弗素をドーピングした酸化錫透明導電膜4を成膜
し、その上にNiメッキ層5およびAuメッキ層6を形
成した場合、Niメッキ層5と弗素をドーピングした酸
化錫透明導電膜4との界面には、弗素をドーピングした
酸化錫透明導電膜4の表面の結晶粒成長によるテクスチ
ャ構造が形成されるため(図1)、その表面積が増大し
てNiとSnO2 :Fとの結合が強固になり、高い接着
強度を有するようになる。なお、上記テクスチャ構造
は、酸化錫透明導電膜の膜厚が厚くなるほど増大する。
For example, a silica-coated glass substrate (a substrate in which a SiO 2 coating 2 is formed on a soda lime glass 1)
When the tin oxide transparent conductive film 3 not doped with fluorine and the tin oxide transparent conductive film 4 doped with fluorine are formed on the Ni plated layer 5 and the Au plated layer 6, the Ni plated layer At the interface between 5 and the fluorine-doped tin oxide transparent conductive film 4, a texture structure is formed by crystal grain growth on the surface of the fluorine-doped tin oxide transparent conductive film 4 (FIG. 1), and therefore the surface area is As a result, the bond between Ni and SnO 2 : F becomes stronger and the bond strength becomes higher. The texture structure increases as the thickness of the tin oxide transparent conductive film increases.

【0010】また、SiO2 被膜と弗素がドーピングさ
れていない酸化錫透明導電膜との界面には、弗素の存在
がないため高い接着強度を有するが、この膜の上に形成
される弗素がドーピングされた酸化錫透明導電膜の膜厚
を厚くしすぎると、この膜に含まれている弗素が上記界
面に存在するようになり、接着強度が低下してしまう。
Further, since there is no fluorine at the interface between the SiO 2 film and the tin oxide transparent conductive film which is not doped with fluorine, it has a high adhesive strength, but the fluorine formed on this film is doped. If the film thickness of the formed tin oxide transparent conductive film is too thick, the fluorine contained in this film will exist at the interface, and the adhesive strength will be reduced.

【0011】一方、シート抵抗は、弗素をドーピングし
た酸化錫透明導電膜の膜厚が薄い場合、従来の弗素をド
ーピングした酸化錫透明導電膜のみからなる単層膜より
も若干高くなるが、弗素をドーピングした酸化錫透明導
電膜の膜厚を厚くすることにより、その弗素が弗素をド
ーピングしていない酸化錫透明導電膜にもひろがるた
め、上記従来の単層膜と同等のシート抵抗が得られるよ
うになる。
On the other hand, when the film thickness of the fluorine-doped tin oxide transparent conductive film is thin, the sheet resistance is slightly higher than that of the conventional single-layer film made of only fluorine-doped tin oxide transparent conductive film. By increasing the thickness of the tin oxide transparent conductive film that is doped with fluorine, the fluorine spreads to the tin oxide transparent conductive film that is not doped with fluorine, so that a sheet resistance equivalent to that of the conventional single layer film can be obtained. Like

【0012】したがって、本発明の酸化錫透明導電膜に
おける弗素をドーピングした酸化錫透明導電膜、および
弗素をドーピングしていない酸化錫透明導電膜の膜厚
は、弗素をドーピングした酸化錫透明導電膜における弗
素が、弗素をドーピングしていない酸化錫透明導電膜中
にひろがり、かつ該弗素が、弗素をドーピングしていな
い酸化錫透明導電膜とSiO2 被膜との界面まで達する
ことのない厚さにすれば良く、このような膜厚で上記二
層膜を成膜することにより、高い接着強度と低いシート
抵抗を合わせ持つようになるのである。
Therefore, the film thickness of the fluorine-doped tin oxide transparent conductive film and the fluorine-doped tin oxide transparent conductive film in the tin oxide transparent conductive film of the present invention are the same as those of the fluorine-doped tin oxide transparent conductive film. To a thickness such that the fluorine does not spread to the tin oxide transparent conductive film which is not doped with fluorine and the fluorine does not reach the interface between the tin oxide transparent conductive film which is not doped with fluorine and the SiO 2 coating. It suffices to do so, and by forming the above-mentioned two-layer film with such a film thickness, it becomes possible to have both high adhesive strength and low sheet resistance.

【0013】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は以下の実施例により制
限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.

