JPS6043124A - Intake pot of internal-combustion engine - Google Patents

Intake pot of internal-combustion engine

Info

Publication number
JPS6043124A
JPS6043124A JP58151874A JP15187483A JPS6043124A JP S6043124 A JPS6043124 A JP S6043124A JP 58151874 A JP58151874 A JP 58151874A JP 15187483 A JP15187483 A JP 15187483A JP S6043124 A JPS6043124 A JP S6043124A
Authority
JP
Japan
Prior art keywords
intake
intake hole
intake port
valve
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58151874A
Other languages
Japanese (ja)
Other versions
JPH0223691B2 (en
Inventor
Katsuhiko Sugiyama
勝彦 杉山
Hiromitsu Kawazoe
川添 博光
Yoshinori Idota
芳典 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58151874A priority Critical patent/JPS6043124A/en
Priority to US06/638,616 priority patent/US4574751A/en
Priority to DE8484109887T priority patent/DE3469937D1/en
Priority to EP84109887A priority patent/EP0134038B2/en
Publication of JPS6043124A publication Critical patent/JPS6043124A/en
Publication of JPH0223691B2 publication Critical patent/JPH0223691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To produce strong swirl under a high volumetric efficiency, by selecting the connecting angle of an inlet portion and an outer portion of a swirl generating section at such an angle that main flow of intake air carried from the inlet portion to said outer portion of the swirl generating section is introduced between the peripheral surface of said outer portion and the peripheral surface of a valve shaft. CONSTITUTION:The axis of a cylindrical surface constituting the peripheral surface of an outer portion of a swirl generating section 16 is displaced toward the side of the peripheral surface of said outer portion 17 from the axis of an intake port 12, and the eccenticity is set at a value within the range of 2-50% of the diameter of the intake port 12. Further, the connecting angle of said outer portion 17 and an inlet portion 19 is selected at such an angle that main flow of intake air carried from the inlet portion 19 to the outer portion 17 is introduced between the peripheral surface of the outer portion 17 and that of a valve shaft 14. On the other hand, the distance from the axis of the intake port 12 to the center line of the inlet port 19 is selected to be within the range of 20-60% of the diameter of the intake port 12. Further, the inlet portion 19 is shaped to converge toward its top, and the minimum width of the inlet portion 19 is set at a value within the range of 25-85% of the diameter of the intake port 12.

Description

【発明の詳細な説明】 本発明は、シリンダ室の端面にその中心から偏芯した位
置に吸気孔を開口し、吸気孔に吸気弁を設けると共に吸
気通路を接続した内燃機関の吸気ポートに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake port for an internal combustion engine in which an intake hole is opened at a position eccentric from the center of an end face of a cylinder chamber, an intake valve is provided in the intake hole, and an intake passage is connected to the intake port.

本発明者は、従前、この種の吸気ポートにおいて、適度
の安定した渦流を体積効率を低下させずに生起させる目
的で、吸気通路を、吸気孔に連通して吸気弁を囲む通路
端の渦流生起部とこの通路端以外の導入部から構成し、
吸気弁の弁軸周面とこねに対面した渦流生起部の局面間
の幅を、シリンダ室局面側の外側部分ではシリンダ室中
心側の内側部分より広くし、渦流生起部の幅広の外側部
分に導入部を接続し、吸気孔の開口面とこれに対面した
渦流生起部の天井間の高さを、弁軸の回りに幅広の外側
部分から幅狭の内側部分に至る間に減少させ、その平均
域l)散を弁軸の回りに7反当り吸9℃孔の径の0%・
以上で0.7g%以下に設定した内燃機関の吸気ボート
を発明した。この発明は、その目的を達成することがで
きるが、しかし、強い渦流を高い体積効率の下に生起さ
せることができる、とは言い雌い。
In this type of intake port, the present inventor has previously developed an intake passage that communicates with the intake hole to create a vortex flow at the end of the passage surrounding the intake valve in order to generate a moderately stable vortex flow without reducing the volumetric efficiency. Consists of a starting part and an introduction part other than the end of this passage,
The width between the circumferential surface of the valve shaft of the intake valve and the surface of the vortex generating part facing the kneading is made wider at the outer part on the cylinder chamber side than the inner part on the center side of the cylinder chamber, and The height between the opening surface of the intake hole and the ceiling of the vortex generating section facing this is reduced from the wide outer part to the narrow inner part around the valve stem, and Average area l) Apply 7 turns around the valve stem to suck 9°C to 0% of the diameter of the hole.
As described above, we have invented an intake boat for an internal combustion engine in which the intake amount is set to 0.7 g% or less. Although this invention can achieve its purpose, it cannot be said that a strong vortex can be generated with high volumetric efficiency.

