JPS59180027A - Intake port of internal-combustion engine - Google Patents

Intake port of internal-combustion engine

Info

Publication number
JPS59180027A
JPS59180027A JP58056113A JP5611383A JPS59180027A JP S59180027 A JPS59180027 A JP S59180027A JP 58056113 A JP58056113 A JP 58056113A JP 5611383 A JP5611383 A JP 5611383A JP S59180027 A JPS59180027 A JP S59180027A
Authority
JP
Japan
Prior art keywords
intake
vortex
intake port
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58056113A
Other languages
Japanese (ja)
Inventor
Katsuhiko Sugiyama
勝彦 杉山
Hiromitsu Kawazoe
川添 博光
Yoshinori Idota
芳典 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58056113A priority Critical patent/JPS59180027A/en
Publication of JPS59180027A publication Critical patent/JPS59180027A/en
Priority to US06/789,370 priority patent/US4693215A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To generate vortex flow in a stable manner, by constituting an intake passage from a main section and a vortex-flow generating section surrounding an intake valve at the end of the intake passage, varying the radius of the vortex-flow generating section along the circumference thereof, and specifying the height between the opening plane of an intake port and the top surface of the vortex-flow generating section. CONSTITUTION:An intake port is formed by opening a circular intake port 12 in a circular end face of a cylinder chamber 11 at the position thereof displaced from the center toward a peripheral portion. The intake port 12 is connected to an intake passage 15 and an intake valve 13 is provided in the intake port 12. The intake passage 15 is constituted from a vortex- flow generating section 16 communicated with the intake port 12 and surrounding the intake valve 13 at the end of the intake passage 15 and a main section 19 excluding the passage end. Here, the width between the outer surface of a valve shaft 14 of the intake valve 13 and the opposed inner surface of the vortex-generating section 16 is made greater at the outer portion 17 located near the peripheral surface of the cylinder chamber 11 than at the inner portion 18 located near the center of the cylinder chamber 11. Further, the height between the opening plane of the intake port 12 and the opposed top surface of the vortex-flow generating section 16 is made equal over the entire length from said outer portion 17 to the inner portion 18 or otherwise reduced gradually from the portion 17 to the portion 18. The average reduction rate of said height is selected to be within 0.18% of the diameter of the intake port 12 per unit degree in the turning angle around the valve shaft 14.

Description

【発明の詳細な説明】 本発明は、シリンダ室の端面にその中心から偏芯した位
置に吸気孔を開口し、吸気孔に吸気弁を設けると共に吸
気通路を接続した内燃機関の吸気ポートに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake port for an internal combustion engine in which an intake hole is opened at a position eccentric from the center of an end face of a cylinder chamber, an intake valve is provided in the intake hole, and an intake passage is connected to the intake port.

従来、この種の吸気ポートには、第7図に示すように、
吸気通路(1)の吸気孔(4)との接続端を、吸気弁の
弁軸(3)の回りを旋回しつつ吸気孔(4)に接近する
螺旋部(2)に形成したヘリカル吸気ボートと、第2図
と第3図に示すように、吸気通路(6)の吸気孔(9)
との接続端を、シリンダ室00周面の吸気孔(9)近接
部分の接線方向に沿って配置したタンジエンシャル吸気
ポートとがある。
Conventionally, this type of intake port has a
A helical intake boat in which the connecting end of the intake passage (1) with the intake hole (4) is formed into a spiral portion (2) that approaches the intake hole (4) while rotating around the valve shaft (3) of the intake valve. and, as shown in Figures 2 and 3, the intake hole (9) of the intake passage (6)
There is a tangential intake port whose connecting end with the cylinder chamber 00 is arranged along the tangential direction of a portion of the circumferential surface of the cylinder chamber 00 adjacent to the intake hole (9).

