JPH0223691B2 - - Google Patents

Info

Publication number
JPH0223691B2
JPH0223691B2 JP58151874A JP15187483A JPH0223691B2 JP H0223691 B2 JPH0223691 B2 JP H0223691B2 JP 58151874 A JP58151874 A JP 58151874A JP 15187483 A JP15187483 A JP 15187483A JP H0223691 B2 JPH0223691 B2 JP H0223691B2
Authority
JP
Japan
Prior art keywords
intake
intake hole
introduction
valve
circumferential surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58151874A
Other languages
Japanese (ja)
Other versions
JPS6043124A (en
Inventor
Katsuhiko Sugyama
Hiromitsu Kawazoe
Yoshinori Idota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58151874A priority Critical patent/JPS6043124A/en
Priority to US06/638,616 priority patent/US4574751A/en
Priority to DE8484109887T priority patent/DE3469937D1/en
Priority to EP84109887A priority patent/EP0134038B2/en
Publication of JPS6043124A publication Critical patent/JPS6043124A/en
Publication of JPH0223691B2 publication Critical patent/JPH0223691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は、シリンダ室の端面にその中心から偏
芯した位置に吸気孔を開口し、吸気孔に吸気弁を
設けると共に吸気通路を接続した内燃機関の吸気
ポートに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake port for an internal combustion engine in which an intake hole is opened at a position eccentric from the center of an end face of a cylinder chamber, an intake valve is provided in the intake hole, and an intake passage is connected to the intake port.

本発明者は、特開昭59−180027号公報に開示さ
れているように、従前、この種の吸気ポートにお
いて、適度の安定した渦流を体積効率を低下させ
ずに生起させる目的で、吸気通路を、吸気孔に連
通して吸気弁を囲む通路端の渦流生起部とこの通
路端以外の導入部から構成し、吸気弁の弁軸周面
とこれに対面した渦流生起部の周面間の幅を、シ
リンダ室周面側の外側部分ではシリンダ室中心側
の内側部分より広くし、渦流生起部の幅広の外側
部分に導入部を接続し、吸気孔の開口面とこれに
対面した渦流生起部の天井間の高さを、弁軸の回
りに幅広の外側部分から幅狭の内側部分に至る間
に減少させ、その平均減少量を弁軸の回りに1度
当り吸気孔の径の0%以上で0.18%以下に設定し
た内燃機関の吸気ポートを発明した。この発明
は、その目的を達成することができるが、しか
し、強い渦流を高い体積効率の下に生起させるこ
とができる、とは言い難い。
As disclosed in Japanese Unexamined Patent Publication No. 59-180027, the present inventor has previously developed an intake passage in this type of intake port for the purpose of generating a moderately stable vortex flow without reducing the volumetric efficiency. consists of a vortex generating part at the end of the passage that communicates with the intake hole and surrounds the intake valve, and an introduction part other than the end of the passage, and between the peripheral surface of the valve shaft of the intake valve and the peripheral surface of the vortex generating part facing it The width is made wider at the outer part on the cylinder chamber circumferential side than the inner part on the center side of the cylinder chamber, and the introduction part is connected to the wide outer part of the vortex generating part, and the vortex generating part facing the opening surface of the intake hole is made wider. The height between the ceilings of the parts is reduced from the wide outer part to the narrow inner part around the valve stem, and the average reduction is equal to 0 of the diameter of the intake hole per degree around the valve stem. Invented an intake port for internal combustion engines that is set to 0.18% or more. Although this invention can achieve its purpose, it cannot be said that it can generate a strong vortex flow with high volumetric efficiency.

本発明の目的は、上記の従前の発明を改良し、
強い渦流を高い体積効率の下に生起させることが
できる内燃機関の吸気ポートを提供することであ
る。
The purpose of the present invention is to improve the above-mentioned previous invention,
An object of the present invention is to provide an intake port for an internal combustion engine that can generate a strong vortex flow with high volumetric efficiency.

本発明は、上記の目的を達成するため、実験の
結果に基いて、上記の従前の発明の各部をいろい
ろと限定したものである。
In order to achieve the above object, the present invention limits various parts of the above conventional invention based on the results of experiments.