本発明の目的は、上記の従前の発明を改良し、強い渦流
を高い体積効率の下に生起させることができる内燃機関
の吸気ボートを提供することである。
An object of the present invention is to improve the above-mentioned previous invention and provide an intake boat for an internal combustion engine that can generate a strong vortex flow with high volumetric efficiency.

本発明は、上記の目的を達成するため、実験の結果に基
いて、上記の従前の発明の各部をいろいろと限定したも
のである。
In order to achieve the above object, the present invention limits various parts of the above conventional invention based on the results of experiments.

即ち、本発明は、上記の従前の発明において、渦流生起
部の外側部分の局面を構成する円筒面の中り軸を吸気孔
の中心軸から外側部分の周面側に偏芯し、その偏芯量を
吸気孔の径の25以上で50%以下に設定し、外側部分
と導入部との接続角度を、導入部゛から外側部分に至る
吸気の主流が外側部分の周面と弁軸の局面の間に流入す
る角度に設定したことを特徴とする内燃機関の吸気ボー
トである。
That is, the present invention, in the above-mentioned conventional invention, decenters the central axis of the cylindrical surface constituting the curved surface of the outer portion of the vortex generation portion from the central axis of the intake hole toward the circumferential surface of the outer portion. The core amount is set to 25 or more and 50% or less of the diameter of the intake hole, and the connection angle between the outer part and the introduction part is set so that the main flow of intake air from the introduction part to the outer part is between the peripheral surface of the outer part and the valve shaft. This is an intake boat for an internal combustion engine, characterized in that the intake boat is set at an angle that allows the intake air to flow between the phases.

寸た、この吸気ボートにおいて、吸気孔の中10軸から
導入部の中心線捷での距離を吸気孔の径の20%以上で
乙0%以下に設定したことを特徴とするものであり、ま
た、導入部を先細状に形成して導入部の最小幅を吸気孔
の径の25%以上でg5%以下に設定したことを特徴と
するものである。
In addition, this intake boat is characterized in that the distance from the center axis of the intake hole to the center line of the introduction part is set to 20% or more and 0% or less of the diameter of the intake hole, Further, the introduction part is formed into a tapered shape, and the minimum width of the introduction part is set to be 25% or more of the diameter of the intake hole and g5% or less.

本発明の吸気ボートは、後記の実験結果から明らかなよ
りに、強い渦流を高い体積効率の下に生起させることが
できる。
The intake boat of the present invention can generate a stronger vortex flow with higher volumetric efficiency than is clear from the experimental results described below.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