【0014】[0014]

【実施例1】まず、シリカコートガラス基板(ソーダラ
イムガラスの表面が 100nmの厚さのSiO2 被膜でコー
ティングされた既製のガラス基板)を50mm角にスクライ
ブし、溶剤および純水によって洗浄した。一方、純水 1
50mlにSnCl4 ・6H2 Oを25g溶解して酸化錫透明
導電膜作製用原料液Iを作製し、この原料液Iを、 500
℃に加熱されたホットプレート上に設置した上記基板の
上方からスプレーし、膜厚 100nmの弗素のドーピングさ
れていないSnO2 膜を成膜した。
Example 1 First, a silica-coated glass substrate (a ready-made glass substrate in which the surface of soda lime glass was coated with a SiO 2 film having a thickness of 100 nm) was scribed in a 50 mm square and washed with a solvent and pure water. Meanwhile, pure water 1
25 g of SnCl 4 .6H 2 O was dissolved in 50 ml to prepare a raw material liquid I for producing a transparent conductive film of tin oxide, and the raw material liquid I was
Spraying was performed from above the substrate placed on a hot plate heated to ℃ to form a SnO 2 film having a film thickness of 100 nm and not doped with fluorine.

【0015】次に、純水 150mlにSnCl4 ・6H2
およびNH4 Fをそれぞれ25gおよび 10.58g溶解して
酸化錫透明導電膜作製用原料液IIを作製し、上記同様に
して原料液IIをスプレーし、膜厚50nmの弗素のドーピン
グされたSnO2 膜を成膜した。次いで、該基板にフォ
トレジストを均一に塗布し、 120℃で30分プレベークし
た後、所定のマスク(2mm□パターン)に合わせて紫外
線を照射し、未照射のレジストを溶解除去してSnO2
膜を部分的に露出させた。
Next, to 150 ml of pure water, SnCl 4 .6H 2 O was added.
And 25 g of NH 4 F and 10.58 g of NH 4 F are dissolved to prepare a raw material liquid II for forming a transparent conductive film of tin oxide, and the raw material liquid II is sprayed in the same manner as described above to form a fluorine-doped SnO 2 film having a film thickness of 50 nm. Was deposited. Next, a photoresist is uniformly applied to the substrate, prebaked at 120 ° C. for 30 minutes, and then irradiated with ultraviolet rays in accordance with a predetermined mask (2 mm □ pattern) to dissolve and remove the unirradiated resist to remove SnO 2
The membrane was partially exposed.

【0016】次に、この基板を 150℃で30分プレベーク
し、基板上に亜鉛粉末を均一に散布した後、エッチング
液(HCl+FeCl3 )中に置き、露出したSnO2
膜を除去した。その後、溶剤でレジストを剥離し、所定
のマスク形状のSnO2 パターンを形成した。
Next, this substrate was pre-baked at 150 ° C. for 30 minutes, zinc powder was evenly dispersed on the substrate, and then the substrate was placed in an etching solution (HCl + FeCl 3 ) to expose the exposed SnO 2
The film was removed. After that, the resist was peeled off with a solvent to form a SnO 2 pattern having a predetermined mask shape.

【0017】ここで、得られた基板についてシート抵抗
の測定を行い、その結果を表1に示した。
The sheet resistance of the obtained substrate was measured, and the results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、上記基板に選択性無電解Niメッキ
を施し、膜厚1μmのNiメッキ層を形成し、さらに置
換型無電解Auメッキを施して膜厚 100nmのAuメッキ
層を形成した。次いで、Auメッキ層の上にL型リード
線を半田付けし、該リード線を引っ張ることによる接着
強度試験を行い、その結果を表1に併記した。
Next, selective electroless Ni plating was applied to the above substrate to form a Ni plating layer having a film thickness of 1 μm, and further substitutional electroless Au plating was applied to form an Au plating layer having a film thickness of 100 nm. Next, an L-type lead wire was soldered on the Au plated layer, and an adhesive strength test was performed by pulling the lead wire. The results are also shown in Table 1.

【0020】[0020]

【実施例2】酸化錫透明導電膜作製用原料液IIをスプレ
ーし、膜厚 100nmのSnO2 膜を成膜したこと以外は実
施例1と同様にしてメッキ層付き酸化錫透明導電膜を有
するガラス基板を作製し、その間に実施例1と同様の測
定および試験を行い、その結果を表1に併記した。
[Example 2] A tin oxide transparent conductive film with a plated layer was prepared in the same manner as in Example 1 except that the raw material liquid II for preparing a tin oxide transparent conductive film was sprayed to form a SnO 2 film having a thickness of 100 nm. A glass substrate was prepared, and the same measurement and test as in Example 1 were performed during that period, and the results are also shown in Table 1.