即ち、本発明は、上記の従前の発明において、
過流生起部の外側部分の周面を円筒面に形成し
て、この円筒面の中心軸を吸気孔の中心軸から渦
流生起部の外側部分の周面側に偏芯し、その偏芯
量を吸気孔の径の2%以上で50%以下に設定し、
導入部をほぼ直線状に形成し、渦流生起部の外側
部分と導入部との接続角度を、導入部から渦流生
起部の外側部分に至る吸気の主流が、外側部分の
周囲と弁軸の周面の間に流入する角度に設定した
ことを特徴とする内燃機関の吸気ポートである。
That is, the present invention has the above-mentioned conventional invention,
The circumferential surface of the outer part of the turbulent flow generating part is formed into a cylindrical surface, and the central axis of this cylindrical surface is eccentric from the central axis of the intake hole toward the circumferential surface of the outer part of the vortex generating part. is set to 2% or more of the intake hole diameter and 50% or less,
The inlet is formed into a substantially straight line, and the connection angle between the outer part of the vortex generating part and the inlet is set so that the main flow of intake air from the inlet to the outer part of the vortex generating part is around the outer part and around the valve shaft. This is an intake port for an internal combustion engine, characterized in that the intake port is set at an angle that allows air to flow between the surfaces.

また、この吸気ポートにおいて、吸気孔の中心
軸から導入部の中心線までの距離を吸気孔の径の
20%以上で60%以下に設定したことを特徴とする
ものであり、また、導入部を先細状に形成して導
入部の最小幅を吸気孔の径の25%以上で85%以下
に設定したことを特徴とするものである。
In addition, for this intake port, the distance from the center axis of the intake hole to the center line of the introduction part is the diameter of the intake hole.
It is characterized by setting the introduction part to be 20% or more and 60% or less, and the minimum width of the introduction part is set to be 25% or more and 85% or less of the diameter of the intake hole by forming the introduction part in a tapered shape. It is characterized by the fact that

本発明の吸気ポートは、後記の実験結果から明
らかなように、強い渦流を高い体積効率の下に生
起させることができる。
As is clear from the experimental results described later, the intake port of the present invention can generate a strong vortex flow with high volumetric efficiency.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