本例の内燃機関の吸気ボートは、第1図と第2図に示す
ように、シリンダ室0ηの円形端面にその中・Uから周
辺側に(ti^芯した位置に円形の吸気孔Qりを開口し
、吸気孔(14にポペット弁の吸気弁(1■を設けると
共に吸気通路αQを接続し、吸気通路09を、吸気孔0
埠に連通して吸気弁0剣を囲む通路端の渦流生起部11
ii1とこの通路端以外の導入部09から構成し、渦流
生起部(1(1の周面を吸気弁の弁軸0→の局面に対面
した2枚の円筒面を滑らかに接続してノ[4成し、弁軸
(14)の周面とこれに対面した渦流生起部OQの周面
間の幅を、シリンダ室01周面側の外41111部分0
ηではシリンダ室中・u側の内側部分08)より広くし
て、弁軸(14)の回りに外側部分0′hから内側部分
08)に至る間に徐々に狭くし、渦流生起部Qt9の幅
広の外側部分(171にその接線方向に沿って導入部0
9を接続し、吸気孔(1りの開口面とこれに対面した渦
流生起部(li’Nの天井間の高さを、弁軸0・1)の
回りに幅広の外側部分(lηから幅狭の内側部分0印に
至る1111に同一とし又は徐々に減少させ、その減少
量を弁軸0→の回りに7度当り吸気孔の径dの07g%
以内に設定している。捷だ、渦流生起部の内側部分0ね
の周面を構成する円筒面の中心軸は、吸気孔α邊の中・
U軸に合致させる一方、外側部分αηの局面を構成する
円筒面の中心軸を吸気孔0→の中IL)軸から外側部分
の周面側に偏芯し、その偏芯量eを吸気孔(2)の径d
の2%以上で50%以下に設定し、外側部分0ηと導入
部09との接続角度舎、導入部09から外側部分07)
に至る吸気の主流が外側部分の周面と弁軸α→の周面の
間に流入する角度に設定している。更に、吸気孔02の
中IL:?軸から導入部0つの中1u線までの距離lを
吸気孔の径dの20%以上で60%以下に設定し、また
、矩形断面状の導入部0傷を先細状に形成して導入部の
最小幅Wを吸気孔(12の径dの2S%以上でgS%以
下に設定している。
As shown in Figs. 1 and 2, the intake boat of the internal combustion engine of this example has a circular intake hole Q in the circular end face of the cylinder chamber 0η from the center/U to the periphery (ti^ center position). Open the intake hole (14 with a poppet valve (1), connect the intake passage αQ, and connect the intake passage 09 with the intake hole 0).
A vortex generating portion 11 at the end of the passage that communicates with the pier and surrounds the intake valve
ii1 and an introduction part 09 other than this passage end, and the vortex generating part (1 (1) is formed by smoothly connecting two cylindrical surfaces facing the valve shaft 0→ aspect of the intake valve. 4, and the width between the circumferential surface of the valve shaft (14) and the circumferential surface of the vortex generating part OQ facing this is set to the outer 41111 portion 0 on the circumferential surface side of the cylinder chamber 01.
In η, it is made wider than the inner part 08) on the u side in the cylinder chamber, and gradually narrows around the valve shaft (14) from the outer part 0'h to the inner part 08), and the vortex generating part Qt9 is made wider. The wide outer part (171 has an introductory part 0 along its tangential direction)
9, and connect the wide outer part (from lη to the width The inner part of the narrow part is the same as 1111 up to the 0 mark, or gradually decreases, and the amount of decrease is 07g% of the intake hole diameter d per 7 degrees around the valve shaft 0 →
It is set within However, the central axis of the cylindrical surface that constitutes the circumferential surface of the inner part of the vortex generating part is located inside the intake hole α.
While aligning with the U axis, the central axis of the cylindrical surface constituting the surface of the outer part αη is eccentric from the intake hole 0 → middle IL) axis to the circumferential surface side of the outer part, and the eccentricity e is (2) diameter d
2% or more and 50% or less, and the connection angle between the outer part 0η and the introduction part 09, from the introduction part 09 to the outer part 07)
The angle is set such that the main flow of intake air flowing into the valve shaft flows between the circumferential surface of the outer portion and the circumferential surface of the valve shaft α→. Furthermore, inside IL of intake hole 02:? The distance l from the shaft to the middle line of the introduction part 0 is set to 20% or more and 60% or less of the diameter d of the intake hole, and the introduction part 0 flaw with a rectangular cross section is formed into a tapered shape. The minimum width W of the intake hole (12) is set to be 2S% or more and gS% or less of the diameter d of the intake hole (12).

