JP2005113737A - Internal combustion engine equipped with suction port for forming tumbling flow - Google Patents

Internal combustion engine equipped with suction port for forming tumbling flow Download PDF

Info

Publication number
JP2005113737A
JP2005113737A JP2003347227A JP2003347227A JP2005113737A JP 2005113737 A JP2005113737 A JP 2005113737A JP 2003347227 A JP2003347227 A JP 2003347227A JP 2003347227 A JP2003347227 A JP 2003347227A JP 2005113737 A JP2005113737 A JP 2005113737A
Authority
JP
Japan
Prior art keywords
cylinder
intake port
intake
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003347227A
Other languages
Japanese (ja)
Other versions
JP4254464B2 (en
Inventor
Kazuyoshi Abe
和佳 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003347227A priority Critical patent/JP4254464B2/en
Publication of JP2005113737A publication Critical patent/JP2005113737A/en
Application granted granted Critical
Publication of JP4254464B2 publication Critical patent/JP4254464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine equipped with a suction port in which a strong tumbling flow can be formed in a cylinder while securing a suction air quantity necessary for the combustion. <P>SOLUTION: In the internal combustion engine 1, two suction ports 2 are installed in order for a cylinder 3, and each port is formed to direct the suction into the cylinder so that tumbling flow T is formed in the cylinder. An edge 7 is formed inside the arranging direction of each suction port out of the wall surface of the suction port and at a boundary of a wall face 2a at the opposite side with respect to the side where the suction forming the tumbling flow is introduced and a throat section 6a of a valve seat 6 connected to the suction port. Out of the boundary of the wall surface of the suction port and the throat section, the other than the boundary forming the edge is formed into a smooth roundness 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シリンダ内にタンブル流を形成するために好適な吸気ポートを備えた内燃機関に関する。   The present invention relates to an internal combustion engine provided with an intake port suitable for forming a tumble flow in a cylinder.

内燃機関の燃焼の改善を目的として種々の構造の吸気ポートが提案されている。例えば、シリンダ内にシリンダ軸線を中心とした旋回運動を生じさせるため、吸気弁の着座部形状を非対称にしてシリンダ内に流入する空気を偏心的に加速させる吸気ポートが知られている(特許文献1参照)。また、吸気バルブシートの内周スロート面を非対称な傾斜をもつ構成とすることでスワール生成を図り、吸気抵抗を低減させる吸気ポートが知られている(特許文献2参照)。
特開昭60−156915号公報 実開昭59−67503号公報
Intake ports of various structures have been proposed for the purpose of improving the combustion of internal combustion engines. For example, an intake port is known that eccentrically accelerates the air flowing into the cylinder by making the seat shape of the intake valve asymmetrical in order to generate a turning motion around the cylinder axis in the cylinder (Patent Literature). 1). In addition, an intake port that reduces swirl generation by reducing the intake resistance by configuring the inner throat surface of the intake valve seat to have an asymmetric inclination is known (see Patent Document 2).
JP-A-60-156915 Japanese Utility Model Publication No.59-67503

内燃機関の燃焼の改善策の一つとして、シリンダの軸線方向に沿って旋回する吸気のタンブル流をシリンダ内に形成することが知られている。そのタンブル流は、吸気ポートによって吸気を方向付けてシリンダ内へ導くことにより形成される。このようなタンブル流形成用の吸気ポートでは、一部の吸気が吸気バルブに沿って流れの方向を変えてシリンダ内の反対側の領域に流入する。この吸気流はタンブル流と対向する方向に流れてタンブル流を弱めることがある。   As one of the measures for improving the combustion of the internal combustion engine, it is known to form a tumble flow of the intake air swirling along the axial direction of the cylinder in the cylinder. The tumble flow is formed by directing intake air through the intake port and directing it into the cylinder. In such an intake port for forming a tumble flow, a part of the intake air changes the flow direction along the intake valve and flows into the opposite region in the cylinder. This intake flow may flow in a direction opposite to the tumble flow and weaken the tumble flow.