本例の内燃機関の吸気ポートは、第1図と第2
図に示すように、シリンダ室11の円形端面にそ
の中心から周辺側に偏芯した位置に円形の吸気孔
12を開口し、吸気孔12にポペツト弁の吸気弁
13を設けると共に吸気通路15を接続し、吸気
通路15を、吸気孔12に連通して吸気弁13を
囲む通路端の渦流生起部16とこの通路端以外の
導入部19から構成し、渦流生起部16の周面を
吸気弁の弁軸14の周面に対面した2枚の円筒面
を滑らかに接続して形成し、弁軸14の周面とこ
れに対面した渦流生起部16の周面間の幅を、シ
リンダ室11周面側の外側部分17ではシリンダ
室中心側の内側部分18より広くして、弁軸14
の回りに外側部分17から内側部分18に至る間
に徐々に狭くし、渦流生起部16の幅広の外側部
分17にその接線方向に沿つて導入部19を接続
し、吸気孔12の開口面とこれに対面した渦流生
起部16の天井間の高さを、弁軸14の回りに幅
広の外側部分17から幅狭の内側部分18に至る
間に同一とし又は徐々に減少させ、その減少量を
弁軸14の回りに1度当り吸気孔の径dの0.18%
以内に設定している。また、渦流生起部の内側部
分18の周面を構成する円筒面の中心軸は、吸気
孔12の中心軸に合致させる一方、外側部分17
の周面を構成する円筒面の中心軸を吸気孔12の
中心軸から外側部分の周面側に偏芯し、その偏芯
量eを吸気孔12の径dの2%以上で50%以下に
設定し、導入部19をほぼ直線状に形成し、外側
部分17と導入部19との接続角度を、導入部1
9から外側部分17に至る吸気の主流が外側部分
の周面と弁軸14の周面の間に流入する角度に設
定している。更に、吸気孔12の中心軸から導入
部19の中心線までの距離lを吸気孔の径dの20
%以上で60%以下に設定し、また、矩形断面状の
導入部19を先細状に形成して導入部の最小幅w
を吸気孔12の径dの25%以上で85%以下に設定
している。
The intake ports of the internal combustion engine in this example are shown in Figures 1 and 2.
As shown in the figure, a circular intake hole 12 is opened in the circular end face of the cylinder chamber 11 at a position eccentric from the center to the peripheral side, and an intake valve 13 of a poppet valve is provided in the intake hole 12, and an intake passage 15 is provided. The intake passage 15 is composed of a vortex generation part 16 at the end of the passage that communicates with the intake hole 12 and surrounds the intake valve 13, and an introduction part 19 at the other end of the passage, and the peripheral surface of the vortex generation part 16 is connected to the intake valve 13. The cylinder chamber 11 is formed by smoothly connecting two cylindrical surfaces facing the circumferential surface of the valve stem 14 , and the width between the circumferential surface of the valve stem 14 and the circumferential surface of the vortex generating portion 16 facing the cylinder chamber 11 is The outer portion 17 on the circumferential side is wider than the inner portion 18 on the center side of the cylinder chamber, and the valve shaft 14
The introduction part 19 is connected to the wide outer part 17 of the vortex generating part 16 along the tangential direction, and the introduction part 19 is connected to the opening surface of the intake hole 12. The height between the ceilings of the vortex generating part 16 facing this is kept the same or gradually decreased from the wide outer part 17 to the narrow inner part 18 around the valve shaft 14, and the amount of decrease is 0.18% of the intake hole diameter d per degree around the valve stem 14
It is set within Further, the center axis of the cylindrical surface constituting the circumferential surface of the inner portion 18 of the vortex generating portion is aligned with the center axis of the intake hole 12, while the outer portion 17
The central axis of the cylindrical surface constituting the peripheral surface of the air intake hole 12 is eccentric from the central axis of the intake hole 12 toward the peripheral surface of the outer portion, and the eccentricity e is 2% or more and 50% or less of the diameter d of the air intake hole 12. , the introduction part 19 is formed into a substantially straight line, and the connection angle between the outer part 17 and the introduction part 19 is set to the introduction part 1.
The angle is set such that the main flow of intake air from 9 to the outer portion 17 flows between the circumferential surface of the outer portion and the circumferential surface of the valve shaft 14. Furthermore, the distance l from the center axis of the intake hole 12 to the center line of the introduction part 19 is 20 of the diameter d of the intake hole.
% or more and 60% or less, and the introduction part 19 having a rectangular cross section is formed into a tapered shape to increase the minimum width w of the introduction part.
is set to be 25% or more and 85% or less of the diameter d of the intake hole 12.

この吸気ポートにおいては、吸気通路15を流
れる吸気流は、導入部19から渦流生起部16に
流入し、吸気孔12を経てシリンダ室11に流入
し、また、吸気流の主流は、導入部19の中心位
置から渦流生起部の外側部分17の周面と弁軸1
4の周面間の中間位置に流入し、吸気孔12を経
てシリンダ室11にその周面の吸気孔近接部分の
接線方向に沿つて流入し、シリンダ室11の周面
に沿つて施回する渦流となる。そして、強い渦流
が高い体積効率の下に生起する。
In this intake port, the intake air flowing through the intake passage 15 flows from the introduction part 19 into the vortex generating part 16 and flows into the cylinder chamber 11 via the intake hole 12. from the center position of the outer part 17 of the vortex generating part to the valve shaft 1
4, flows into the cylinder chamber 11 through the intake hole 12 along the tangential direction of the portion of the circumference adjacent to the intake hole, and is circulated along the circumferential surface of the cylinder chamber 11. It becomes a vortex. A strong eddy current is generated under high volumetric efficiency.