【0021】[0021]

【実施例3】酸化錫透明導電膜作製用原料液IIをスプレ
ーし、膜厚 400nmのSnO2 膜を成膜したこと以外は実
施例1と同様にしてメッキ層付き酸化錫透明導電膜を有
するガラス基板を作製し、その間に実施例1と同様の測
定および試験を行い、その結果を表1に併記した。
[Example 3] A tin oxide transparent conductive film with a plated layer was prepared in the same manner as in Example 1 except that the raw material liquid II for preparing a tin oxide transparent conductive film was sprayed to form a SnO 2 film having a thickness of 400 nm. A glass substrate was prepared, and the same measurement and test as in Example 1 were performed during that period, and the results are also shown in Table 1.

【0022】[0022]

【実施例4】酸化錫透明導電膜作製用原料液IIをスプレ
ーし、膜厚 700nmのSnO2 膜を成膜したこと以外は実
施例1と同様にしてメッキ層付き酸化錫透明導電膜を有
するガラス基板を作製し、その間に実施例1と同様の測
定および試験を行い、その結果を表1に併記した。
[Example 4] A tin oxide transparent conductive film with a plated layer was prepared in the same manner as in Example 1 except that the raw material liquid II for preparing a tin oxide transparent conductive film was sprayed to form a SnO 2 film having a thickness of 700 nm. A glass substrate was prepared, and the same measurement and test as in Example 1 were performed during that period, and the results are also shown in Table 1.

【0023】[0023]

【比較例1】酸化錫透明導電膜作製用原料液IによるS
nO2 膜の成膜を行わず、酸化錫透明導電膜作製用原料
液IIによって膜厚 150nmのSnO2 膜を成膜したこと以
外は実施例1と同様にしてメッキ層付き酸化錫透明導電
膜を有するガラス基板を作製し、その間に実施例1と同
様の測定および試験を行い、その結果を表1に併記し
た。
[Comparative Example 1] S by the raw material liquid I for producing a transparent conductive film of tin oxide
A tin oxide transparent conductive film with a plated layer was formed in the same manner as in Example 1 except that the SnO 2 film having a thickness of 150 nm was formed by using the raw material liquid II for forming the tin oxide transparent conductive film without forming the nO 2 film. A glass substrate having the above was prepared, and the same measurement and test as in Example 1 were performed during that time, and the results are also shown in Table 1.

【0024】[0024]

【比較例2】酸化錫透明導電膜作製用原料液IによるS
nO2 膜の成膜を行わず、酸化錫透明導電膜作製用原料
液IIによって膜厚 200nmのSnO2 膜を成膜したこと以
外は実施例1と同様にしてメッキ層付き酸化錫透明導電
膜を有するガラス基板を作製し、その間に実施例1と同
様の測定および試験を行い、その結果を表1に併記し
た。
[Comparative Example 2] S by the raw material liquid I for producing a transparent conductive film of tin oxide
A tin oxide transparent conductive film with a plated layer was formed in the same manner as in Example 1 except that the SnO 2 film having a film thickness of 200 nm was formed by using the raw material liquid II for forming the tin oxide transparent conductive film without forming the nO 2 film. A glass substrate having the above was prepared, and the same measurement and test as in Example 1 were performed during that time, and the results are also shown in Table 1.

【0025】[0025]

【比較例3】酸化錫透明導電膜作製用原料液IによるS
nO2 膜の成膜を行わず、酸化錫透明導電膜作製用原料
液IIによって膜厚 500nmのSnO2 膜を成膜したこと以
外は実施例1と同様にしてメッキ層付き酸化錫透明導電
膜を有するガラス基板を作製し、その間に実施例1と同
様の測定および試験を行い、その結果を表1に併記し
た。
[Comparative Example 3] S by the raw material liquid I for producing a transparent conductive film of tin oxide
A tin oxide transparent conductive film with a plated layer was formed in the same manner as in Example 1 except that the SnO 2 film having a film thickness of 500 nm was formed by using the raw material liquid II for forming the tin oxide transparent conductive film without forming the nO 2 film. A glass substrate having the above was prepared, and the same measurement and test as in Example 1 were performed during that time, and the results are also shown in Table 1.

【0026】[0026]

【比較例4】酸化錫透明導電膜作製用原料液IによるS
nO2 膜の成膜を行わず、酸化錫透明導電膜作製用原料
液IIによって膜厚 800nmのSnO2 膜を成膜したこと以
外は実施例1と同様にしてメッキ層付き酸化錫透明導電
膜を有するガラス基板を作製し、その間に実施例1と同
様の測定および試験を行い、その結果を表1に併記し
た。
[Comparative Example 4] S by the raw material liquid I for producing a transparent conductive film of tin oxide
A tin oxide transparent conductive film with a plated layer was formed in the same manner as in Example 1 except that the SnO 2 film having a thickness of 800 nm was formed by using the raw material liquid II for forming the tin oxide transparent conductive film without forming the nO 2 film. A glass substrate having the above was prepared, and the same measurement and test as in Example 1 were performed during that time, and the results are also shown in Table 1.