両吸気ボートを比較すると、ヘリカル吸気ボートは、吸
気通路(1)の吸気孔(4)との接続端に螺旋部(2)
を有するので、シリンダ室(5)に強い渦流を生起させ
ることができる反面、吸気通路(1)の圧力損失が大さ
く、シリンダ室(5)の体積効率が低い。これに対シ、
タンジエンシャル吸気ポートは、吸気通路(6)に螺旋
部を有しないので、吸気通路(6)の圧力損失が小さく
シリンダ室(10の体積効率が高い反面、シリンダ室0
0に生起する渦流を強くすることがでキナい。更に、タ
ンジエンシャル吸気ポートは、吸気通路(6)の吸気孔
(9)との接続端の中央部に吸気弁の弁軸(7)が挿通
して弁軸案内筒(8)が突出しているので、吸気通路(
6)からシリンダ室00に至る吸気流が弁軸(7)に衝
突して二手に分岐し、その両分岐流が弁軸(7)位置通
過後に衝突して干渉し、そのためシリンダ室00の渦流
が更に弱くなる。その上に、上記の吸気流の分岐割合が
一定していないため、渦流が不安定になる。
Comparing both intake boats, the helical intake boat has a spiral part (2) at the connecting end of the intake passage (1) to the intake hole (4).
Therefore, although a strong vortex can be generated in the cylinder chamber (5), the pressure loss in the intake passage (1) is large and the volumetric efficiency of the cylinder chamber (5) is low. In response to this,
Since the tangential intake port does not have a spiral part in the intake passage (6), the pressure loss in the intake passage (6) is small and the volumetric efficiency of the cylinder chamber (10) is high.
It is possible to strengthen the vortex that occurs at zero. Further, in the tangential intake port, the valve stem (7) of the intake valve is inserted into the center of the connection end of the intake passage (6) with the intake hole (9), and the valve stem guide cylinder (8) protrudes. Therefore, the intake passage (
The intake flow from 6) to the cylinder chamber 00 collides with the valve shaft (7) and branches into two branches, and these two branched flows collide and interfere after passing the valve shaft (7) position, resulting in a vortex flow in the cylinder chamber 00. becomes even weaker. Moreover, since the above-mentioned branching ratio of the intake air flow is not constant, the vortex flow becomes unstable.

結局、従来の吸気ポートにおいては、適度の安定した渦
流を体積効率を低下させずに生起させることができない
As a result, in conventional intake ports, it is not possible to generate a moderately stable vortex flow without reducing volumetric efficiency.

従って、本発明の目的は、適度の安定した渦流を体積効
率を低下させずに生起させることのできる内燃機関の@
、気ボートを提供することである。
Therefore, an object of the present invention is to provide an internal combustion engine that can generate a moderately stable vortex flow without reducing volumetric efficiency.
, is to provide a care boat.

本発明者は、ヘリカル吸気ポー)&こおいて吸気通路の
圧力損失が大きい原因は、吸気通路を流れる吸気流が渦
流生起部の螺旋部で流れの方向を螺旋状に大きく変λる
ためであり、1だ、タンジエンシャル吸気ポートにおい
て渦流が弱くて不安定な原因は、吸気通路に渦流生起部
がない上に吸気通路を流れる吸気流の主流が吸気弁の弁
軸に衝突するためであることに着眼して、これらの原因
を除去する工夫をしたのである。
The inventor of the present invention found that the reason why the pressure loss in the intake passage is large in the helical intake port is that the intake air flowing through the intake passage changes its flow direction significantly in a spiral manner at the spiral part of the vortex generation part. Yes, 1. The reason why the vortex is weak and unstable at the tangential intake port is that there is no vortex generator in the intake passage and the main flow of the intake air flowing through the intake passage collides with the valve stem of the intake valve. They focused on certain things and devised ways to eliminate these causes.