実験1 上記の実施例の吸気ポートにおいて、渦流生起
部の外側部分17の周面を構成する円筒面の中心
軸が吸気孔12の中心軸から外側部分17の周面
側に偏芯する量eを吸気孔12の径dに対して各
値に設定し、その各値の場合についてそれぞれシ
リンダ室11に生起する渦流の強さ即ちスワール
比SRと吸気通路15の圧力損失ΔPを求めてみた
ところ、第3図の線図に実線で示すような結果を
得た。同線図の上半部と下半部から明らかなよう
に、無次元偏芯量e/dが0.5より大きくなると、
スワール比SRが小さくなると共に圧力損失ΔPが
大きくなる。一方、無次元偏芯量e/dが0.1よ
り小さくなるに従つてスワール比SRが減少する
と共に圧力損失ΔPが増大し、無次元偏芯量e/
dが0.02より小さくなると、スワール比SRの減
小量と圧力損失ΔPの増大量が大きくなる。従つ
て、無次元偏芯量e/dが0.02以上で0.5以下に
なると、スワール比SRが大きくて圧力損失ΔPが
小さい。即ち、強い渦流が高い体積効率の下に生
起する。なお、無次元偏芯量e/dが0.03以上で
0.3以下になると、更に良い性能が得られる。
Experiment 1 In the intake port of the above embodiment, the amount e that the central axis of the cylindrical surface constituting the peripheral surface of the outer portion 17 of the vortex generating portion is eccentric from the central axis of the intake hole 12 toward the peripheral surface of the outer portion 17 was set to various values for the diameter d of the intake hole 12, and the strength of the vortex generated in the cylinder chamber 11, that is, the swirl ratio SR, and the pressure loss ΔP of the intake passage 15 were determined for each value. , the results shown by the solid line in the diagram of FIG. 3 were obtained. As is clear from the upper and lower halves of the diagram, when the dimensionless eccentricity e/d is greater than 0.5,
As the swirl ratio SR becomes smaller, the pressure loss ΔP becomes larger. On the other hand, as the dimensionless eccentricity e/d becomes smaller than 0.1, the swirl ratio SR decreases and the pressure loss ΔP increases.
When d becomes smaller than 0.02, the amount of decrease in swirl ratio SR and the amount of increase in pressure loss ΔP become large. Therefore, when the dimensionless eccentricity e/d is 0.02 or more and 0.5 or less, the swirl ratio SR is large and the pressure loss ΔP is small. That is, a strong vortex flow occurs under high volumetric efficiency. In addition, when the dimensionless eccentricity e/d is 0.03 or more,
Even better performance can be obtained when it is less than 0.3.

なお、外側部分17と導入部19との接続角度
を、導入部19から外側部分17に至る吸気の主
流が外側部分の周囲と弁軸14の周面の間に流入
する角度以外の角度に設定した場合は、第3図の
線図に破線で示すように、無次元偏芯量e/dが
0.1より小さい領域において、性能が悪くなり、
スワール比SRが急減すると共に圧力損失ΔPが増
大する。
Note that the connection angle between the outer portion 17 and the introduction portion 19 is set to an angle other than the angle at which the main flow of intake air from the introduction portion 19 to the outer portion 17 flows between the periphery of the outer portion and the circumferential surface of the valve shaft 14. In this case, as shown by the broken line in the diagram of Fig. 3, the dimensionless eccentricity e/d is
Performance deteriorates in the region smaller than 0.1,
As the swirl ratio SR suddenly decreases, the pressure loss ΔP increases.

また、外側部分17と導入部19との接続角度
αを各値に設定し、その各値の場合についてそれ
ぞれスワール比SRと圧力損失ΔPを求めてしたと
ころ、第4図の線図に示すような結果を得た。
In addition, the connection angle α between the outer part 17 and the introduction part 19 was set to various values, and the swirl ratio SR and pressure loss ΔP were determined for each value, as shown in the diagram in Figure 4. I got good results.

ただし、上記の接続角度αは、便宜上、第1図
に示すように、内側部分18の周面と導入部19
の内側面との接続線と、この接続線と吸気孔12
の中心軸を含む面から吸気孔の中心軸を中心軸と
して外側部分17側に60度回転した面と外側部分
17の周面ないし導入部19の外側面との交線を
含む接続面に対して、導入部19の中心線がなす
角度としている。
However, for convenience, the above connection angle α is set between the circumferential surface of the inner portion 18 and the introduction portion 19 as shown in FIG.
A connection line between the inner surface of the
To the connecting surface that includes the intersection line between the surface rotated 60 degrees toward the outer part 17 with the center axis of the intake hole as the center axis and the peripheral surface of the outer part 17 or the outer surface of the introduction part 19. This is the angle formed by the center line of the introduction part 19.