【0027】表1からもわかるように、SnO2 膜の膜
厚が 150〜 200nm(実施例1、実施例2、比較例1、比
較例2)の場合、その接着強度は二層膜(実施例1およ
び2)のほうが、単層膜(比較例1および2)よりも高
い値を示しており、接着強度が改善されていることがわ
かる。一方、膜厚 500〜 800nm(実施例3、実施例4、
比較例3、比較例4)の場合、二層膜(実施例3および
4)と単層膜(比較例3および4)との間に大きな差は
見られなかった。また、シート抵抗に関しては、二層膜
(実施例1ないし4)と単層膜(比較例1ないし4)と
はほぼ同等の値を示していた。
As can be seen from Table 1, when the thickness of the SnO 2 film is 150 to 200 nm (Example 1, Example 2, Comparative Example 1, Comparative Example 2), the adhesive strength is two-layer film (implemented). The values of Examples 1 and 2) are higher than those of the monolayer films (Comparative Examples 1 and 2), indicating that the adhesive strength is improved. On the other hand, a film thickness of 500 to 800 nm (Example 3, Example 4,
In the case of Comparative Examples 3 and 4), no significant difference was observed between the bilayer film (Examples 3 and 4) and the monolayer film (Comparative Examples 3 and 4). Regarding the sheet resistance, the two-layer film (Examples 1 to 4) and the single-layer film (Comparative Examples 1 to 4) showed almost the same value.

【0028】[0028]

【実施例5】弗素をドーピングしたSnO2 膜および弗
素をドーピングしていないSnO2膜の膜厚と、接着強
度試験における剥離箇所との関係について調べるため以
下の試験を行った。
The thickness of SnO 2 film [Example 5] not doped with SnO 2 film and the fluorine doped with fluorine, the following tests were performed to examine the relationship between the peel point in adhesion strength test.

【0029】まず、シリカコートガラス基板上に弗素を
ドーピングしていないSnO2 膜および弗素をドーピン
グしたSnO2 膜を成膜した。なお、これらSnO2
の膜厚は表2に示す通りである。次に、弗素をドーピン
グしたSnO2 膜の上に厚さ1.0μmのNiメッキ層を
形成し、さらにその上に厚さ 0.1μmのAuメッキ層を
形成した。
[0029] First, a SnO 2 film and fluorine in the silica-coated glass substrate is not doped with fluorine by forming a SnO 2 film doped. The thickness of these SnO 2 films is as shown in Table 2. Next, a 1.0 μm thick Ni plating layer was formed on the fluorine-doped SnO 2 film, and a 0.1 μm thick Au plating layer was further formed thereon.

【0030】[0030]

【表2】 [Table 2]

【0031】次に、上記それぞれの基板におけるAuメ
ッキ層の表面にリード線を半田付けし、このリード線を
引っ張ることにより剥離を生じさせ、その剥離箇所と引
っ張り力との関係を図3ないし8のグラフに示した。な
お、図3ないし8のグラフにおいては、白抜き部はガラ
ス基板が抉れて剥離した場合、斜線部はNiメッキ層と
弗素をドーピングしていないSnO2 膜との境界で剥離
した場合、点部はSiO2 被膜と弗素をドーピングして
いないSnO2 膜との境界で剥離した場合である。
Next, a lead wire is soldered to the surface of the Au plating layer of each of the above-mentioned substrates, and peeling is caused by pulling the lead wire, and the relationship between the peeled portion and the pulling force is shown in FIGS. Is shown in the graph. In the graphs of FIGS. 3 to 8, when the glass substrate is peeled off due to the hollow portion and the shaded portion is peeled at the boundary between the Ni plating layer and the SnO 2 film which is not doped with fluorine, The part is a case where the SiO 2 film and the SnO 2 film not doped with fluorine are separated from each other.