即ち、本発明げ、シリンダ室の端面にその中心から偏芯
した位置に吸気孔を開口し、吸気孔に吸気弁を設けると
共に吸気通路を接続した内燃機関の吸気ポートにおいて
、吸気通路を、吸気孔に連通して吸気弁を囲tr通路端
の渦流生起部とこの通路端板外の導入部から構成し、吸
気弁の弁軸周面とこれに対面した渦流生起部の周面間の
幅を、シリンダ室周面側の外側部分ではシリンダ室中−
D側の内側部分工り広くし、渦流生起部の幅広の外側部
分に導入部を接続し、吸気孔の開口面とこれに対面した
渦流生起部の天井間の高さを、弁軸の回りに幅広の外側
部分から幅狭の内側部分に至る間に同一とし又は減少さ
せ、その平均減少量を弁軸の回りに7度当り吸気孔の径
の0/ざ%以内とした即ち少なくしたことを特徴とする
内燃機関の吸気ポートである。
That is, in the intake port of an internal combustion engine in which the present invention has an intake hole opened at a position eccentric from the center of the end face of the cylinder chamber, an intake valve is provided in the intake hole, and the intake passage is connected, the intake passage is connected to the intake port. The intake valve is connected to the hole and consists of a vortex generating part at the end of the tr passage and an introduction part outside the end plate of this passage, and the width between the valve shaft circumferential surface of the intake valve and the circumferential surface of the vortex generating part facing it. In the outer part of the cylinder chamber circumferential side, the inside of the cylinder chamber -
Make the inner part of the D side wider, connect the introduction part to the wide outer part of the vortex generation part, and adjust the height between the opening surface of the intake hole and the ceiling of the vortex generation part facing this by adjusting the height around the valve stem. The range from the wide outer part to the narrow inner part is the same or decreases, and the average reduction amount is within 0% of the diameter of the intake hole per 7 degrees around the valve stem, that is, it is reduced. This is an intake port for an internal combustion engine.

この吸気ポートにおいては、吸気通路を流れる@気流が
渦流生起部でヘリカル吸気ポートにおける程には大きく
彎曲しないので、吸気通路の圧力損失が小さく、従って
、シリンダ室の体積効率が高い。また、吸気通路を流れ
る吸気流の主流が導入部から渦流生起部の外側部分に流
入し吸気弁の弁軸に衝突しないので、タンジエンシャ〜
Qlポートにおけるのより強くて安定した渦流が生起す
る。従って、適度の安定した渦流を体積効率を低下させ
ずに生起させることができる。
In this intake port, the airflow flowing through the intake passage does not curve as much at the vortex generating portion as in the helical intake port, so the pressure loss in the intake passage is small, and therefore the volumetric efficiency of the cylinder chamber is high. In addition, since the main flow of the intake air flowing through the intake passage flows from the introduction part to the outer part of the vortex generation part and does not collide with the valve shaft of the intake valve, the tangential engine
A stronger and more stable vortex is generated than at the Ql port. Therefore, a moderately stable vortex can be generated without reducing the volumetric efficiency.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1実施例(第1図乃至第を図参照) 本例の内燃機関の吸気ポートは、第を図と第S図に示す
ように、シリンダ室0])の円形端面にその 5− 中I1.J−から周辺側に偏芯した位置に円形の吸気孔
0のを開口し、吸気孔(1カにポペット弁の吸気弁Oa
を設けると共に吸気通路QfQを接続し、吸気通路a釣
を、吸気孔aつに連通して吸気弁0.1を囲む通路端の
渦流生起部0傍とこの通路端板外の導入部09から構成
し、渦流生起部OQの局面を、第5図に示すように、吸
気弁の弁軸0沿の周面に対面した3枚の円筒面を滑らか
に接続して形成し、弁軸(14)の周面とこれに対面し
た渦流生起部(]f90周面間の幅を、シリンダ室01
)局面側の外側部分面ではシリンダ室中心側の内側部分
0(至)より広くして、弁軸04)の回りに外側部分0
乃から内側部分(I81に至る間に徐々に狭くし、渦流
生起部OQの幅広の外側部分071にその接線方向に沿
って直線状の導入部四を接続し、吸気孔02の開口面と
こねに対面した渦流生起部OQの天井間の高さを、弁軸
(14)の回りに幅広の外側部分07)から幅狭の内側
部分0樽に至る間に同一とし又は徐々に減少させ、その
減少量を弁軸04)の回りに7度当り吸気孔の径dの0
7g%以内に設定している。
First Embodiment (Refer to Figures 1 to 5) As shown in Figure 1 and Figure S, the intake port of the internal combustion engine of this example is located at the circular end face of the cylinder chamber 0]). .. A circular intake hole 0 is opened at a position eccentric to the periphery from J-, and a poppet valve Oa is opened in the intake hole (1).
At the same time, the intake passage QfQ is connected, and the intake passage A is connected to the intake hole A and is connected to the vortex generating part 0 at the end of the passage surrounding the intake valve 0.1 and from the introduction part 09 outside the passage end plate. As shown in FIG. ) and the vortex generating part (]f90 facing this), the width between the circumferential surface of the cylinder chamber 01
)The outer part on the curve side is wider than the inner part on the center side of the cylinder chamber, and the outer part is made wider around the valve stem 04).
It gradually narrows from the inner part (I81), and connects the linear introduction part 4 to the wide outer part 071 of the vortex generating part OQ along its tangential direction, and kneads it with the opening surface of the intake hole 02. The height between the ceilings of the vortex generating part OQ facing the valve stem (14) is kept the same or gradually decreased from the wide outer part 07) to the narrow inner part 0 barrel around the valve stem (14), and The amount of reduction is 0 for the intake hole diameter d per 7 degrees around the valve stem 04).
It is set within 7g%.