ところで、吸気ポートの壁面と吸気ポートに連なるバルブシートのスロート部との境界は、全周がエッジ状(全周エッジ)又は全周がアール状(全周アール)に形成されている。全周エッジの場合、吸気ポートの壁面に沿って導入される吸気の流れがエッジによって剥離される。これにより、タンブル流と対向する方向に流れる一部の吸気流(対向吸気流)の流れを乱れさせてシリンダ内に強いタンブル流を形成することができるが、剥離による吸気流速の低下により吸入空気量が減少する。そのため、燃焼に必要な吸入空気量が確保できないおそれがある。一方、全周アールの場合、吸気の流れが剥離しないので吸入空気量を増加させることができるが、対向吸気流の流れも剥離しないので、タンブル流が弱められてしまう。上述した従来の吸気ポートはスワール流の強化を目的としており、吸入空気量を確保しつつ強いタンブル流を形成する場合の上記の問題については何ら考慮されていない。   By the way, the boundary between the wall surface of the intake port and the throat portion of the valve seat connected to the intake port is formed in an edge shape (all-round edge) or a round shape (all-round radius). In the case of the all-around edge, the flow of the intake air introduced along the wall surface of the intake port is separated by the edge. As a result, a strong tumble flow can be formed in the cylinder by disturbing the flow of a part of the intake flow (opposite intake flow) that flows in the direction opposite to the tumble flow. The amount decreases. Therefore, there is a possibility that the intake air amount necessary for combustion cannot be secured. On the other hand, in the case of an all-round radius, the intake air amount can be increased because the flow of the intake air is not separated, but the tumble flow is weakened because the flow of the opposed intake air flow is not separated. The above-described conventional intake port is intended to strengthen the swirl flow, and does not take into account the above-described problem in the case of forming a strong tumble flow while securing the intake air amount.

そこで、本発明は、燃焼に必要な吸入空気量を確保しつつシリンダ内に強いタンブル流を形成することが可能な吸気ポートを備えた内燃機関を提供することを目的とする。   Accordingly, an object of the present invention is to provide an internal combustion engine including an intake port capable of forming a strong tumble flow in a cylinder while securing an intake air amount necessary for combustion.

本発明の第一の内燃機関は、一つのシリンダに対して二つの吸気ポートが並べて設けられ、各吸気ポートは前記シリンダ内にタンブル流が形成されるように吸気を方向付けて前記シリンダへ導くよう構成された内燃機関であって、前記吸気ポートの壁面のうち各吸気ポートの並び方向内側でかつ前記タンブル流を形成する吸気が導入される側に対して反対側の壁面と前記吸気ポートに連なるバルブシートのスロート部との境界にエッジが形成され、前記吸気ポートの壁面と前記スロート部との境界のうち前記エッジが形成された境界以外は滑らかなアールに形成されていることにより、上述した課題を解決する(請求項1)。   In the first internal combustion engine of the present invention, two intake ports are provided side by side with respect to one cylinder, and each intake port directs intake air to the cylinder so that a tumble flow is formed in the cylinder. In the internal combustion engine configured as described above, the wall surface of the intake port is arranged on the inner wall side of each intake port and on the wall surface on the opposite side to the side where the intake air forming the tumble flow is introduced and the intake port An edge is formed at the boundary with the throat portion of the continuous valve seat, and the boundary between the wall surface of the intake port and the throat portion other than the boundary where the edge is formed is formed in a smooth rounded shape. This problem is solved (claim 1).

本発明の第一の内燃機関によれば、吸気ポートの壁面のうち各吸気ポートの並び方向内側でかつタンブル流を形成する吸気が導入される側に対して反対側の壁面(反対内側壁面)に沿って導入される吸気の流れがエッジによって剥離されるので、タンブル流と対向する方向に流れる吸気流の流速を抑えることができる。従って、シリンダ内に強いタンブル流を形成することができる。また、吸気ポートの壁面とスロート部との境界のうちエッジ以外の境界は、滑らかなアールに形成されているので、反対内側壁面以外の壁面に沿って導入される吸気の流れは剥離されない。そのため、この範囲の壁面に沿ってシリンダ内に流入する吸気流により燃焼に必要な吸入空気量を確保することができる。   According to the first internal combustion engine of the present invention, the wall surface on the opposite side with respect to the side where the intake air forming the tumble flow is introduced inside the intake port wall surface in the arrangement direction of the intake port wall surface (opposite inner wall surface) Since the flow of the intake air introduced along the edge is separated by the edge, the flow velocity of the intake air flowing in the direction opposite to the tumble flow can be suppressed. Therefore, a strong tumble flow can be formed in the cylinder. Further, since the boundary other than the edge of the boundary between the wall surface of the intake port and the throat portion is formed in a smooth rounded shape, the flow of intake air introduced along the wall surface other than the opposite inner wall surface is not separated. Therefore, the intake air amount necessary for combustion can be ensured by the intake air flowing into the cylinder along the wall surface in this range.

