JPS59211717A - Intake port of internal-combustion engine - Google Patents

Intake port of internal-combustion engine

Info

Publication number
JPS59211717A
JPS59211717A JP58084798A JP8479883A JPS59211717A JP S59211717 A JPS59211717 A JP S59211717A JP 58084798 A JP58084798 A JP 58084798A JP 8479883 A JP8479883 A JP 8479883A JP S59211717 A JPS59211717 A JP S59211717A
Authority
JP
Japan
Prior art keywords
intake
cylinder chamber
eddy
passage
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58084798A
Other languages
Japanese (ja)
Inventor
Katsuhiko Sugiyama
勝彦 杉山
Hiromitsu Kawazoe
川添 博光
Yoshinori Idota
芳典 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58084798A priority Critical patent/JPS59211717A/en
Publication of JPS59211717A publication Critical patent/JPS59211717A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce the pressure loss in an intake passage and improve volume efficiency by controlling the strength of an eddy current by an intake deflecting apparatus, in a wide range ranging from a strong eddy-current range to a weak eddy-current range. CONSTITUTION:The intake flow which flows in an intake passage 15 flows into an eddy-current generating part 16 from an introduction part 19 and further flows into a cylinder chamber 11 through an intake hole 12, and the main flow of the intake flow flows from the position of the axis center of the introduction part 19 to the intermediate position between the periphery of the outside part 17 of the eddy-current generating part 16 and the peripheral surface of a valve shft 14 and flows into the cylinder chamber 11 through the intake hole 12 along the tangential direction to the part close to the intake hole on the peripheral surface of the cylinder chamber 11 and forms an eddy current which swirls along the peripheral surface of the cylinder chamber 11. As the inclination angle beta of an intake deflecting plate 31 increases, the main flow of the intake flow which flows into the eddy-current generating part 16 from the introduction part 19 approaches to the periphery side of the outside part 17 of the eddy-current generating part, and the eddy current generated in the cylinder chamber 11 is intensified.

Description

【発明の詳細な説明】 本発明は、シリンダ室の端面にその中心から偏芯した位
置に吸気孔を開口し、吸気孔に+954X、弁を設ける
とともに吸気通路を接続し、吸気通路に吸気偏向装置を
設けた内燃機関の吸気ポートに関する。
Detailed Description of the Invention The present invention has an intake hole opened at a position eccentric from the center of the end face of a cylinder chamber, a +954X valve in the intake hole, and an intake passage connected to the intake passage. The invention relates to an intake port of an internal combustion engine provided with the device.

従来、この種の吸気ポートには、第1図と第2図に示す
ように、吸気通路(1)の吸気孔(4)との接続端を%
吸気弁の弁軸(3ンの回シを旋回しつつ吸気孔(4)に
接近する螺旋部(2)に形成し、吸気通路(1)の螺輝
部(2)以外の部分に吸気偏向装置に)な設けたヘリカ
ル吸気ボートと、第3図と第1図に示すように、吸気通
路(6)の吸気孔(9)との接続端を、シリンダ室01
周面の吸気孔(9)近接部分の接h7方向に沿って配値
し、吸気通路(6)の上記接続端以外の部分に吸気偏向
装置(ホ)を設けたタンジエンシャ〜吸気ボートとがあ
る。
Conventionally, this type of intake port has a connecting end of the intake passage (1) with the intake hole (4), as shown in Figures 1 and 2.
The valve shaft of the intake valve (3 turns is formed in the spiral part (2) that approaches the intake hole (4) while rotating, and the intake air is deflected to the part of the intake passage (1) other than the spiral part (2). As shown in FIG. 3 and FIG.
There is a Tangiensha - intake boat, which is arranged along the tangential h7 direction in the vicinity of the intake hole (9) on the circumferential surface, and has an intake deflection device (E) in a part other than the above-mentioned connecting end of the intake passage (6). .