【0032】図3および4からもわかるように、弗素を
ドーピングしたSnO2 膜の膜厚が薄い場合(弗素をド
ーピングしたSnO2 膜の膜厚が 0または 400オングス
トローム)には、Niメッキ層5と弗素をドーピングし
たSnO2 膜4との接着強度は、該界面にテクスチャ構
造が形成されないため低く(図2)、一方、弗素をドー
ピングしていないSnO2 膜とSiO2 被膜との接着強
度は、該界面に弗素の存在が無いため、弗素をドーピン
グしていないSnO2 単層膜の場合と同様に高い。その
ため、弗素をドーピングしたSnO2 膜の膜厚が薄かっ
たり、弗素をドーピングしたSnO2 膜を形成しなかっ
た場合には、その大部分がNiメッキ層と弗素をドーピ
ングしたSnO2 膜との界面において剥離が生じてい
た。
As can be seen from FIGS. 3 and 4, when the thickness of the fluorine-doped SnO 2 film is small (the thickness of the fluorine-doped SnO 2 film is 0 or 400 Å), the Ni plating layer 5 is used. The adhesion strength between the fluorine-doped SnO 2 film 4 and the fluorine-doped SnO 2 film 4 is low because a texture structure is not formed at the interface (FIG. 2), while the adhesion strength between the fluorine-undoped SnO 2 film and the SiO 2 film is However, since there is no fluorine at the interface, it is high as in the case of the SnO 2 single layer film not doped with fluorine. Therefore, the interface or the thickness of SnO 2 film is thinner doped with fluorine, the case of not forming the SnO 2 film doped with fluorine, and SnO 2 films most part doped with Ni plating layer and fluorine Peeling occurred.

【0033】図5および6からもわかるように、弗素を
ドーピングしたSnO2 膜の膜厚が1000または2000オン
グストロームの場合には、SnO2 膜全体の膜厚が1800
〜2800オングストローム程度となり、Niメッキ層5と
弗素をドーピングしたSnO2 膜4との界面に、ある程
度のテクスチャ構造が形成されるようになる(図1)。
そのため、該界面における接着強度が高くなる。一方、
弗素をドーピングしていないSnO2 膜とSiO2 被膜
との界面の接着強度は、該界面に弗素の存在が無いた
め、弗素をドーピングしていないSnO2 単層膜の場合
と同様に高い。そのため、Niメッキ層と弗素をドーピ
ングしたSnO2 膜との界面、および弗素をドーピング
していないSnO2 膜とSiO2 被膜との界面のどちら
からも剥離が生じていた。
As can be seen from FIGS. 5 and 6, when the thickness of the fluorine-doped SnO 2 film is 1000 or 2000 angstroms, the total thickness of the SnO 2 film is 1800.
Approximately 2800 angstroms, a texture structure is formed to some extent at the interface between the Ni plating layer 5 and the fluorine-doped SnO 2 film 4 (FIG. 1).
Therefore, the adhesive strength at the interface increases. on the other hand,
The adhesive strength at the interface between the fluorine-undoped SnO 2 film and the SiO 2 coating is as high as that of the fluorine-undoped SnO 2 single-layer film because there is no fluorine at the interface. Therefore, peeling occurred from both the interface between the Ni plating layer and the fluorine-doped SnO 2 film and the interface between the fluorine-undoped SnO 2 film and the SiO 2 film.

【0034】図7および8からもわかるように、弗素を
ドーピングしたSnO2 膜の膜厚が厚い場合(弗素をド
ーピングしたSnO2 膜の膜厚が4000または7000オング
ストローム)には、Niメッキ層と弗素をドーピングし
たSnO2 膜との界面にテクスチャ構造が形成されるた
め、該界面における接着強度は高いが、上記弗素をドー
ピングしたSnO2 膜の弗素が、弗素をドーピングして
いないSnO2 膜とSiO2 被膜との界面にまでも存在
してしまうため、この界面における接着強度が低くなっ
てしまう。そのため、その大部分が弗素をドーピングし
ていないSnO2 膜とSiO2 被膜との界面において剥
離が生じていた。
As can be seen from FIGS. 7 and 8, when the film thickness of the fluorine-doped SnO 2 film is large (the film thickness of the fluorine-doped SnO 2 film is 4000 or 7000 Å), the Ni plating layer and Since the texture structure is formed at the interface with the fluorine-doped SnO 2 film, the adhesive strength at the interface is high, but the fluorine of the fluorine-doped SnO 2 film is different from the fluorine-undoped SnO 2 film. Since it exists even at the interface with the SiO 2 coating, the adhesive strength at this interface becomes low. Therefore, most of the peeling occurred at the interface between the SnO 2 film not doped with fluorine and the SiO 2 film.

【0035】また、弗素をドーピングしていないSnO
2 単層膜、弗素をドーピングしたSnO2 単層膜、およ
び弗素をドーピングしていないSnO2 膜と弗素をドー
ピングしたSnO2 膜からなる二層膜のそれぞれについ
て、上記の試験における接着強度とSnO2 膜全体の膜
厚との関係を図9のグラフに示した。
Further, SnO not doped with fluorine
For the two- layer film, the fluorine-doped SnO 2 single-layer film, and the two-layer film consisting of a fluorine-undoped SnO 2 film and a fluorine-doped SnO 2 film, the adhesion strength and SnO 2 The relationship with the film thickness of the two films as a whole is shown in the graph of FIG.