この吸気ボートにおいては、吸気通路0.1を流れる吸
気流は、導入部(Iりから渦流生起部OQに流入し、吸
気孔0のを経てシリンダ室0ηに流入し、また、吸気流
の主流は、導入部09の中心位11tから渦流生起部の
外側部分αηの周面と弁軸0勇の周面間の中間位置に流
入し、吸気孔0埠を経てシリンダ室(11)にその周面
の吸気孔近接部分の接線方向に沿って流入し、シリンダ
室0→の局面に沿って旋回する渦流となる。
In this intake boat, the intake air flowing through the intake passage 0.1 flows into the vortex generation part OQ from the introduction part (I), flows into the cylinder chamber 0η through the intake hole 0, and also flows into the cylinder chamber 0η through the intake hole 0. Flows from the center position 11t of the introduction part 09 to an intermediate position between the circumferential surface of the outer part αη of the vortex generating part and the circumferential surface of the valve shaft 0, and flows into the cylinder chamber (11) through the intake hole 0. A vortex flow flows in along the tangential direction of the portion of the surface near the intake hole and swirls along the surface of the cylinder chamber 0→.

そして、強い渦流が高い体積効率の下に生起する。A strong eddy current is generated under high volumetric efficiency.

実験/ 上記の実施例の吸気ポートにおいて、渦流生起部の外側
部分(l″I)の周面を構成する円筒面の中心軸が吸気
孔@の中心軸から外側部分0ηの局面側に偏芯するRe
を吸気孔0のの径dに対して各位に設定し、その各位の
場合についてそれぞれシリンダ室0])に生起する渦流
の強さ即ちスワール比Sl’tと吸気通路OQの圧力損
失ΔPをめてみたところ、第3図の線図に実線で示すよ
うな結果を得た・同線図の上半部と下半部から明らかな
エリに、無次元偏芯量e / d が0.3より大きく
なると、スワール比8Rが小さくなると共に圧力損失Δ
Pが大きくなる。一方、無次元偏芯量e/dがO/より
小さくなるに従ってスワール比SRが減少すると共に圧
力損失ΔPが増大し、無次元偏芯lie/dがO02よ
り小さくなると、スワール比8Rの減装置と圧力損失Δ
Pの増大量が大きくなる。従って、無次元偏芯if e
 / dが002以上で05以下になると、スワール比
SRが大きくて圧力損失ΔPが小さい。即ち、強い渦流
が高い体積効率の下に生起する。なお、無次元偏芯量e
/dが0.03以上で03以下になると、更に良い性能
が得られる。
Experiment/ In the intake port of the above example, the central axis of the cylindrical surface constituting the circumferential surface of the outer portion (l″I) of the vortex generating portion is eccentric from the central axis of the intake hole @ to the curved surface side of the outer portion 0η Re
is set at each position relative to the diameter d of the intake hole 0, and for each case, the strength of the vortex generated in the cylinder chamber 0), that is, the swirl ratio Sl't, and the pressure loss ΔP of the intake passage OQ are determined. As a result, I obtained the results as shown by the solid line in the diagram in Figure 3.It is clear from the upper and lower halves of the diagram that the dimensionless eccentricity e/d is 0.3. When it becomes larger, the swirl ratio 8R becomes smaller and the pressure loss Δ
P becomes larger. On the other hand, as the dimensionless eccentricity e/d becomes smaller than O/, the swirl ratio SR decreases and the pressure loss ΔP increases, and when the dimensionless eccentricity lie/d becomes smaller than O02, the swirl ratio 8R reduction device and pressure drop Δ
The amount of increase in P becomes large. Therefore, dimensionless eccentricity if e
When /d is 002 or more and 05 or less, the swirl ratio SR is large and the pressure loss ΔP is small. That is, a strong vortex flow occurs under high volumetric efficiency. In addition, the dimensionless eccentricity e
Even better performance can be obtained when /d is 0.03 or more and 03 or less.

