JPS6045060A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6045060A
JPS6045060A JP58152710A JP15271083A JPS6045060A JP S6045060 A JPS6045060 A JP S6045060A JP 58152710 A JP58152710 A JP 58152710A JP 15271083 A JP15271083 A JP 15271083A JP S6045060 A JPS6045060 A JP S6045060A
Authority
JP
Japan
Prior art keywords
contact
base
reduction
collector
margins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58152710A
Other languages
Japanese (ja)
Other versions
JPH0612776B2 (en
Inventor
Shuji Kishi
岸 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58152710A priority Critical patent/JPH0612776B2/en
Publication of JPS6045060A publication Critical patent/JPS6045060A/en
Publication of JPH0612776B2 publication Critical patent/JPH0612776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To simply enable the speed-up and the increase in density of a bi-polar integrated circuit by reducing unnecessary electrode wiring margins for base contact and collector contact. CONSTITUTION:By reduction of the electrode margins for the base contact 10B and the collector contact 10C by DELTAB-DELTAB' and DELTAC-DELTAC' respectively; the distances LEB between contacts is reduced to LEB, and the base parasitic resistance is reduced, leading to realization of element speed-up, and to realization of the reduction of element area is addition to the reduction of the distance LEC between contacts to LEC'. Here, the reduction of margins of the base B and the collector C enables substrate attack due to etching, as for the base contact 10B, to give no influence on the characteristics even when the attack generates more or less, because of the formation of a contact 5B and a graft base GB having a depth 3-4 times as large as that XjEB of a normal E-B junction in its neighborhood.

Description

【発明の詳細な説明】 本発明はバイポーラ集積回路において素子の高速化及び
高密度化を同時に実現することを目的とした半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that aims to simultaneously achieve higher speed and higher density of elements in a bipolar integrated circuit.

最近のバイポーラ集積回路に対しては、より一層の高速
化と高密度化とが強く要望されており、この要求を満た
すべく素子面積の低鋪、接合の極浅化等が検討されてい
る。特に、エミッタ・ペース接合(以下g−B接合と略
す)の深さXjgnは、0.5μm程度と極めて浅く形
成されるようになっている。このように極めて浅いg−
B接合を持クツ(イボーラ集積回路は、再現性、均一性
の面と、IロイスパイクによるB−B接合の特性劣化防
止の面から、以−トに説明する製造方法か採られており
、その概要を第1図に示す。まず第11通<a>のよう
にベース領域B、グラフトベース領域QBと熱岐化□膜
2をn型シリコン基板I上に形成し、ペース。
There is a strong demand for even higher speeds and higher densities for recent bipolar integrated circuits, and in order to meet these demands, efforts are being made to reduce the element area, make junctions extremely shallow, etc. In particular, the depth Xjgn of the emitter paste junction (hereinafter abbreviated as g-B junction) is formed to be extremely shallow, about 0.5 μm. In this way, extremely shallow g-
For Ibora integrated circuits with B-junctions, the manufacturing method described below is adopted from the viewpoint of reproducibility, uniformity, and prevention of deterioration of the characteristics of the B-B junction due to I-Roy spikes. The outline is shown in Fig. 1. First, as shown in Part 11 <a>, a base region B, a graft base region QB, and a thermally annealed □ film 2 are formed on an n-type silicon substrate I, and a paste is formed.

エミッタおよびコレクタ用コンタクト3B、3gおよび
3Cを選択開孔したのち、一様にポリシリコン膜4を成
長させる。次いで第1図(b)のようにベースコンタク
ト部を覆うようにC’V D 酸化膜5を形成し、ヒ素
を全面にイオン注入したのち、このポリシリコン膜を拡
散源とし−(シリコン基板1表面に浅くヒ累を拡散して
、エミッタ拡散層Eおよびコレクタコンタクト層Cを形
成する。次にCVD酸化膜5を除去し、全面にAl膜6
を被着し第1図(C)のようにレジスト膜7をノシター
ニングする。このレジスト膜7をマスクにAd膜6およ
びボリシリコン膜4を同時にドライエツチングすること
により電枠配紳が完了する。その様子を第1図(d)に
示す。
After selectively opening the emitter and collector contacts 3B, 3g, and 3C, a polysilicon film 4 is uniformly grown. Next, as shown in FIG. 1(b), a C'V D oxide film 5 is formed to cover the base contact part, and arsenic ions are implanted over the entire surface, and then this polysilicon film is used as a diffusion source. An emitter diffusion layer E and a collector contact layer C are formed by shallowly diffusing a layer on the surface.Then, the CVD oxide film 5 is removed and an Al film 6 is formed on the entire surface.
The resist film 7 is then turned as shown in FIG. 1(C). Using this resist film 7 as a mask, the Ad film 6 and the polysilicon film 4 are simultaneously dry etched to complete the wire frame arrangement. The situation is shown in FIG. 1(d).