この吸気ポートにおいては、吸気通路Q均を流れ 6− る吸気流は、導入部09から渦流生起部0Qに流入し、
吸気孔02を経てシリンダ室αυに流入し、また、吸気
流の主流は、導入部(19の軸芯位置から渦流生起部の
外4111部分(lηの周面と弁軸(14)の周面間の
中間位置に流入し、吸気孔02を経てシリンダ室01)
にその周面の吸気孔近接部分の接線方向に沿って流入し
、シリンダ室(1υの局面に沿って旋回する渦流となる
In this intake port, the intake air flowing through the intake passage Q flows from the introduction part 09 into the vortex generation part 0Q,
It flows into the cylinder chamber αυ through the intake hole 02, and the main flow of the intake air flows from the axial center position of the introduction part (19) to the outer 4111 part of the vortex generating part (the circumferential surface of lη and the circumferential surface of the valve shaft (14). Flows into the cylinder chamber 01 through the intake hole 02)
The air flows into the cylinder along the tangential direction of the portion of its circumferential surface near the intake hole, forming a vortex flow that swirls along the cylinder chamber (1υ) curve.

なお、本例の吸気ポートにおいて、渦流生起部(+6の
天井高さの減少量Δh を吸気孔の径dに対して各個に
設定し、その各個についてそれぞれシリンダ室(11)
に生起する渦流の強さ即ちスワール比8Rと吸気通路(
国の圧力損失Δpを求めてみたところ、第4図の線図に
示すような結果を得た。即ち、同線図の上部に示すよう
に、スワール比SRは、上記の減少片Δhの大小によっ
て大きく変化せず、はぼ一定している。また、同線図の
下部に示すように、圧力損失Δpけ、上記の減少量Δh
が弁軸04)の回りに7度当り吸気孔の径dの0. /
 1%以内ではほぼ一定しているが、oig%f越える
と急増する。従って、7度当りのΔh/dを07g5以
内に設定すると、圧力損失の増大が防止されて、体積効
率が高くなる。
In addition, in the intake port of this example, the reduction amount Δh of the ceiling height of the vortex generating part (+6) is set for each individual with respect to the diameter d of the intake hole, and the cylinder chamber (11) is
The strength of the vortex generated in the swirl ratio 8R and the intake passage (
When we calculated the pressure loss Δp for the country, we obtained the results shown in the diagram in Figure 4. That is, as shown in the upper part of the diagram, the swirl ratio SR does not change greatly depending on the magnitude of the above-mentioned decreasing piece Δh, and remains almost constant. In addition, as shown at the bottom of the diagram, the pressure loss Δp and the above reduction amount Δh
is the diameter d of the intake hole per 7 degrees around the valve stem 04). /
It is almost constant within 1%, but increases rapidly when it exceeds oig%f. Therefore, when Δh/d per 7 degrees is set within 07g5, an increase in pressure loss is prevented and the volumetric efficiency is increased.