本発明の第二の他の内燃機関は、一つのシリンダに対して二つの吸気ポートが並べて設けられ、各吸気ポートは前記シリンダ内に正タンブル流が形成されるように吸気を方向付けて前記シリンダ内に導くよう構成された内燃機関であって、前記吸気ポートの壁面のうち各吸気ポートの並び方向内側でかつ前記シリンダの外周に位置する側の壁面と前記吸気ポートに連なるバルブシートのスロート部との境界にはエッジが形成され、前記吸気ポートの壁面と前記スロート部との境界のうち前記エッジが形成された境界以外は滑らかなアールに形成されていることにより、上述した課題を解決する(請求項2)。   In the second other internal combustion engine of the present invention, two intake ports are provided side by side with respect to one cylinder, and each intake port directs intake air so that a positive tumble flow is formed in the cylinder. An internal combustion engine configured to be guided into a cylinder, wherein a wall surface of the intake port on the inner side in the arrangement direction of each intake port and on a side located on an outer periphery of the cylinder and a throat of a valve seat connected to the intake port An edge is formed at the boundary with the portion, and the above-described problem is solved by forming a smooth round shape except for the boundary between the wall surface of the intake port and the throat portion except the boundary where the edge is formed. (Claim 2).

本発明の第二の内燃機関によれば、吸気ポートの壁面のうち各吸気ポートの並び方向内側でかつシリンダの外周に位置する側の壁面(外周内側壁面)に沿って導かれる吸気の流れをエッジにより剥離させることができる。そのため、外周内側壁面に沿って流入する吸気によりシリンダ内に形成される流れが正タンブル流へ与える影響を抑えることができる。従って、シリンダ内に強い正タンブル流を形成することができる。また、外周内側壁面以外の壁面に沿って導入される吸気は壁面から剥離されることなくシリンダ内へ流入するので、燃焼に必要な吸入空気量を確保することができる。   According to the second internal combustion engine of the present invention, the flow of intake air guided along the wall surface (outer peripheral inner wall surface) on the inner side in the arrangement direction of the intake ports and on the outer periphery of the cylinder among the wall surfaces of the intake ports. It can be peeled off by the edge. Therefore, it is possible to suppress the influence of the flow formed in the cylinder by the intake air flowing along the outer peripheral inner wall surface on the positive tumble flow. Therefore, a strong positive tumble flow can be formed in the cylinder. Moreover, since the intake air introduced along the wall surfaces other than the outer peripheral inner wall surface flows into the cylinder without being separated from the wall surface, the intake air amount necessary for combustion can be ensured.

本発明によれば、エッジによってタンブル流と対向する流れを抑制してシリンダ内に強いタンブル流を形成することができるので、燃料と空気とを良好に混合させ、内燃機関の燃焼を改善することができる。また、エッジ以外の境界に形成されたアールによって燃焼に必要な吸入空気量を確保することができるので、内燃機関の出力を向上させることができる。   According to the present invention, it is possible to form a strong tumble flow in the cylinder by suppressing the flow facing the tumble flow by the edge, so that fuel and air are mixed well and combustion of the internal combustion engine is improved. Can do. Further, since the amount of intake air necessary for combustion can be ensured by the R formed at the boundary other than the edge, the output of the internal combustion engine can be improved.

図1は本発明の一実施形態に係る内燃機関1の要部を示し、図2及ぶ図3は内燃機関1に接続された吸気ポート2の輪郭を示している。なお、図2は内燃機関1の一つのシリンダ3に対応付けられた二つの吸気ポート2を図1の右側から見たときの輪郭を示し、図3(a)は図1の上側の吸気ポート2を矢印A方向から見たときの輪郭を示し、図3(b)は図1の上側の吸気ポート2を矢印B方向から見たときの輪郭を示している。但し、本発明において内燃機関1に対するシリンダ3の個数及びその配置は任意である。   FIG. 1 shows a main part of an internal combustion engine 1 according to an embodiment of the present invention, and FIGS. 2 and 3 show the outline of an intake port 2 connected to the internal combustion engine 1. 2 shows an outline of the two intake ports 2 associated with one cylinder 3 of the internal combustion engine 1 when viewed from the right side of FIG. 1, and FIG. 3 (a) is an intake port on the upper side of FIG. FIG. 3B shows the contour when the upper intake port 2 of FIG. 1 is viewed from the direction of the arrow B. FIG. However, in the present invention, the number of cylinders 3 and their arrangement with respect to the internal combustion engine 1 are arbitrary.