ヘリ・力μ吸気ボートは、吸気通路(1ンの@気孔(4
)との接続端に螺旋部(2)を有するので、シリンダ室
(5)に強い渦流を生起させることができ、強い渦流域
において吸気偏向装置(ハ)によって渦流の強さを制御
することができる反面、弱い渦流域においては渦流の制
御は困難であり、しかも、吸気通路(1)に螺旋部(2
)と吸気偏向装置(ハ)を設けているので、吸気通路(
1)の圧力損失が大きく、シリンダ室(5)の体積効率
を高めることが困難である。これに対し、タンジエンシ
ャル吸気ボートは、吸気通路(6)に螺旋部を有しない
ので、シリンダ室0()に弱い渦流を生起させることが
でき、弱い渦流域において吸気偏向装置(イ)によって
渦流の強さを制御することができる反面、強い渦流域に
おいては渦流の制御は困難であり、しかも、吸気通路(
6)の圧力損失が大きく、体積効率を高めることが困難
である。
The helicopter/force μ intake boat has an intake passage (1) and @stoma (4)
), it is possible to generate a strong vortex flow in the cylinder chamber (5), and the strength of the vortex flow can be controlled by the intake air deflection device (c) in the strong vortex area. On the other hand, it is difficult to control the vortex in a weak vortex region, and moreover, there is a spiral part (2) in the intake passage (1).
) and an intake deflector (c), so the intake passage (
1) The pressure loss is large, making it difficult to increase the volumetric efficiency of the cylinder chamber (5). On the other hand, since the tangential intake boat does not have a spiral part in the intake passage (6), it is possible to generate a weak vortex in the cylinder chamber 0(), and in the weak vortex area, the intake deflector (a) Although it is possible to control the strength of the vortex, it is difficult to control the vortex in a strong vortex region, and moreover, the intake passage (
6) The pressure loss is large, making it difficult to increase volumetric efficiency.

結局、従来の吸気ポートにおいては、強い渦流域から弱
い渦流域に亘る広い範囲において、高い体積効率の下で
、渦流の強さを制御することができない。
As a result, in the conventional intake port, the strength of the vortex cannot be controlled in a wide range from a strong vortex region to a weak vortex region under high volumetric efficiency.

従って、本発明の目的は、強い渦流域から弱い渦流域に
亘る広い範囲において、高い体積効率の下で、渦流の強
さを制御することができる内燃機関の吸気ポートを提供
することである。
Therefore, an object of the present invention is to provide an intake port for an internal combustion engine that can control the strength of the vortex flow in a wide range from a strong vortex region to a weak vortex region with high volumetric efficiency.

本発明は、シリンダ室の端面にその中lひから偏芯した
位置に吸気孔を開口し、吸気孔に吸気弁を設けると共に
吸気通路を接続した内燃機関の吸気ポートにおいて、吸
気通路を、吸気孔に連通して吸気弁を囲む通路端の渦流
生起部とこの通路端以外の導入部から構成し、吸気弁の
弁軸周面とこれに対面した渦流生起部の周面間の幅を、
シリンダ室局面側の外側部分ではシリンダ室中・U側の
内側部分より広くし、渦流生起部の幅広の外側部分に導
入部を接続し、吸気孔の開口面とこれに対面した渦流生
起部の天井間の高さを、弁軸の回りに幅広の外側部分か
ら幅狭の内側部分に至る間に同一とし又は減少させ、そ
の平均減少量を弁軸の回りに7度当り吸気孔の径の0/
g%以内に設定し、吸気通路の導入部から渦流生起部に
流入する吸気流を吸気孔の開口面と平行な面内で偏向さ
せる吸気偏向装置を設けたことを特徴とする内燃機関の
吸気ポートである。
The present invention provides an intake port for an internal combustion engine in which an intake hole is opened at a position eccentric from the center of the end face of a cylinder chamber, an intake valve is provided in the intake hole, and the intake passage is connected to the intake port. Consisting of a vortex generating part at the end of the passage communicating with the hole and surrounding the intake valve, and an introduction part other than the end of the passage, the width between the circumferential surface of the valve shaft of the intake valve and the circumferential surface of the vortex generating part facing it,
The outer part on the side of the cylinder chamber is made wider than the inner part on the middle/U side of the cylinder chamber, and the introduction part is connected to the wide outer part of the vortex generating part, so that the opening surface of the intake hole and the vortex generating part facing it are connected to the introduction part. The height between the ceilings is kept the same or decreased from the wide outer part to the narrow inner part around the valve stem, and the average decrease is equal to the diameter of the intake hole per 7 degrees around the valve stem. 0/
g% or less, and is provided with an intake deflection device that deflects the intake air flowing from the introduction part of the intake passage into the vortex generation part in a plane parallel to the opening plane of the intake hole. It is a port.