第2実施例(第7図と第g図参照) 本例の内燃機関の吸気ポートは、口前例のそれと異なる
点を説明すると、渦流生起部(161の周面を、第7図
に示すように、吸気弁の弁軸04)の周面に対面した2
枚の円筒面を滑らかに接続して形成し、渦流生起部のV
]側部分(181の円筒状周面を吸気孔+IZの開口縁
に沿って配置し、渦流生1舅部の外側部分071の円筒
状周面を吸気孔(+3の開口縁の外側位置に配置し、渦
流生起部OGの幅広の外側部分0乃にシリンダ室(lυ
の端面と平行な百円で四囲した矩形断面状の導入部+I
Qを接続し、この接続角度を、導入部09から渦流生起
部(+61に至る吸気の主流が渦流生起部の外側部分0
7)の周面と弁軸0勺の周面の間に流入する角度に設定
している。その他の点け、前例におけるのと同様である
ので、第7図に同一符号を付して説明を省略する。
Second Embodiment (See Figures 7 and g) The intake port of the internal combustion engine of this example is different from that of the previous example. 2 facing the circumferential surface of the valve shaft 04) of the intake valve.
It is formed by smoothly connecting two cylindrical surfaces, and
] The cylindrical circumferential surface of the side part (181 is arranged along the opening edge of the intake hole +IZ, and the cylindrical circumferential surface of the outer part 071 of the vortex generation part 1 is arranged at the outer position of the opening edge of the intake hole (+3) Then, a cylinder chamber (lυ
Introductory part with a rectangular cross section surrounded by 100 circles parallel to the end face of +I
Q, and this connection angle is set so that the main flow of the intake air from the introduction part 09 to the vortex generation part (+61) is the outer part 0 of the vortex generation part.
The angle is set to flow between the circumferential surface of 7) and the circumferential surface of the valve stem. Since the other points are the same as those in the previous example, the same reference numerals are given in FIG. 7 and the explanation will be omitted.

本例の吸気ポートにおいて、導入部09と渦流生起部の
外側部分(1ηとの接続角度、具体的には渦流生起部の
外側部分αηの局面と導入部09の外側面の接続線と渦
流生起部の内側部分(18)の周面と導入部(19の内
側面の接続線を含む接続面(イ)に対して、導入部(]
!Jから渦流生起部OQに流入する吸気の主流がなす角
度αを各個に設定し、その各個についてそれぞれ実験し
てみた。すると、第5図の線図に示すように、スワール
比SRは、接続角度αが60度より小ζくなると徐々に
減少し、また、710度を越えると徐々に減少し、73
5度を越えると急激に減少し、60度以上で110度以
下において高い値となる。接続角度αが735度を越え
ると、導入部(]<J カーら渦流生起部0υに流入す
る吸気の主流が弁軸04)に衝突して分岐するようにな
り、タンジエンシャル吸気ボートにおけるのと同様に渦
流が弱くて不安だとなる。一方、接続角度αが乙0度よ
り小さくなると、吸気の主流が渦流生起部の外側部分(
Iηの局面に衝突して吸気通路(lF9の圧力損失が増
大し、シリンダ室01)の体積効率が低下すると共に吸
気流量の減少によって渦流が弱くなる。
In the intake port of this example, the connection angle between the introduction part 09 and the outer part (1η) of the vortex generation part, specifically, the connection line between the aspect of the outer part αη of the vortex generation part and the outer surface of the introduction part 09 and the vortex generation part With respect to the connection surface (a) including the connection line between the peripheral surface of the inner part (18) of the part and the inner surface of the introduction part (19), the introduction part (]
! The angle α formed by the main flow of intake air flowing from J to the vortex generating portion OQ was set for each individual, and experiments were conducted for each of them. Then, as shown in the diagram in FIG. 5, the swirl ratio SR gradually decreases as the connection angle α becomes smaller than 60 degrees, and gradually decreases as the connection angle α exceeds 710 degrees.
When it exceeds 5 degrees, it decreases rapidly, and becomes a high value at 60 degrees or more and 110 degrees or less. When the connection angle α exceeds 735 degrees, the main flow of intake air flowing into the inlet part (] Similarly, the vortex is weak and unsettling. On the other hand, when the connection angle α becomes smaller than 0 degrees, the main flow of the intake air flows to the outer part of the vortex generating part (
Collision with the phase of Iη increases the pressure loss of the intake passage (IF9), lowers the volumetric efficiency of the cylinder chamber 01, and at the same time weakens the vortex flow due to the decrease in the intake flow rate.