図1の内燃機関1には、シリンダ3の中心線CCに対する一方の側(図1の右側)3aに二つの吸気ポート2、2が、他方の側(図1の左側)3bに二つの排気ポート4、4がそれぞれ並べて設けられている。図3に示したように、吸気ポート2はシリンダ3の側方からシリンダ3の中心線CCに向かってほぼ一定の角度を維持しつつ延びている。そのため、吸気ポート2に沿って流れる吸気は、シリンダ3の他方の側3bへ方向付けられて導かれる。各吸気ポート2にはバルブ案内部5が設けられている。また、各吸気ポート2の終端にはバルブシート6が設けられている。   The internal combustion engine 1 in FIG. 1 has two intake ports 2 and 2 on one side (right side in FIG. 1) 3a with respect to the center line CC of the cylinder 3, and two exhausts on the other side (left side in FIG. 1) 3b. Ports 4 and 4 are provided side by side. As shown in FIG. 3, the intake port 2 extends from the side of the cylinder 3 toward the center line CC of the cylinder 3 while maintaining a substantially constant angle. Therefore, the intake air flowing along the intake port 2 is directed and guided to the other side 3 b of the cylinder 3. Each intake port 2 is provided with a valve guide portion 5. A valve seat 6 is provided at the end of each intake port 2.

図2及び図3から明らかなように、吸気ポート2と吸気ポート2に連なるバルブシート6のスロート部6aとの境界のうち各吸気ポート2の並び方向内側でかつタンブル流Tを形成する吸気が導入される側に対して反対側(シリンダ3の外周側)の壁面(外周内側壁面)2aとスロート部6aとの境界には、エッジ7が形成されている。一方、吸気ポート2とスロート部6aとの境界のうちエッジ7が形成された境界以外は、滑らかなアール8に形成されている。なお、図1の下側の吸気ポート2の境界には、図1の上側の吸気ポート2に対して上下対称にエッジ7及びアール8が形成されている。   As is apparent from FIGS. 2 and 3, the intake air that forms the tumble flow T on the inner side in the arrangement direction of each intake port 2 in the boundary between the intake port 2 and the throat portion 6 a of the valve seat 6 that is connected to the intake port 2. An edge 7 is formed at the boundary between the wall surface (outer peripheral inner wall surface) 2a opposite to the introduction side (the outer peripheral side of the cylinder 3) 2a and the throat portion 6a. On the other hand, of the boundary between the intake port 2 and the throat portion 6a, except for the boundary where the edge 7 is formed, it is formed into a smooth radius 8. In addition, an edge 7 and a round 8 are formed on the boundary of the lower intake port 2 in FIG. 1 symmetrically with respect to the upper intake port 2 in FIG.

エッジ7が形成される範囲は、吸気ポート2の傾きによって設定される。例えば、吸気ポート2が図3の傾きよりもさらに上方からシリンダ3に向けて設けられている場合、エッジ7が形成される範囲が狭く設定される。一方、吸気ポート2が図3の傾きよりも横方向からシリンダ3に向けて設けられている場合は、エッジ7を形成する範囲が広く設定される。   The range in which the edge 7 is formed is set by the inclination of the intake port 2. For example, when the intake port 2 is provided from the upper side toward the cylinder 3 from the inclination of FIG. 3, the range in which the edge 7 is formed is set narrow. On the other hand, when the intake port 2 is provided from the lateral direction toward the cylinder 3 rather than the inclination of FIG. 3, the range in which the edge 7 is formed is set wider.