なお、外側部分(17)と導入部叫との接続角度を、導
入部(Inから外側部分07)に至る吸気の主流が外側
部分の周面と弁軸α荀の周面の間に流入する角度以外の
角度に設定した場合は、第3図の線図に破線で示すよう
に、無次元偏芯量e / d が0/よ、り小さい領域
において、性能が悪くなり、スワール比SRが急減する
と共に圧力損失ΔPが増大する。
Note that the connection angle between the outer part (17) and the inlet part is adjusted so that the main flow of intake air from the inlet part (In to the outer part 07) flows between the circumferential surface of the outer part and the circumferential surface of the valve shaft α. If it is set to an angle other than the angle, the performance will deteriorate in the region where the dimensionless eccentricity e/d is smaller than 0/, as shown by the broken line in the diagram in Figure 3, and the swirl ratio SR will decrease. As the pressure decreases rapidly, the pressure loss ΔP increases.

捷だ、外側部分αηと導入部叫との接続角度aを各位に
設定し、その各位の場合についてそれぞれスワール比S
Rと圧力損失ΔPをめてみたところ、第1I図の線図に
示すよりな結果を得た。
For each case, set the connection angle a between the outer part αη and the introduction part, and set the swirl ratio S for each case.
When we looked at R and the pressure loss ΔP, we obtained the results shown in the diagram in Figure 1I.

ただし、上記の接続角度αは、便宜上、第1図に示すよ
うに、内側部分08)の局面と導入部09の内側面との
接続線と、この接続線と吸気孔02の中心軸を含む面か
ら吸気孔の中心軸を中心軸として外側部分Cl7)側に
60度回転した面と外側部分07)の周面ないし導入部
0窃の外側面との交線を含む接続面に対して、導入部0
9の中心線がなす角度としている。
However, for convenience, the above connection angle α includes the connection line between the surface of the inner part 08) and the inner surface of the introduction part 09, and this connection line and the central axis of the intake hole 02, as shown in FIG. With respect to the connecting surface including the intersection line between the surface rotated 60 degrees from the surface to the outer portion Cl7) side with the central axis of the intake hole as the center axis and the peripheral surface of the outer portion 07) or the outer surface of the introduction part 0, Introduction part 0
This is the angle formed by the center line of 9.

第グ図の線図の上半部と下半部から明らかなように、接
続角度αが735度より大きくなると、スワール比SI
(が非常に小さくなるーと共に圧力損失ΔPが大きくη
る。即ち、導入部09から渦流生起部(IQに流入する
吸気の主流が弁軸Oaに衝突するようになり、渦流が弱
くなる。従って、接続角度αが735度以下になると、
スワール比SRが大きくて圧力損失ΔPが小さい。なお
、接続角度αが710度以下になると、更に良い性能が
得られる。一方、接続角度αが15度エリ小さくなるど
、スワール比SRが急減すると共に圧力損失ΔPが増大
する。即ち、導入部0りから渦流生起部の外側部分aカ
に流入する吸気の主流の一部が外側部分の局面に衝突す
るようになり、渦流が弱くなる。
As is clear from the upper and lower halves of the diagram in Fig. 1, when the connection angle α becomes larger than 735 degrees, the swirl ratio SI
(becomes very small - and the pressure loss ΔP becomes large η
Ru. That is, the main flow of intake air flowing from the introduction part 09 to the vortex generating part (IQ) collides with the valve shaft Oa, and the vortex becomes weaker. Therefore, when the connection angle α becomes 735 degrees or less,
The swirl ratio SR is large and the pressure loss ΔP is small. Note that even better performance can be obtained when the connection angle α is 710 degrees or less. On the other hand, as the connection angle α decreases by 15 degrees, the swirl ratio SR rapidly decreases and the pressure loss ΔP increases. That is, a part of the main flow of the intake air flowing from the introduction part 0 into the outer part a of the vortex generating part comes to collide with the surface of the outer part, and the vortex becomes weaker.