着た、接続角度αが710度より大きくなると、 9− 吸気の主流の一部が弁軸(14)に衝突する上に、渦流
生起部(I(9から吸気孔(1“ツを経てシリンダ室(
1υに流入する吸気の主流がシリンダ室の中心側に移行
して、渦流が弱くなる、従って、接続角度αを60度以
上で710度以下に駿足して、導入部(19から渦流生
起部(Iffに至る吸気の主流を渦流生起部の外側部分
0力の周面と弁軸04)の周面の間に流入させると、傾
くで安定した渦流が生起する。
When the connection angle α becomes larger than 710 degrees, a part of the main flow of intake air collides with the valve shaft (14) and also flows into the cylinder from the vortex generating part (I) through the intake hole (1"). Room (
The main flow of the intake air flowing into 1υ moves to the center side of the cylinder chamber, and the vortex becomes weaker. Therefore, the connection angle α is quickly increased from 60 degrees to 710 degrees, and the connection angle α is changed from the introduction part (19) to the vortex generation part ( When the main flow of the intake air reaching Iff flows between the circumferential surface of the outer portion of the vortex generating portion and the circumferential surface of the valve shaft 04), a tilted and stable vortex is generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヘリカル吸気ポートの斜視図テあり、第
2図は従来のタンジエンシャル吸気ポートの斜視図、第
3図は同タ7ジエンシャル吸気ボートの平面図である。 第1図は本発明の第/夾施例の吸気ポートの斜視図、第
5図は同吸気ポートの平面図であり、第6図は同吸気ポ
ートにおける渦流生起部の天井高さの減少期とスワール
比又は圧力損失の関係を示す線図である。 第7図は第2実施例の吸気ポートの平面図であり、第5
図は同吸気ポートにおける導入部と渦流 10− 生起部の外側部分との接続角度とスワール比の関係を示
す線図である。 11ニジリンダ室    12:吸気孔13:暖気弁 
    14:弁 軸 15:吸気通路     16:渦流生起部17:外側
部分     18:内側部分19:導入部  11−
FIG. 1 is a perspective view of a conventional helical intake port, FIG. 2 is a perspective view of a conventional tangential intake port, and FIG. 3 is a plan view of a tangential intake boat. FIG. 1 is a perspective view of an intake port according to a second embodiment of the present invention, FIG. 5 is a plan view of the same intake port, and FIG. 6 is a period in which the ceiling height of the vortex generating part in the same intake port decreases. FIG. 3 is a diagram showing the relationship between the flow rate and the swirl ratio or pressure loss. FIG. 7 is a plan view of the intake port of the second embodiment;
The figure is a diagram showing the relationship between the swirl ratio and the connection angle between the introduction part and the outer part of the eddy current generating part in the same intake port. 11 Nijilinda chamber 12: Intake hole 13: Warm-up valve
14: Valve shaft 15: Intake passage 16: Vortex generating part 17: Outside part 18: Inside part 19: Introduction part 11-

Claims (2)