以上6)(、明し/こ構造においては、Ad膜6とシリ
コン基板1の間にポリシリコン4がブ1在するため、ア
ロイスパ・fりによる1コ−B%性劣化を防止できる利
点けあるが、Al+i%とポリシリコンを同時にドライ
エツチングする点が欠点と左る。つまりドライエツチン
グ用ガスプンズマに対するA/とポリシリコンのエツチ
ングレートの違いにより第2図のように、ポリシリコン
4のサイドエッチが起こり、極端な場合、シリコン基板
1も同時にエツチングされ、集積回路の′0を気持性に
重大な影響をおよばずアタック8が発生する心配がある
。これを防ぐため第3図(a)に示すよう((、ベース
コンタクト10B、エミッタコンタクト10gおよびコ
レクタコンタクトIOCに対する■゛極配置f@JIB
、IIEおよび11CのマージンΔB、Δ1号および△
Cはマスク合せズレと、前記つ゛イ1゛エッチ臥を考慮
して2μm以上にして設計している。捷だ配線間隔ΔL
は、現状のフォー) 1)ングラフィー技術およびドラ
イエツチング技術を用いて安定かつ1辻産的に実現でき
るのは最少2μmである。以上のit極マージンΔB、
△p2.ムC々6e 線間’M%ΔJ青こて、エミッタ
コンタクトとベースコンタクトの最少距離LF、Bおよ
びエミッタコン3゛クトとコレクタコンタクトの最少距
離LF、Cが決定され、同時に、素子領域9の最少1i
fi槙も決定芒れてしデう。従ってフォトリングラフイ
ー技術とドライエツチング技術の向−七が無い限り素子
の高性能11r望むことはできな〃・つた。
6) (In this structure, since the polysilicon layer 4 is present between the Ad film 6 and the silicon substrate 1, it has the advantage of being able to prevent the deterioration of the 1 co-B% property due to the alloy spacing. However, the disadvantage is that Al+i% and polysilicon are dry-etched at the same time.In other words, due to the difference in the etching rate of polysilicon and A/ for the dry etching gas punch, as shown in Figure 2, side etching of polysilicon 4 is In extreme cases, the silicon substrate 1 will also be etched at the same time, and there is a risk that attack 8 will occur without seriously affecting the etching quality of the integrated circuit. As shown ((, ■゛pole arrangement f@JIB for base contact 10B, emitter contact 10g and collector contact IOC
, IIE and 11C margins ΔB, Δ1 and Δ
C is designed to be 2 μm or more in consideration of mask alignment misalignment and the above-mentioned etch position. Straight wiring spacing ΔL
1) The minimum thickness that can be stably and productively achieved using etching technology and dry etching technology is 2 μm. It pole margin ΔB,
△p2. The minimum distance LF, B between the emitter contact and the base contact and the minimum distance LF, C between the emitter contact and the collector contact are determined, and at the same time, the minimum distance LF, C between the emitter contact and the collector contact is determined. Minimum 1i
Fi Maki is also determined. Therefore, unless there is a combination of photolithography technology and dry etching technology, high performance 11R elements cannot be expected.

本発明は、この点に着目し王なされグこもので、バイボ
ーン集積回路において、エミッタ:1ノタクトに対する
配線用′成極のマ・−ジンがベースコンタクトおよびコ
レクタコンタクトに対する配線用′電極のマージンより
も大きいことを特徴とする半導体装置に関するもので、
現状のフAトリングラフィー技術、ドライエツチング技
術にても、バイポーラ集積回路の高速化と高密度化ケ同
時に;I!現できる半導体装置を提供することを目的と
している。
The present invention has been developed by focusing on this point. In a bi-bone integrated circuit, the margin of polarization for wiring for one tact of emitter is larger than the margin of electrode for wiring for base contact and collector contact. It concerns semiconductor devices characterized by their large size.
Current photolithography and dry etching technologies can simultaneously increase the speed and density of bipolar integrated circuits; I! The purpose is to provide a semiconductor device that can