第4図の線図の上半部と下半部から明らかなよ
うに、接続角度αが135度より大きくなると、ス
ワール比SRが非常に小さくなると共に圧力損失
ΔPが大きくなる。即ち、導入部19から渦流生
起部16に流入する吸気の主流が弁軸14に衝突
するようになり、渦流が弱くなる。従つて、接続
角度αが135度以下になると、スワール比PRが大
きくて圧力損失ΔPが小さい。なお、接続角度α
が110度以下になると、更に良い性能が得られる。
一方、接触角度αが15度より小さくなると、スワ
ール比SRが急減すると共に圧力損失ΔPが増大す
る。即ち、導入部19から渦流生起部の外側部分
17に流入する吸気の主流の一部が外側部分の周
面に衝突するようになり、渦流が弱くなる。
As is clear from the upper and lower halves of the diagram in FIG. 4, when the connection angle α becomes larger than 135 degrees, the swirl ratio SR becomes very small and the pressure loss ΔP becomes large. That is, the main flow of the intake air flowing from the introduction part 19 into the vortex generating part 16 comes to collide with the valve shaft 14, and the vortex becomes weaker. Therefore, when the connection angle α is 135 degrees or less, the swirl ratio PR is large and the pressure loss ΔP is small. In addition, the connection angle α
Even better performance is obtained when the temperature is below 110 degrees.
On the other hand, when the contact angle α becomes smaller than 15 degrees, the swirl ratio SR suddenly decreases and the pressure loss ΔP increases. That is, a part of the main flow of the intake air flowing from the introduction part 19 into the outer part 17 of the vortex generating part collides with the circumferential surface of the outer part, and the vortex becomes weaker.

従つて、接続角度αは、導入部19から外側部
分17に至る吸気の主流が外側部分の周面と弁軸
14の周面の間に流入する角度に設定すると、ス
ワール比SRが大きくて圧力損失ΔPが小さくな
る。
Therefore, if the connection angle α is set to an angle at which the main flow of intake air from the introduction part 19 to the outer portion 17 flows between the circumferential surface of the outer portion and the circumferential surface of the valve shaft 14, the swirl ratio SR will be large and the pressure will increase. Loss ΔP becomes smaller.

実験2 上記の実施例の吸気ポートにおいて、吸気孔1
2の中心軸から導入部19の中心線までの距離l
を吸気孔12の径dに対して各値に設定し、その
各値の場合についてそれぞれスワール比SRと圧
力損失ΔPを求めてみたところ、第5図の線図に
示すような結果を得た。同線図の上半部と下半部
から明らかなように、無次元距離l/dが0.6よ
り大きくなると、また、0.2より小さくなると、
スワール比SRが小さくなると共に圧力損失ΔPが
大きくなる。従つて、無次元距離l/dが0.2以
上で0.6以下になると、スワール比SRが大きくて
圧力損失ΔPが小さい。
Experiment 2 In the intake port of the above example, intake hole 1
Distance l from the center axis of 2 to the center line of the introduction part 19
was set to various values for the diameter d of the intake hole 12, and the swirl ratio SR and pressure loss ΔP were determined for each value, and the results were obtained as shown in the diagram in Figure 5. . As is clear from the upper and lower halves of the diagram, when the dimensionless distance l/d is larger than 0.6 and smaller than 0.2,
As the swirl ratio SR becomes smaller, the pressure loss ΔP becomes larger. Therefore, when the dimensionless distance l/d is 0.2 or more and 0.6 or less, the swirl ratio SR is large and the pressure loss ΔP is small.