この吸気ポートは、後記の実験結果から明らかなように
、強い渦流域から:弱い渦流域に亘る広い範囲において
、渦流の強さを吸気偏向装置によって制御することがで
き、しかも、吸気通路の圧力損失が小さく、体積効率を
向上させることができる。
As is clear from the experimental results described below, this intake port is capable of controlling the strength of the vortex flow in a wide range from strong vortex region to weak vortex region with the intake deflection device. Loss is small and volumetric efficiency can be improved.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1実施例(第S図乃至第7図参照) 本例の内燃機関の吸気ポートは、第5図と第6図に示す
ように、シリンダ室Ouの円形端面にその中心から周辺
側に(fig芯した□位置に円形の吸気孔aのを開口し
、吸気孔04にポペット弁の吸気弁α東を設けると共に
吸気通路(lFllを接続し、吸気通路09を、吸気孔
(1りに連通して吸気弁(1りを囲む通路端の渦流生起
部(ILlとこの通路端以外の導入部+ltJから構成
し、渦流生起+flj(IQの局面を吸気弁の弁軸Q4
)の局面に対面した3枚の円筒部を滑ら〃・に接続して
形成し、弁軸(141の周面とこれに対面した/71&
流生起部09の周面間の幅を、シリンダ室Qn Mr面
側の外側部分aηではシリンダ室中心側の内側部分Q〜
より広くして、弁軸a<の回りに外側部分θη力・ら内
側部分Oglに〒る間に徐力に狭くし、渦流生起部01
の幅広の外側部分αりにその接線方向に沿って導入部(
119を接続し、吸気孔(七つの開口面とこれに対面し
た渦流生起Rt′1(lf9の天井間の高さを、弁軸0
4)の1ijJりに幅広の外側部分面から幅狭の内側部
分0Sに至る間に同一とし又は徐々に減少させ、その減
少量を弁軸(14)の回りに7度当り吸気孔の径dの0
7g5以内に、具体的には006%に設定し、吸気通路
の四角筒状導入部a’J内に長方形の吸気偏向板0υを
遊嵌し、導入部01の内側壁に吸気偏向板1υの基端を
枢軸((4によって取付け、渦流生起部顛に臨んだ吸気
偏向板C(17の先端を導入部OIの外側壁側に回動可
能にして、導入部09力島ら渦流生起部(+(9に流入
する吸気流を吸気孔(至)の開口面と平行な面内で偏向
略せる吸気1(・4向装置く(身を設けている。
First Embodiment (See Figures S to 7) As shown in Figures 5 and 6, the intake port of the internal combustion engine of this example is located on the circular end face of the cylinder chamber Ou from the center to the periphery ( Open the circular intake hole a at the centered □ position, install the intake valve α east of the poppet valve in the intake hole 04, connect the intake passage (lFll), and connect the intake passage 09 to the intake hole (1). It consists of a vortex generation part (ILl) at the end of the passage surrounding the intake valve (1) and an introduction part +ltJ other than the end of this passage, and the aspect of vortex generation +flj (IQ) is defined by the valve axis Q4 of the intake valve.
) is formed by connecting the three cylindrical parts facing the curves of the valve stem (141) to the peripheral surface of the valve stem (141 and the /71 &
The width between the circumferential surfaces of the flow generation part 09 is defined as: the outer part aη on the cylinder chamber Qn Mr surface side and the inner part Q on the cylinder chamber center side
It is made wider and gradually narrowed between the outer part θη force and the inner part Ogl around the valve axis a<, and the vortex generating part 01
The introduction part (
119 is connected, and the height between the ceiling of the intake hole (seven opening surfaces and the vortex generation Rt'1 (lf9) facing this is set to the valve shaft 0
4), the diameter d of the intake hole is kept constant or gradually decreased from the wide outer part surface to the narrow inner part 0S, and the amount of decrease is determined by the diameter d of the intake hole per 7 degrees around the valve stem (14). 0 of
Within 7g5, specifically 006%, a rectangular intake deflection plate 0υ is loosely fitted into the square cylindrical introduction part a'J of the intake passage, and the intake deflection plate 1υ is set on the inner wall of the introduction part 01. Attach the base end with the pivot ((4), and make the tip of the intake deflection plate C (17 facing the vortex generation area) rotatable toward the outer wall side of the introduction part OI, Intake 1 (4-direction device) that can deflect the intake air flow flowing into + (9) in a plane parallel to the opening plane of the intake hole (to).