従って、接続角度αは、導入部0侍から外側部分α力に
至る吸気の主流が外側部分の周面と弁軸04)の局面の
間に流入する角度に設定すると、スワール比8Rが大き
くて圧力損失ΔPが小さくなる。
Therefore, if the connection angle α is set to an angle where the main flow of intake air from the introduction part 0 Samurai to the outer part α force flows between the circumferential surface of the outer part and the surface of the valve stem 04), the swirl ratio 8R will be large. Pressure loss ΔP becomes smaller.

実験コ 上記の実施例の吸気ポートにおいて、吸気孔α力の中心
軸から導入部FIGの中心線までの距離lを吸気孔02
の径dに対して各位に設定し、その各位の場合について
それぞれスワール比SRと圧力損失ΔPをめてみたとこ
ろ、第S図の線図に示すような結果を得た。同線図の上
半部と下半部から明らかなように、無次元距離n/d 
がO乙よp大きくなると、また、02より小さくなると
、スワール比SRが小さくなると共に圧力損失ΔPが大
きくなる。従って、無次元距離1/d が02以」−で
06以下になると、スワール比SRが大きくて圧力損失
ΔPが小さい。
Experimental In the intake port of the above example, the distance l from the center axis of the intake hole α force to the center line of the introduction part FIG is
When the swirl ratio SR and the pressure loss ΔP were determined for each case with respect to the diameter d, the results were obtained as shown in the diagram in Fig. S. As is clear from the upper and lower halves of the diagram, the dimensionless distance n/d
When becomes larger than O2 or smaller than 02, the swirl ratio SR becomes smaller and the pressure loss ΔP becomes larger. Therefore, when the dimensionless distance 1/d becomes 02 or more and 06 or less, the swirl ratio SR is large and the pressure loss ΔP is small.

また、先細状に形成した導入部01の最小幅Wを吸気孔
02の径dに対して各位に設定し、その各位の場合につ
いてそれぞれスワール比8Rと圧力損失ΔPをめてみた
ところ、第を図の線図に示すよりな結果を得た。同線図
の上半部と下半部から明らかなように、無次元最小幅v
 / dがθg夕より大きくなると“、また、θ2SX
v小さくなるとスワール比SRが小さくなると共に圧力
損失ΔPが大きくなる。従って、無次元最小幅w / 
dがC2S以上で0g5以下になると、スワール比8R
が大きくて圧力損失ΔPが小さい、
In addition, the minimum width W of the tapered introduction part 01 was set to various degrees with respect to the diameter d of the intake hole 02, and the swirl ratio 8R and pressure loss ΔP were calculated for each case. The results shown in the diagram in the figure were obtained. As is clear from the upper and lower halves of the diagram, the dimensionless minimum width v
/ When d is larger than θg, then θ2SX
As v becomes smaller, the swirl ratio SR becomes smaller and the pressure loss ΔP becomes larger. Therefore, the dimensionless minimum width w/
When d is more than C2S and less than 0g5, the swirl ratio is 8R.
is large and pressure loss ΔP is small,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の吸気ポートの平面図。 第2図は第1図のト」線断面図であり、第3図は同吸気
ポートにおけるスワール比SR1圧力損失ΔPと無次元
偏芯量e / dの関係を示す線図、第μ図は同吸気ポ
ーFにおけるスワール比SR。 圧力損失ΔPと接続角度αの関係を示す線図、第5図は
同吸気ポートにおけるスワール比SR、圧力損失ΔPと
無次元距離1/d の関係を示す線図、第6図は同吸気
ポートにおけるスワール比SR1圧力損失ΔPと無次元
最小幅v/dの関係を示す線図である。 11ニジリンダ室 12:吸気孔 13:吸気弁 14:弁 軸 15:吸気通路 16:渦流生起部 17:外側部分 18:内側部分 19:導入部
FIG. 1 is a plan view of an intake port according to an embodiment of the present invention. Fig. 2 is a sectional view taken along the line T in Fig. 1, Fig. 3 is a diagram showing the relationship between the swirl ratio SR1 pressure loss ΔP and the dimensionless eccentricity e/d at the same intake port, and Fig. Swirl ratio SR at the same intake port F. A diagram showing the relationship between pressure loss ΔP and connection angle α, Figure 5 is a diagram showing the relationship between swirl ratio SR at the same intake port, pressure loss ΔP and dimensionless distance 1/d, and Figure 6 is a diagram showing the relationship between the same intake port. It is a diagram showing the relationship between the swirl ratio SR1 pressure loss ΔP and the dimensionless minimum width v/d in FIG. 11 Niji cylinder chamber 12: Intake hole 13: Intake valve 14: Valve shaft 15: Intake passage 16: Vortex generating part 17: Outside part 18: Inside part 19: Introduction part