また、先細状に形成した導入部19の最小幅w
を吸気孔12の径dに対して各値に設定し、その
各値の場合についてそれぞれスワール比SRと圧
力損失ΔPを求めてみたところ、第6図の線図に
示すような結果を得た。同線図の上半部と下半部
から明らかなように、無次元最小幅w/dが0.85
より大きくなると、また、0.25より小さくなる
と、スワール比SRが小さくなると共に圧力損失
ΔPが大きくなる。従つて、無次元最小幅w/d
が0.25以上で0.85以下になると、スワール比SRが
大きくて圧力損失ΔPが小さい。
Moreover, the minimum width w of the introduction part 19 formed in a tapered shape
was set to various values for the diameter d of the intake hole 12, and the swirl ratio SR and pressure loss ΔP were determined for each value, and the results shown in the diagram in Figure 6 were obtained. . As is clear from the upper and lower halves of the diagram, the dimensionless minimum width w/d is 0.85
When it becomes larger, or when it becomes smaller than 0.25, the swirl ratio SR becomes smaller and the pressure loss ΔP becomes larger. Therefore, the dimensionless minimum width w/d
When is 0.25 or more and 0.85 or less, the swirl ratio SR is large and the pressure loss ΔP is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の吸気ポートの平面
図、第2図は第1図の−線断面図であり、第
3図は同吸気ポートにおけるスワール比SR、圧
力損失ΔPと無次元偏芯量e/dの関係を示す線
図、第4図は同吸気ポートにおけるスワール比
SR、圧力損失ΔPと接続角度αの関係を示す線
図、第5図は同吸気ポートにおけるスワール比
SR、圧力損失ΔPと無次元距離l/dの関係を示
す線図、第6図は同吸気ポートにおけるスワール
比SR、圧力損失ΔPと無次元最小幅w/dの関係
を示す線図である。 11:シリンダ室、12:吸気孔、13:吸気
弁、14:弁軸、15:吸気通路、16:渦流生
起部、17:外側部分、18:内側部分、19:
導入部。
FIG. 1 is a plan view of an intake port according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line -- in FIG. A diagram showing the relationship between the core amount e/d, and Figure 4 shows the swirl ratio at the same intake port.
A diagram showing the relationship between SR, pressure loss ΔP and connection angle α, and Figure 5 shows the swirl ratio at the same intake port.
Figure 6 is a diagram showing the relationship between SR, pressure loss ΔP and dimensionless distance l/d, and Figure 6 is a diagram showing the relationship between swirl ratio SR, pressure loss ΔP and dimensionless minimum width w/d at the same intake port. . 11: Cylinder chamber, 12: Intake hole, 13: Intake valve, 14: Valve shaft, 15: Intake passage, 16: Whirlpool generating part, 17: Outside part, 18: Inside part, 19:
Introduction.

Claims (1)

【特許請求の範囲】 1 シリンダ室の端面にその中心から偏芯した位
置に吸気孔を開口し、吸気孔に吸気弁を設けると
共に吸気通路を接続した内燃機関の吸気ポートに
おいて、 吸気通路を、吸気孔に連通して吸気弁を囲む通
路端の渦流生起部と、この通路端以外の導入部か
ら構成し、 吸気弁の弁軸周面とこれに対面した渦流生起部
の周面間の幅を、シリンダ室周面側の外側部分で
はシリンダ室中心側の内側部分より広くし、 渦流生起部の幅広の外側部分に導入部を接続
し、 吸気孔の開口面とこれに対面した渦流生起部の
天井間の高さを、弁軸の回りに幅広の外側部分か
ら幅狭の内側部分に至る間に減少させ、その平均
減少量を弁軸の回りに1度当り吸気孔の径の0%
以上で0.18%以下に設定し、 渦流生起部の外側部分の周面を円筒面に形成し
て、この円筒面の中心軸を吸気孔の中心軸から渦
流生起部の外側部分の周面側に偏芯し、その偏芯
量を吸気孔の径の2%以上で50%以下に設定し、 導入部をほぼ直線状に形成し、渦流生起部の外
側部分と導入部との接続角度を、導入部から渦流
生起部の外側部分に至る吸気の主流が、外側部分
の周面と弁軸の周面の間に流入する角度に設定し
たことを特徴とする内燃機関の吸気ポート。 2 吸気孔の中心軸から導入部の中心線までの距
離を吸気孔の径の20%以上で60%以下に設定した
ことを特徴とする特許請求の範囲第1項記載の内
燃機関の吸気ポート。 3 導入部を先細状に形成して導入部の最小幅を
吸気孔の径の25%以上で85%以下に設定したこと
を特徴とする特許請求の範囲第1項又は第2項記
載の内燃機関の吸気ポート。
[Scope of Claims] 1. In an intake port of an internal combustion engine in which an intake hole is opened in an end face of a cylinder chamber at a position eccentric from the center thereof, an intake valve is provided in the intake hole, and the intake passage is connected to the intake port, the intake passage is connected to the intake port. Consisting of a vortex-generating part at the end of the passage that communicates with the intake hole and surrounds the intake valve, and an introduction part other than the end of the passage, the width between the circumferential surface of the valve shaft of the intake valve and the circumferential surface of the vortex-generating part facing it. The outer part on the circumferential side of the cylinder chamber is wider than the inner part on the center side of the cylinder chamber, and the introduction section is connected to the wide outer part of the vortex generating part, so that the opening surface of the intake hole and the vortex generating part facing this are made wider. The height between the ceilings of the valve is reduced from the wide outer part to the narrow inner part around the valve stem, and the average reduction is 0% of the diameter of the intake hole per degree around the valve stem.
With the above settings set to 0.18% or less, the circumferential surface of the outer part of the vortex generating part is formed into a cylindrical surface, and the central axis of this cylindrical surface is moved from the central axis of the intake hole to the circumferential surface of the outer part of the vortex generating part. The eccentricity is set to 2% or more and 50% or less of the diameter of the intake hole, the introduction part is formed almost straight, and the connection angle between the outer part of the vortex generating part and the introduction part is set to An intake port for an internal combustion engine, characterized in that the main flow of intake air from the introduction part to the outer part of the vortex generating part is set at an angle such that it flows between the circumferential surface of the outer part and the circumferential surface of the valve shaft. 2. An intake port for an internal combustion engine according to claim 1, wherein the distance from the center axis of the intake hole to the center line of the introduction part is set to 20% or more and 60% or less of the diameter of the intake hole. . 3. The internal combustion engine according to claim 1 or 2, wherein the introduction part is tapered and the minimum width of the introduction part is set to 25% or more and 85% or less of the diameter of the intake hole. Engine intake port.
JP58151874A 1983-08-19 1983-08-19 Intake pot of internal-combustion engine Granted JPS6043124A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58151874A JPS6043124A (en) 1983-08-19 1983-08-19 Intake pot of internal-combustion engine
US06/638,616 US4574751A (en) 1983-08-19 1984-08-07 Inlet port for internal combustion engine
DE8484109887T DE3469937D1 (en) 1983-08-19 1984-08-20 Inlet port for internal combustion engine
EP84109887A EP0134038B2 (en) 1983-08-19 1984-08-20 Inlet port for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151874A JPS6043124A (en) 1983-08-19 1983-08-19 Intake pot of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6043124A JPS6043124A (en) 1985-03-07
JPH0223691B2 true JPH0223691B2 (en) 1990-05-25