この吸気ポートにおいては、吸気通路(tQを流れる吸
気流は、導入部0%lがら渦流生起部(IQに流入し、
吸気孔a′4を経てシリンダ室0υに流入し、また、吸
気流の主流は、導入部01の軸芯位置から渦流生起部の
外側部分aηの周面と弁軸(I4)の局面間の中間位置
に流入し、吸気孔0乃を経てシリンダ室(lυにその周
面の吸気孔近接部分の接線方向に沿って流入し、シリン
ダ室Ql)の周面に沿って旋回する渦流となる。
In this intake port, the intake air flowing through the intake passage (tQ) flows from the introduction section 0%l into the vortex generation section (IQ,
It flows into the cylinder chamber 0υ through the intake hole a'4, and the main flow of the intake air flows from the axial position of the introduction part 01 to the area between the circumferential surface of the outer part aη of the vortex generating part and the surface of the valve shaft (I4). It flows into the intermediate position, passes through the intake holes 0 to 1, flows into the cylinder chamber (lυ) along the tangential direction of the portion of its circumferential surface near the intake hole, and becomes a vortex swirling along the circumferential surface of the cylinder chamber Ql.

導入部(11の内側壁に対してなす吸気偏向板0υの傾
斜角度βが大きくなるに従って、導入部01から渦流生
起部α呻に流入する吸気流の主流は渦流生起部の外側部
分αηの局面側に寄り、シリンダ室0υに生起する渦流
が強くなる。
As the inclination angle β of the intake deflection plate 0υ made with respect to the inner wall of the introduction part (11) increases, the main flow of the intake air flowing from the introduction part 01 into the vortex generation part α becomes the angle of the outer part αη of the vortex generation part As the cylinder moves closer to the side, the vortex generated in the cylinder chamber 0υ becomes stronger.

本例の吸気ボートにおいて、吸気偏向板0υの傾斜角度
βを各値に設足し、その各仮についてそれぞれシリンダ
室OI)に生起する渦流の強さ即ちスワール比SRと吸
気通路Q9の圧力損失ΔPを求めてみたところ、第7図
の線図に実線で示すような実験結果を得た。ま念、比較
のため、第1図と第2図に示して前記したヘリカル吸気
ボートと第3図と第1図に示して前記したタンジェ7シ
ャル吸気ボートについてもそれぞれ同様に吸気偏向板の
傾斜角度βに対するスワール比SRと圧力損失ΔPを求
めてみたところ、同線図に破線と鎖線でそれぞれ示すよ
うな実験結果を得た。
In the intake boat of this example, the inclination angle β of the intake deflection plate 0υ is added to each value, and for each value, the strength of the vortex generated in the cylinder chamber OI, that is, the swirl ratio SR, and the pressure loss ΔP of the intake passage Q9 are calculated. As a result, we obtained experimental results as shown by the solid line in the diagram in Figure 7. For comparison, the inclination of the intake deflector plate is also the same for the helical intake boat shown in Figs. 1 and 2 and described above, and the Tangier 7-shall intake boat shown in Figs. When the swirl ratio SR and the pressure loss ΔP were determined with respect to the angle β, experimental results were obtained as shown by the broken line and chain line in the diagram, respectively.

同M図の上半部から明らかなように、ヘリカル吸気ボー
トにおいてはスワール比の高い渦流域においてのみ吸気
偏向装置に)によって渦流の強さを制御することができ
、また、タンジエンシャル吸気ポートにおいてはスワー
ル比の低い渦流域においてのみ吸気偏向装置(ハ)によ
って渦流の強さを制御することができる。これに対して
、本例の吸気ポートにおいては、スワール比の高い渦流
域からスワール比の低い渦流域に亘る広い範囲において
、吸気偏向装置C1)によって渦流の強さを制御するこ
とができる。
As is clear from the upper half of Fig. In this case, the strength of the vortex can be controlled by the intake air deflector (c) only in the vortex area where the swirl ratio is low. In contrast, in the intake port of this example, the strength of the vortex flow can be controlled by the intake air deflection device C1) in a wide range from the vortex region with a high swirl ratio to the vortex region with a low swirl ratio.