Claims (3)

【特許請求の範囲】[Claims] (1) シリンダ室の端面にその中心から偏芯した位置
に吸気孔を開口し、吸気孔に吸気弁を設けるとともに吸
気通路を接続した内燃機関の吸気ポートにおいて、吸気
通路を、吸気孔に連通して吸気弁を囲む通路喘の渦流生
起部と、この通路端以外の導入部から構成し、吸気弁の
弁軸周面とこれに対面した渦流生起部の周面間の幅を、
シリンダ室局面側の外側部分ではシリンダ室中心側の内
側部分より広くし、渦流生起部の幅広の外側部分に導入
部を接続し、吸気孔の開口面とこねに対面した渦流生起
部の天井間の高さを、弁軸の回りに幅広の外側部分から
幅狭の内側部分にいたる間に減少させ、その平均減少量
を弁軸の回りに7度当り吸気孔の径の0%以上で07g
%以下に設定し、渦流生起部の外側部分の局面企構成す
る円筒面の中心軸を吸気孔の中心軸から外側部分の周面
側に偏芯し、その偏芯量を吸気孔の径の2%以上で50
%以下に設定し、外側部分と導入部との接続角度を、導
入部から外側部分にいたる吸気の主流が。 外側部分の周面と弁軸の周面の間に流入する角度に設定
したことを特徴とする内燃機関の吸気ポート。
(1) The intake port of an internal combustion engine has an intake hole opened at a position eccentric from the center of the end face of the cylinder chamber, an intake valve is provided in the intake hole, and the intake passage is connected to the intake port, and the intake passage is communicated with the intake hole. The width between the circumferential surface of the valve shaft of the intake valve and the circumferential surface of the vortex generating section facing the intake valve is as follows:
The outer part on the side of the cylinder chamber is wider than the inner part on the center side of the cylinder chamber, and the introduction part is connected to the wide outer part of the vortex generating part, and the gap between the opening surface of the intake hole and the ceiling of the vortex generating part facing the kneading part is made. The height of the valve is reduced from the wide outer part to the narrow inner part around the valve stem, and the average reduction is 0.7 g at 0% or more of the diameter of the intake hole per 7 degrees around the valve stem.
% or less, the central axis of the cylindrical surface constituting the curve of the outer part of the vortex generating part is eccentric from the central axis of the intake hole toward the circumferential surface of the outer part, and the amount of eccentricity is calculated as the diameter of the intake hole. 50 for 2% or more
% or less, and set the connection angle between the outer part and the introduction part so that the main flow of intake air from the introduction part to the outer part. An intake port for an internal combustion engine, characterized in that the intake port is set at an angle such that the air flows between the circumferential surface of the outer portion and the circumferential surface of the valve shaft.
(2) 吸気孔の中心軸から導入部の中IL:?線まで
の距離を吸気孔の径の20%以上で10%以下に設定し
たことを特徴とする特許請求の範囲第1項記載の内燃機
関の吸気ポート。
(2) IL from the central axis of the intake hole to the middle of the introduction section: ? 2. The intake port for an internal combustion engine according to claim 1, wherein the distance to the line is set to 20% or more and 10% or less of the diameter of the intake hole.
(3)導入部を先細状に形成して導入部の最小幅を吸気
孔の径の25%以上でg5%以下に設定したことを特徴
とする特許請求の範囲第1項又は第2項記載の内燃機関
の吸気ポート。
(3) The introduction part is formed into a tapered shape, and the minimum width of the introduction part is set to 25% or more of the diameter of the intake hole and g5% or less. intake port of an internal combustion engine.
JP58151874A 1983-08-19 1983-08-19 Intake pot of internal-combustion engine Granted JPS6043124A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58151874A JPS6043124A (en) 1983-08-19 1983-08-19 Intake pot of internal-combustion engine
US06/638,616 US4574751A (en) 1983-08-19 1984-08-07 Inlet port for internal combustion engine
DE8484109887T DE3469937D1 (en) 1983-08-19 1984-08-20 Inlet port for internal combustion engine
EP84109887A EP0134038B2 (en) 1983-08-19 1984-08-20 Inlet port for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151874A JPS6043124A (en) 1983-08-19 1983-08-19 Intake pot of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6043124A true JPS6043124A (en) 1985-03-07
JPH0223691B2 JPH0223691B2 (en) 1990-05-25