【0036】図9からもわかるように、弗素をドーピン
グしていないSnO2 単層膜の場合、弗素をドーピング
していないSnO2 膜とSiO2 被膜との界面に弗素が
存在しないため、膜厚が厚くなるほど接着強度は高くな
った(膜厚が厚くなるほどテクスチャ構造が形成される
ため)。また、弗素をドーピングしたSnO2 単層膜の
場合、上記界面に弗素が存在するため接着強度は小さい
が、上記同様膜厚が厚くなるほど接着強度は高くなっ
た。
As can be seen from FIG. 9, in the case of a fluorine-undoped SnO 2 single layer film, since fluorine does not exist at the interface between the fluorine-undoped SnO 2 film and the SiO 2 film, the film thickness is The higher the thickness, the higher the adhesive strength (the thicker the film, the more the texture structure is formed). Also, in the case of a SnO 2 single layer film doped with fluorine, the adhesive strength was low because of the presence of fluorine at the interface, but the adhesive strength increased as the film thickness increased, as described above.

【0037】一方、弗素をドーピングしていないSnO
2 膜と弗素をドーピングしたSnO2 膜からなる二層膜
の場合、弗素をドーピングしたSnO2 膜の膜厚がある
程度の厚さまでは、弗素をドーピングしていないSnO
2 膜とSiO2 被膜との界面に弗素が存在しないため、
弗素をドーピングしていないSnO2 単層膜の場合と同
様に高い接着強度を有していた。しかしながら、ある程
度の厚さを越えると該界面に弗素が存在するようになる
ため、弗素をドーピングしたSnO2 単層膜と同様の接
着強度にまで低下した。
On the other hand, SnO not doped with fluorine
In the case of a two-layer film composed of two films and a fluorine-doped SnO 2 film, when the fluorine-doped SnO 2 film has a certain thickness, SnO that is not fluorine-doped is used.
Since there is no fluorine at the interface between the 2 film and the SiO 2 film,
It had a high adhesive strength as in the case of the SnO 2 single layer film not doped with fluorine. However, when the thickness exceeds a certain level, fluorine comes to exist at the interface, so that the adhesive strength is reduced to the same as that of the SnO 2 single layer film doped with fluorine.

【0038】[0038]

【実施例6】実施例5と同様の酸化錫透明導電膜を有す
る基板を用い、弗素をドーピングしていないSnO2
層膜、弗素をドーピングしたSnO2 単層膜、および弗
素をドーピングしていないSnO2 膜と弗素をドーピン
グしたSnO2 膜からなる二層膜のそれぞれについて、
シート抵抗とSnO2 膜全体の膜厚との関係を調べ、そ
の結果を図10のグラフに示した。
[Embodiment 6] A substrate having a tin oxide transparent conductive film similar to that of Embodiment 5 is used, and a fluorine-doped SnO 2 single-layer film, a fluorine-doped SnO 2 single-layer film, and a fluorine-doped SnO 2 single-layer film. For each of the two-layer film consisting of a non-doped SnO 2 film and a fluorine-doped SnO 2 film,
The relationship between the sheet resistance and the film thickness of the entire SnO 2 film was investigated, and the results are shown in the graph of FIG.

【0039】図10からもわかるように、すべての場合
において膜厚が厚くなるほどシート抵抗は低下してお
り、また、弗素をドーピングしていないSnO2 膜と弗
素をドーピングしたSnO2 膜との二層膜は、弗素をド
ーピングしていないSnO2 単層膜よりも低く、弗素を
ドーピングしたSnO2 単層膜と同様のシート抵抗を有
していた。
As can be seen from FIG. 10, in all cases, the thicker the film thickness, the lower the sheet resistance. In addition, both the SnO 2 film not doped with fluorine and the SnO 2 film doped with fluorine were used. layer film is lower than the SnO 2 monolayer film not doped with fluorine had a similar sheet resistance and SnO 2 monolayer film doped fluorine.

【0040】[0040]

【発明の効果】弗素をドーピングした酸化錫透明導電膜
と弗素をドーピングしていない酸化錫透明導電膜との二
層膜からなる本発明の酸化錫透明導電膜は、1kg/2mm
□以上の高い接着強度を有する上、弗素をドーピングし
た酸化錫透明導電膜の単層膜と同等のシート抵抗を有す
るようになった。
The tin oxide transparent conductive film of the present invention comprising a two-layer film of a tin oxide transparent conductive film doped with fluorine and a tin oxide transparent conductive film not doped with fluorine is 1 kg / 2 mm.
□ In addition to having a high adhesive strength as described above, it has a sheet resistance equivalent to that of a single-layer film of a fluorine-doped tin oxide transparent conductive film.