また、同線図の下半部から明らかなように、本例の吸気
ポートにおいては、吸気通路α9の圧力損失がヘリカル
吸気ポートにおけるのよりも、また、タンジエンシャル
吸気ポートにおけるのよりも小さく、従って、シリンダ
室0υの体積効率が高い。
Furthermore, as is clear from the lower half of the diagram, in the intake port of this example, the pressure loss in the intake passage α9 is smaller than that in the helical intake port and that in the tangential intake port. , Therefore, the volumetric efficiency of the cylinder chamber 0υ is high.

第2実施例(第g図参照) 本例の内燃機関の吸気ポートは、前例のそれにおける吸
気偏向装置(至)において、回動可能な吸気偏向板II
)に代えて、先細四角筒状導入部叫の内側壁に沿って摺
動可能な三角形横断面状の吸気偏向板(至)を設けたも
のである。その他の点は、前例におけるのと同様である
ので、第5図に同一符号を付して説明を省略する。
Second Embodiment (See Fig. g) The intake port of the internal combustion engine of this example has a rotatable intake deflection plate II in the intake deflection device (to) of the previous example.
) is provided with an intake deflection plate with a triangular cross section that can slide along the inner wall of the tapered square cylindrical introduction section. Other points are the same as those in the previous example, so the same reference numerals are given to FIG. 5 and the explanation will be omitted.

第3実施例(第り図参照) 本例の内燃機関の吸気ポートは、第1実施+Ajのそれ
における吸気偏向装置(2)において、導入部OIの内
側壁に枢着した吸気偏向板C(l)に加えて、導入部(
11Jの外側壁に同様にして枢着した吸気偏向板(至)
を設けたものである。その他の点は、第1実施例1にお
けるのと同様であるので、第り図に同一符号を付して説
明を省略する。
Third Embodiment (Refer to Figure 3) The intake port of the internal combustion engine of this embodiment has an intake deflection plate C ( l), in addition to the introduction (
Intake deflection plate (to) similarly pivoted to the outer wall of 11J
It has been established. The other points are the same as those in the first embodiment, so the same reference numerals are given to the second figure and the explanation thereof will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヘリカル吸気ボートの斜視図、第2図は
同ヘリカル吸気ボートの横断平面図であり、第3図は従
来の、タンヅエンシャル吸気ボートの・斜視図、第を図
は同タンジエンシャル吸気ボートの・横断平1翅図であ
る。 第3吋は本発明の第1実施例の吸気ポートの斜視図、第
6図は同吸気ボートの横断平面1ス1、第7図は同吸気
ボートにおける吸9Clilを向板の傾庁、゛[角度と
スワール比又は圧力損失の関係を示す線図である。 第5図は本発明の第2実施例の吸気ポートの1ツ゛〜断
平面図、第り図は第3実施例の吸気ボートの横断平面図
である。 11ニジリンダ室    12:吸気孔13:吸気弁 
     14:弁 軸15:吸気通路     16
:渦流生起部・17:外側部分     18:内側部
分19:導入部      30:吸気偏向装置第1図 25 第2図 第3図 第4図
Figure 1 is a perspective view of a conventional helical intake boat, Figure 2 is a cross-sectional plan view of the same helical intake boat, Figure 3 is a perspective view of a conventional tangential intake boat, and Figure 2 is a perspective view of the same tangential intake boat. This is a cross-sectional plan view of a shal intake boat. The third figure is a perspective view of the intake port of the first embodiment of the present invention, FIG. 6 is a cross-sectional plane of the same intake boat, and FIG. [It is a diagram showing the relationship between angle and swirl ratio or pressure loss. FIG. 5 is a cross-sectional plan view of an intake port according to a second embodiment of the present invention, and the second figure is a cross-sectional plan view of an intake port according to a third embodiment of the present invention. 11 Niji cylinder chamber 12: Intake hole 13: Intake valve
14: Valve shaft 15: Intake passage 16
: Eddy current generating part・17: Outer part 18: Inner part 19: Introducing part 30: Intake deflection device Fig. 1 25 Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] シリンダ室の端面にその中心から偏芯し喪位置に@気孔
を開口し、吸気孔に吸気弁を設けると共に吸気通路を接
続した内燃機関の吸気ポートにおいて、吸気通路を、吸
気孔に連通して吸気弁を囲む通路端の渦流生起部とこの
通路端以外の導入部から構成し、吸気弁の弁軸周面とこ
れに対面した渦流生起部の局面間の幅を、シリンダ室局
面側の外側部分ではシリンダ室中心側の内側部分より広
くし、渦流生起部の幅広の外側部分に導入部を接続し、
吸気孔の開口面とこれに対面した渦流生起部の天井間の
高さを、弁軸の回りに幅広の外側部分から幅狭の内側部
分に至る間に同一とし又は減少させ、その平均減少量を
弁軸の回りに1度当り吸気孔の径の0/ざ%以内に設定
し、吸気通路の導入部から渦流生起部に流入する吸気流
を吸気孔の開口面と平行な面内で偏向させる吸気偏向装
置を設けたことを特徴とする内燃機関の吸気ボート。
In the intake port of an internal combustion engine, in which a hole is opened at a position eccentric from the center of the cylinder chamber, an intake valve is provided in the intake hole, and the intake passage is connected to the intake port, the intake passage is communicated with the intake hole. It consists of a vortex generating part at the end of the passage surrounding the intake valve and an introduction part other than the end of the passage, and the width between the circumferential surface of the valve shaft of the intake valve and the surface of the vortex generating part facing it is the outer side of the cylinder chamber side. The part is wider than the inner part on the center side of the cylinder chamber, and the introduction part is connected to the wide outer part of the vortex generating part.
The height between the opening surface of the intake hole and the ceiling of the vortex generating part facing it is kept the same or decreased from the wide outer part to the narrow inner part around the valve shaft, and the average decrease amount is set within 0/% of the diameter of the intake hole per degree around the valve shaft, and the intake flow flowing from the introduction part of the intake passage into the vortex generation part is deflected in a plane parallel to the opening surface of the intake hole. An intake boat for an internal combustion engine, characterized in that it is provided with an intake deflection device.
JP58084798A 1983-05-13 1983-05-13 Intake port of internal-combustion engine Pending JPS59211717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084798A JPS59211717A (en) 1983-05-13 1983-05-13 Intake port of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084798A JPS59211717A (en) 1983-05-13 1983-05-13 Intake port of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59211717A true JPS59211717A (en) 1984-11-30