次に本発明を実施例により詳しく説明する。第3図(b
)は第3図(a)の従来例をペースにしだ本発明の実施
例である。すなわち、第3図(b)のように、ベースコ
ンタクトおよびコレクタコンタクトに対する電極のマー
ジンを第3図(a)に較べそれぞれΔB=ΔB/、八〇
−八〇′へつ縮へすることにより%LEBをLED’に
縮少しベース寄生抵抗を低瀘せしめて素子の高速化を実
現するとともに5LECをLEC’に縮少することも合
せて素子面積の低減ヲも実現するものである。ここで、
ベース、コレクタ部のマージンを縮少することで、エツ
チングによる前記基板アタックが問題となるが、この影
響を調べたところ、ベースコンタクトに関しでは、第1
図に示すようにコンタクト及びその近傍に、通常g−B
接合の深さX、オの3〜4倍の深さのグラフトベース(
JBが形成されており、多少の基板アタックが発生して
も特性に側ら影響をおよぼさないことが判明し、コレク
タコンタクトにおいても何ら問題なかった。すなわち、
ベースコンタクト、コレクタコンタクトに対しては、前
記ポリシリコンのサイドエッチによる基板アタックを考
慮する必要はなく、目合せズレのみ考慮すればよいとい
うことである。
Next, the present invention will be explained in detail with reference to examples. Figure 3 (b
) is an embodiment of the present invention based on the conventional example shown in FIG. 3(a). That is, as shown in FIG. 3(b), the margins of the electrodes for the base contact and the collector contact are reduced to ΔB=ΔB/, 80-80' compared to FIG. By reducing the LEB to an LED', the base parasitic resistance is reduced and the device speed is increased, and by reducing the 5LEC to an LEC', the device area is also reduced. here,
By reducing the margins of the base and collector parts, the above-mentioned substrate attack due to etching becomes a problem, but when we investigated this effect, we found that the first
As shown in the figure, there is usually g-B at the contact and its vicinity.
The graft base is 3 to 4 times as deep as the depth of the joint (
JB was formed, and it was found that even if some substrate attack occurred, the characteristics would not be affected, and there were no problems with the collector contact. That is,
For the base contact and the collector contact, it is not necessary to consider the substrate attack due to the side etching of the polysilicon, and it is only necessary to consider misalignment.