【図面の簡単な説明】[Brief description of drawings]

【図1】テクスチャ構造が形成された酸化錫透明導電膜
(二層膜)の一例を示す側断面図である。
FIG. 1 is a side sectional view showing an example of a tin oxide transparent conductive film (two-layer film) on which a texture structure is formed.

【図2】テクスチャ構造が形成されていない酸化錫透明
導電膜(二層膜)の一例を示す側断面図である。
FIG. 2 is a side sectional view showing an example of a tin oxide transparent conductive film (two-layer film) in which a texture structure is not formed.

【図3】弗素をドーピングしていないSnO2 単層膜を
有する基板の接着強度試験における剥離箇所を示すグラ
フである。
FIG. 3 is a graph showing peeling points in an adhesive strength test of a substrate having a SnO 2 single layer film not doped with fluorine.

【図4】弗素をドーピングしていないSnO2 膜(1000
オングストローム)と弗素をドーピングしたSnO2
( 400オングストローム)からなる二層膜を有する基板
の接着強度試験における剥離箇所を示すグラフである。
FIG. 4 SnO 2 film not doped with fluorine (1000
FIG. 3 is a graph showing the peeling points in an adhesive strength test of a substrate having a two-layer film composed of a SnO 2 film (400 angstrom) doped with Å) and fluorine.

【図5】弗素をドーピングしていないSnO2 膜(1000
オングストローム)と弗素をドーピングしたSnO2
(1000オングストローム)からなる二層膜を有する基板
の接着強度試験における剥離箇所を示すグラフである。
FIG. 5: SnO 2 film not doped with fluorine (1000
FIG. 3 is a graph showing peeling points in an adhesive strength test of a substrate having a two-layer film made of a SnO 2 film (1000 angstrom) doped with Å) and fluorine.

【図6】弗素をドーピングしていないSnO2 膜(1000
オングストローム)と弗素をドーピングしたSnO2
(2000オングストローム)からなる二層膜を有する基板
の接着強度試験における剥離箇所を示すグラフである。
FIG. 6 SnO 2 film not doped with fluorine (1000
FIG. 3 is a graph showing peeling points in an adhesive strength test of a substrate having a two-layer film made of a SnO 2 film (2000 angstroms) doped with angstrom) and fluorine.

【図7】弗素をドーピングしていないSnO2 膜(1000
オングストローム)と弗素をドーピングしたSnO2
(4000オングストローム)からなる二層膜を有する基板
の接着強度試験における剥離箇所を示すグラフである。
FIG. 7: SnO 2 film without fluorine doping (1000
FIG. 3 is a graph showing peeling points in an adhesive strength test of a substrate having a two-layer film made of a SnO 2 film (4000 angstroms) doped with Å) and fluorine.

【図8】弗素をドーピングしていないSnO2 膜(1000
オングストローム)と弗素をドーピングしたSnO2
(7000オングストローム)からなる二層膜を有する基板
の接着強度試験における剥離箇所を示すグラフである。
FIG. 8: SnO 2 film not doped with fluorine (1000
FIG. 3 is a graph showing peeling points in an adhesive strength test of a substrate having a two-layer film made of a SnO 2 film (7000 angstrom) doped with Å) and fluorine.

【図9】弗素をドーピングしていないSnO2 単層膜、
弗素をドーピングしたSnO2単層膜、および弗素をド
ーピングしていないSnO2 膜と弗素をドーピングした
SnO2 膜からなる二層膜についての接着強度と膜厚と
の関係を示したグラフである。
FIG. 9 is a SnO 2 single layer film not doped with fluorine;
6 is a graph showing the relationship between the adhesive strength and the film thickness of a fluorine-doped SnO 2 single layer film, and a two-layer film composed of a fluorine-undoped SnO 2 film and a fluorine-doped SnO 2 film.

【図10】弗素をドーピングしていないSnO2 単層
膜、弗素をドーピングしたSnO2単層膜、および弗素
をドーピングしていないSnO2 膜と弗素をドーピング
したSnO2 膜からなる二層膜についてのシート抵抗と
膜厚との関係を示したグラフである。
FIG. 10 shows a fluorine-doped SnO 2 single-layer film, a fluorine-doped SnO 2 single-layer film, and a two- layer film including a fluorine-undoped SnO 2 film and a fluorine-doped SnO 2 film. 5 is a graph showing the relationship between the sheet resistance and the film thickness of FIG.