Family

ID=13840721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084798A Pending JPS59211717A (en) 1983-05-13 1983-05-13 Intake port of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59211717A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543515B1 (en) * 1971-02-17 1979-02-23
JPS588904U (en) * 1981-07-09 1983-01-20 松下電工株式会社 Winding equipment bobbin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543515B1 (en) * 1971-02-17 1979-02-23
JPS588904U (en) * 1981-07-09 1983-01-20 松下電工株式会社 Winding equipment bobbin

Similar Documents

Publication Publication Date Title
JPS5945802B2 (en) Internal combustion engine with internal mixture formation
US4301657A (en) Gas turbine combustion chamber
EP0134038B2 (en) Inlet port for internal combustion engine
US4309969A (en) Induction system with high-swirl intake valve
JPH0574692B2 (en)
JPS60101246A (en) Vortex stream forming passage
US4706623A (en) Cylinder head for an internal combustion engine
JPS59211717A (en) Intake port of internal-combustion engine
JP2891173B2 (en) Intake device for internal combustion engine
US3270733A (en) Cylinder for an internal combustion engine
US4308832A (en) Helically shaped intake port of an internal combustion engine
JPS5932647B2 (en) Helical intake port for internal combustion engines
JPH03500674A (en) internal combustion engine
US2768618A (en) Inlet passage and valve for internal combustion engine
JPS59180027A (en) Intake port of internal-combustion engine
JPS60125724A (en) Intake port of internal-combustion engine
JPH0223691B2 (en)
JPS6085223A (en) Suction port of internal combustion engine
US3330264A (en) Cylinder for an internal combustion engine
JP2946128B2 (en) Combustion chamber of internal combustion engine
JPS61104119A (en) Intake device of internal-combustion engine
JPS5912123A (en) Inlet port of internal combustion engine
JPH0415936Y2 (en)
JPH0520564B2 (en)
JPS59213924A (en) Suction port for internal-combustion engine