以上説明したように、本発明によればベースコンタクト
、コレクタコンタクトに対する不必要な電極用配線マー
ジンを縮少するだItjで簡単に、)くイボーラ集積回
路の茜速化、高・tb度化が同時に実現できるので、本
発明の効果は極めて大きい。
As explained above, according to the present invention, it is possible to easily reduce unnecessary electrode wiring margins for the base contact and collector contact, and to increase the speed and increase the tb of the Ibora integrated circuit. Since they can be realized simultaneously, the effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+〜(dlは、バイポーラ集1i回路の従来
の製造方法の一例を示す断面図、第2図は第1図(d)
におけるエミッタ電極付は部分を拡大して示す断面図、
第3図(a)は、従来の素子の平面図、第3図(b)は
本発明の実施例を示す素子の平面図である。 1・・・・・・シリコン基板、2・・・・・・熱酸化膜
、313 。 3 E 、 3C・・・・・・電極用コンタクト、4・
・・・・ポリシリコン、5・・・・・CVD酸化膜、6
・・−・・・Al膜、7・・・・・・レジスト膜、8・
・・・・・アタック、9.9’・・・・・素子領域% 
10B、loE、1oC・・・・・コンタクト、+ +
 13 。 l J J 11c、 ] IB’、 I IC’ ・
=−’UftJe、線、B・・・・・・ベース E・・
・・・・エミッタ C・・・・・・コレクタ、GB・・
・・・・f 9−7 トペース、ΔB、ΔB 、ΔC1
ΔB′、△C/・・・・・・コンタクトに対する電極用
配線マージン、ΔL−・・・、配線間隔、”F、B l
 ”EB’ + LEc * ”EC””””ンタクト
間距離。 代理人 弁理士 内 原 晋 第1図 墾2図 ノ
Fig. 1 ta+~(dl is a cross-sectional view showing an example of the conventional manufacturing method of a bipolar integrated circuit 1i circuit, Fig. 2 is the same as Fig. 1 (d)
A cross-sectional view showing an enlarged portion of the emitter electrode in
FIG. 3(a) is a plan view of a conventional device, and FIG. 3(b) is a plan view of a device showing an embodiment of the present invention. 1...Silicon substrate, 2...Thermal oxide film, 313. 3E, 3C... Electrode contact, 4.
...Polysilicon, 5...CVD oxide film, 6
......Al film, 7...Resist film, 8.
...Attack, 9.9'...Element area%
10B, loE, 1oC...Contact, + +
13. l J J 11c, ] IB', I IC'・
=-'UftJe, line, B...Base E...
...Emitter C...Collector, GB...
...f 9-7 topace, ΔB, ΔB, ΔC1
ΔB', ΔC/... Electrode wiring margin for contact, ΔL-..., wiring spacing, "F, B l
“EB” + LEc * “EC”””” Distance between contacts. Agent: Susumu Uchihara, Patent Attorney, Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] バイポーラ集積回路において、エミッタ・コンタクトに
対する配線用電極のマージンがペース・コンタクトおよ
びコレクタ・コンタクトに対する配線用電極のマージン
よりも大きいことを特徴とする半導体装置。
1. A semiconductor device in a bipolar integrated circuit, wherein a margin of a wiring electrode with respect to an emitter contact is larger than a margin of the wiring electrode with respect to a pace contact and a collector contact.
JP58152710A 1983-08-22 1983-08-22 Semiconductor device Expired - Lifetime JPH0612776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152710A JPH0612776B2 (en) 1983-08-22 1983-08-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152710A JPH0612776B2 (en) 1983-08-22 1983-08-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6045060A true JPS6045060A (en) 1985-03-11
JPH0612776B2 JPH0612776B2 (en) 1994-02-16

Family

ID=15546458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152710A Expired - Lifetime JPH0612776B2 (en) 1983-08-22 1983-08-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0612776B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793140A (en) * 1980-12-02 1982-06-10 Kanegafuchi Chemical Ind Paper base material noninflammable unsaturated polyester resin copper foil lined laminated board
US5402615A (en) * 1992-11-13 1995-04-04 International Copper Association, Ltd. Fire retardant barrier system and method
JP2003068747A (en) * 2001-08-22 2003-03-07 Rohm Co Ltd Semiconductor device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793140A (en) * 1980-12-02 1982-06-10 Kanegafuchi Chemical Ind Paper base material noninflammable unsaturated polyester resin copper foil lined laminated board
JPH0113418B2 (en) * 1980-12-02 1989-03-06 Kanegafuchi Chemical Ind
US5402615A (en) * 1992-11-13 1995-04-04 International Copper Association, Ltd. Fire retardant barrier system and method
JP2003068747A (en) * 2001-08-22 2003-03-07 Rohm Co Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH0612776B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
JPH0253944B2 (en)
JPH11288949A (en) Power semiconductor device using semi-insulating polysilicon (sipos) and its manufacture
JPS6045060A (en) Semiconductor device
US4713355A (en) Bipolar transistor construction
JP3298472B2 (en) Method for manufacturing insulated gate semiconductor device
JPH0330335A (en) Manufacture of semiconductor device
JPS6112071A (en) Semiconductor device
JPH0227737A (en) Manufacture of semiconductor device
JPH09102604A (en) Semiconductor device
JPH03205831A (en) Bipolar transistor
KR100209590B1 (en) Semiconductor device and manufacture thereof
JPS60173869A (en) Semiconductor ic device
KR100226256B1 (en) Method of forming an element isolation region in a semiconductor device
JPS6114755A (en) Semiconductor transistor and manufacture thereof
JPS6119168A (en) Manufacture of transistor
JPH0571191B2 (en)
JPH05182977A (en) Manufacture of semiconductor device
JPS6276775A (en) Semiconductor device
JPH02278736A (en) Semiconductor device
JPS63114261A (en) Self-aligning base shunt for transistor
JPH06120234A (en) Semiconductor device
JPS59201444A (en) Manufacture of semiconductor device
JPH0766214A (en) Manufacture of bi-polar semiconductor integrated circuit device
JPH0541522A (en) Insulated-gate bipolar transistor
JPS59188172A (en) Manufacture of semiconductor device