Family

ID=15528093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151874A Granted JPS6043124A (en) 1983-08-19 1983-08-19 Intake pot of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6043124A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753032B2 (en) * 1976-01-14 1982-11-10

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753032U (en) * 1980-09-12 1982-03-27
JPS57136832U (en) * 1981-02-18 1982-08-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753032B2 (en) * 1976-01-14 1982-11-10

Also Published As

Publication number Publication date
JPS6043124A (en) 1985-03-07

Similar Documents

Publication Publication Date Title
US7066408B2 (en) Fuel injection valve
US4995359A (en) Combustion chamber for internal combustion engine
CN114033589B (en) Engine air inlet structure, engine and automobile
US4574751A (en) Inlet port for internal combustion engine
JP3877725B2 (en) Cylinder head for internal combustion engine
US3422805A (en) Engine inlet passage swirl device
JPH0223691B2 (en)
JPS60156915A (en) Air suction passage in cylinder head of internal combustion engine
US4693215A (en) Inlet port for internal combustion engine
JPH0520564B2 (en)
JPS6127568B2 (en)
JP3153583B2 (en) Engine intake passage structure
JP2005201089A (en) Port structure of internal combustion engine
JP3561987B2 (en) Multi-valve intake engine
JPS59180027A (en) Intake port of internal-combustion engine
JPS60138225A (en) Suction port of internal-combustion engine
JPS5912123A (en) Inlet port of internal combustion engine
JPS5951129A (en) Intake port of internal-combustion engine
JPS5912127A (en) Intake port of internal combustion engine
JPS6098126A (en) Suction port for internal-combustion engine
JPS59213924A (en) Suction port for internal-combustion engine
JP2524387B2 (en) Combustion chamber of internal combustion engine
JPS59211717A (en) Intake port of internal-combustion engine
JPS5849384Y2 (en) Intake port of direct injection internal combustion engine
JPS60125724A (en) Intake port of internal-combustion engine