【符号の説明】[Explanation of symbols]

1‥‥‥ソーダライムガラス 2‥‥‥SiO2 被膜 3‥‥‥弗素をドーピングしていない酸化錫透明導電膜 4‥‥‥弗素をドーピングした酸化錫透明導電膜 5‥‥‥Niメッキ層 6‥‥‥Auメッキ層1 soda lime glass 2 SiO 2 coating 3 Fluorine-doped tin oxide transparent conductive film 4 Fluorine-doped tin oxide transparent conductive film 5 Ni plating layer 6 ‥‥‥ Au plating layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に成膜され、弗素がドーピングさ
れていない酸化錫透明導電膜と弗素がドーピングされた
酸化錫透明導電膜からなる二層膜であり、基板側に弗素
がドーピングされていない酸化錫透明導電膜が構成され
ることを特徴とする酸化錫透明導電膜。
1. A two-layer film comprising a tin oxide transparent conductive film which is formed on a substrate and which is not doped with fluorine and a tin oxide transparent conductive film which is doped with fluorine, wherein the substrate side is doped with fluorine. A transparent tin oxide conductive film, characterized in that a transparent tin oxide conductive film is formed.
JP9881792A 1992-03-25 1992-03-25 Conductive transparent film of tin oxide Withdrawn JPH05274917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9881792A JPH05274917A (en) 1992-03-25 1992-03-25 Conductive transparent film of tin oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9881792A JPH05274917A (en) 1992-03-25 1992-03-25 Conductive transparent film of tin oxide

Publications (1)

Publication Number Publication Date
JPH05274917A true JPH05274917A (en) 1993-10-22

Family

ID=14229876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9881792A Withdrawn JPH05274917A (en) 1992-03-25 1992-03-25 Conductive transparent film of tin oxide

Country Status (1)

Country Link
JP (1) JPH05274917A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100302116B1 (en) * 1999-05-19 2001-09-26 양승남 flat luminous body and the method thereof
EP1462541A1 (en) * 2001-12-03 2004-09-29 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
JP2009087912A (en) * 2007-10-01 2009-04-23 Hyundai Motor Co Ltd Manufacturing method of colorless and transparent fto membrane utilizing polymer aftertreatment process
US7820295B2 (en) 2007-08-22 2010-10-26 Hyundai Motor Company Fluorine-doped tin oxide transparent conductive film glass and method of fabricating the same
JP2011094218A (en) * 2009-11-02 2011-05-12 Asahi Glass Co Ltd Method of manufacturing substrate with tin oxide film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100302116B1 (en) * 1999-05-19 2001-09-26 양승남 flat luminous body and the method thereof
EP1462541A1 (en) * 2001-12-03 2004-09-29 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
EP1462541B1 (en) * 2001-12-03 2015-03-04 Nippon Sheet Glass Company, Limited Method for forming thin film.
US7820295B2 (en) 2007-08-22 2010-10-26 Hyundai Motor Company Fluorine-doped tin oxide transparent conductive film glass and method of fabricating the same
JP2009087912A (en) * 2007-10-01 2009-04-23 Hyundai Motor Co Ltd Manufacturing method of colorless and transparent fto membrane utilizing polymer aftertreatment process
JP2011094218A (en) * 2009-11-02 2011-05-12 Asahi Glass Co Ltd Method of manufacturing substrate with tin oxide film

Similar Documents

Publication Publication Date Title
US4359487A (en) Method for applying an anti-reflection coating to a solar cell
JP3303975B2 (en) Method of manufacturing ohmic contact and photovoltaic cell having ohmic contact
EP0067840A4 (en) Method of fabricating a solid state electrooptical device having a transparent metal oxide electrode.
JPH0624249B2 (en) Method of manufacturing thin film solar cell
JPS6070724A (en) Method of forming ohmic contact
US4093504A (en) Method for producing electrically conductive indium oxide patterns on an insulating support by etching with hydrochloric acid and ferric chloride
JPH05274917A (en) Conductive transparent film of tin oxide
US4387116A (en) Conditioner for adherence of nickel to a tin oxide surface
DE2853295C2 (en) Method of making a storage disk for a vidicon
KR100555896B1 (en) Method of fabricating metal bus electrode of plasma display panel
US4040892A (en) Method of etching materials including a major constituent of tin oxide
JPS6320025B2 (en)
JP3332409B2 (en) Glass substrate having a transparent conductive film
JP4358950B2 (en) Optical element and manufacturing method thereof
JPH05270865A (en) Glass substrate having transparent conductive film
JPS61145529A (en) Formation of transparent electrode pattern
JPS5950095B2 (en) Manufacturing method of semiconductor device
JPH0373083B2 (en)
JPS5915181B2 (en) Manufacturing method of semiconductor device
CN117673193A (en) Heterojunction solar cell, electrode and preparation method thereof
JPH0435070A (en) Phototransmissive wiring board
JPS58120780A (en) Etching method for transparent conductive film
JPS6251904B2 (en)
JPS59121954A (en) Manufacture of semiconductor device
JPH04149914A (en) Formation of transparent electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608