Family

ID=15528093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151874A Granted JPS6043124A (en) 1983-08-19 1983-08-19 Intake pot of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6043124A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753032U (en) * 1980-09-12 1982-03-27
JPS57136832U (en) * 1981-02-18 1982-08-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286717A (en) * 1976-01-14 1977-07-19 Toshiba Corp Narrow band pick up unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753032U (en) * 1980-09-12 1982-03-27
JPS57136832U (en) * 1981-02-18 1982-08-26

Also Published As

Publication number Publication date
JPH0223691B2 (en) 1990-05-25

Similar Documents

Publication Publication Date Title
CN111734546A (en) Engine air inlet structure and cylinder cover
JP3877725B2 (en) Cylinder head for internal combustion engine
JP3517957B2 (en) Engine intake port structure and its setting method
JPH07301119A (en) Intake port structure of internal combustion engine
JPS6043124A (en) Intake pot of internal-combustion engine
CN104583545A (en) Cylinder head with countersink
JPS58135321A (en) Air intake device for internal-combustion engine
JP2005201089A (en) Port structure of internal combustion engine
JPS5833388B2 (en) High woodpecker
JPS59201929A (en) Suction port of internal-combustion engine
JPS5912123A (en) Inlet port of internal combustion engine
JPS6098126A (en) Suction port for internal-combustion engine
JPS60125724A (en) Intake port of internal-combustion engine
JPS6115220Y2 (en)
JPS5925032A (en) Air intake passage for internal combustion engine
JPS59213924A (en) Suction port for internal-combustion engine
JPH08158873A (en) Multiple valve suction type engine
JPS59180027A (en) Intake port of internal-combustion engine
JPS60138225A (en) Suction port of internal-combustion engine
JPS5912126A (en) Inlet port of internal combustion engine
JPS5912127A (en) Intake port of internal combustion engine
JPH0233857B2 (en)
JP2005113737A (en) Internal combustion engine equipped with suction port for forming tumbling flow
JPS5912124A (en) Inlet port of internal combustion engine
EP1133627B1 (en) A reciprocating internal combustion engine, particularly of the direct-injection type, and a filling intake duct for a cylinder thereof