【特許請求の範囲】[Claims] (1)  シリンダ室の端面にその中心から偏芯した位
置に吸気孔を開口し、吸気孔に吸気弁を設けると共に吸
気通路を接続した内燃機関の吸気ボートにおいて、吸気
通路を、吸気孔に連通して吸気弁を囲む通路端の渦流生
起部とこの通路端以外の導入部から嘴成し、吸気弁の弁
軸周面とこれに対面した渦流生起部の局面間の幅を、シ
リンダ室局面側の外側部分ではシリンダ室中ID側の内
側部分より広くし、渦流生起部の幅広の外側部分に導入
部、  を接続し、吸気孔の開口面とこれに対面した渦
流生起部の天井間の高さを、弁軸の回りに幅広の外側部
分から幅狭の内側部分に至る間に同一とし又は減少させ
、その平均減少蓋を弁軸の回りに7度当り吸気孔の径の
0/g%以内に設定したことを特徴とする内燃機関の吸
気ポート。
(1) In an intake boat for an internal combustion engine in which an intake hole is opened at a position eccentric from the center of the end face of the cylinder chamber, an intake valve is provided in the intake hole, and the intake passage is connected, the intake passage is communicated with the intake hole. A beak is formed from the vortex generating part at the end of the passage surrounding the intake valve and the introduction part at the end of the passage, and the width between the circumferential surface of the valve shaft of the intake valve and the face of the vortex generating part facing this is defined as the cylinder chamber face. The outer part of the side is made wider than the inner part of the ID side of the cylinder chamber, and the introduction part is connected to the wide outer part of the vortex generating part, and the space between the opening surface of the intake hole and the ceiling of the vortex generating part facing it is connected to the wide outer part of the vortex generating part. The height is the same or decreases from the wide outer part to the narrow inner part around the valve stem, and the average decreasing lid is 0/g of the diameter of the intake hole per 7 degrees around the valve stem. An intake port of an internal combustion engine characterized by being set within %.
(2)  導入部と渦流生起部の外側部分との接続角度
を、導入部から渦流生起部に至る吸気の主流が渦流生起
部の外側部分の周面と弁軸の周面の間に流入する角度に
設定したことを特徴とする特許請求の範囲第1項記載の
内燃機関の吸気ポート。
(2) Adjust the connection angle between the introduction part and the outer part of the vortex generation part so that the main flow of intake air from the introduction part to the eddy flow generation part flows between the circumferential surface of the outer part of the vortex generation part and the circumference of the valve shaft. An intake port for an internal combustion engine according to claim 1, wherein the intake port is set at an angle.
JP58056113A 1982-09-18 1983-03-30 Intake port of internal-combustion engine Pending JPS59180027A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58056113A JPS59180027A (en) 1983-03-30 1983-03-30 Intake port of internal-combustion engine
US06/789,370 US4693215A (en) 1982-09-18 1985-10-21 Inlet port for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056113A JPS59180027A (en) 1983-03-30 1983-03-30 Intake port of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59180027A true JPS59180027A (en) 1984-10-12

Family

ID=13018023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056113A Pending JPS59180027A (en) 1982-09-18 1983-03-30 Intake port of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59180027A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543515B1 (en) * 1971-02-17 1979-02-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543515B1 (en) * 1971-02-17 1979-02-23

Similar Documents

Publication Publication Date Title
US4574751A (en) Inlet port for internal combustion engine
US4932833A (en) Ring channel blower
CN106121760B (en) Generate the inlet valve and internal combustion engine with helical duct of intake swirl
US4706623A (en) Cylinder head for an internal combustion engine
JPS59180027A (en) Intake port of internal-combustion engine
JP3562165B2 (en) Diesel engine intake port
JPH0223691B2 (en)
JPS59213924A (en) Suction port for internal-combustion engine
JPS5951129A (en) Intake port of internal-combustion engine
JP3572375B2 (en) Helical intake port of internal combustion engine
EP0790398A1 (en) Engine having a plurality of intake ports for each cylinder
JPS6127568B2 (en)
JPS6236139B2 (en)
JPS5912123A (en) Inlet port of internal combustion engine
JPS59211717A (en) Intake port of internal-combustion engine
JPS6115220Y2 (en)
JPS6319551Y2 (en)
JPS60138225A (en) Suction port of internal-combustion engine
JPS5925032A (en) Air intake passage for internal combustion engine
JPS5912127A (en) Intake port of internal combustion engine
JPH08158873A (en) Multiple valve suction type engine
JPS60125724A (en) Intake port of internal-combustion engine
JPS5849384Y2 (en) Intake port of direct injection internal combustion engine
JPH0520564B2 (en)
JPS5912126A (en) Inlet port of internal combustion engine