以上の構成によれば、エッジ7によって外周内側壁面2aに沿ってシリンダ3内に導入される吸気を剥離させ、図1の矢印F、G方向へ流入する空気の流速を弱めることができる。一方、図1の矢印C、D、E方向へ流入する空気は、アール8により吸気ポート2の壁面から剥離されないので、流速を維持したままシリンダ3内へ導入される。なお、図1の下側の吸気ポート2から流入する空気の流速は、図1の上側の吸気ポート2に対して上下対称になる。   According to the above configuration, the intake air introduced into the cylinder 3 along the outer peripheral inner wall surface 2a can be separated by the edge 7 and the flow velocity of the air flowing in the directions of arrows F and G in FIG. On the other hand, the air flowing in the directions of arrows C, D, and E in FIG. 1 is not separated from the wall surface of the intake port 2 by the radius 8, and is thus introduced into the cylinder 3 while maintaining the flow rate. Note that the flow velocity of air flowing in from the lower intake port 2 in FIG. 1 is vertically symmetric with respect to the upper intake port 2 in FIG.

図4(a)は、図1の上側の吸気ポート2出口における吸気の流速分布を示している。比較例として、図4(b)に吸気ポート2の壁面とスロート部6aとの境界を全周に亘ってエッジ(全周エッジ)にした場合の吸気の流速分布を示し、図4(c)に境界を全周に亘ってアール(全周アール)にした場合の吸気の流速分布を示す。図4(a)から明らかなように、エッジ7により吸気ポート2の並び方向内側(矢印F、G方向)への吸気の流れを弱くすることができる。また、吸気ポート2の並び方向外側(矢印E方向)へ流入する吸気は剥離されずにシリンダ3内へ導入されるので、全周エッジの場合(図4(b))と比較して、吸気流量を増加させることができる。   FIG. 4A shows the flow velocity distribution of the intake air at the upper intake port 2 outlet of FIG. As a comparative example, FIG. 4B shows the flow velocity distribution of the intake air when the boundary between the wall surface of the intake port 2 and the throat portion 6a is an edge over the entire circumference (the entire circumference edge). Shows the flow velocity distribution of the intake air when the boundary is rounded over the entire circumference. As can be seen from FIG. 4A, the edge 7 can weaken the flow of intake air to the inside of the intake port 2 in the direction of arrangement (directions of arrows F and G). In addition, since the intake air flowing to the outside of the intake port 2 in the direction of arrangement (in the direction of arrow E) is introduced into the cylinder 3 without being separated, the intake air is compared with the case of the all-around edge (FIG. 4B). The flow rate can be increased.

図5(a)は図1のV-V線におけるシリンダ3の縦断面を示し、図5中の矢印はシリンダ3内における混合気の流れの一例を示している。また、比較例として図5(b)に全周アールの場合のシリンダ3内における混合気の流れの一例を示す。なお、図5(a)、(b)中の矢印Hは、それぞれ吸気ポート2の並び方向内側へ流出する吸気の流量を示している。図5(a)から明らかなように、図1の吸気ポート2ではエッジ7により図1の矢印F、G方向へ流出する吸気の流量が抑えられる(図5(a)中の矢印Hが小さい)ので、シリンダ3内にほぼ円状の強いタンブル流Tを形成することができる。一方、図5(b)では、図5(a)の場合と比較して図1の矢印F、G方向への吸気の流量が多い(図4(c)参照)ので、渦が下方へ押され、楕円状のタンブル流Tが形成される。   FIG. 5A shows a longitudinal section of the cylinder 3 along the line V-V in FIG. 1, and an arrow in FIG. 5 shows an example of the flow of the air-fuel mixture in the cylinder 3. Further, as a comparative example, FIG. 5B shows an example of the flow of the air-fuel mixture in the cylinder 3 in the case of all rounds. Note that arrows H in FIGS. 5A and 5B indicate the flow rates of the intake air flowing out inward in the direction in which the intake ports 2 are arranged. As is clear from FIG. 5A, in the intake port 2 in FIG. 1, the flow rate of the intake air flowing out in the directions of arrows F and G in FIG. 1 is suppressed by the edge 7 (the arrow H in FIG. 5A is small). Therefore, a strong substantially circular tumble flow T can be formed in the cylinder 3. On the other hand, in FIG. 5 (b), the flow rate of the intake air in the directions of arrows F and G in FIG. 1 is larger than that in FIG. 5 (a) (see FIG. 4 (c)). As a result, an elliptical tumble flow T is formed.

図6は、吸入空気量とタンブル流の強さ(タンブル比)との関係を示している。なお、タンブル比とは、タンブル流Tの回転速度と内燃機関1の回転速度との比である。全周エッジの吸気ポートの場合、強いタンブル流を形成できるが吸入空気量が減少するため図6において右下の傾向を示す。一方、全周アールの吸気ポートの場合、吸入空気量は増加するがタンブル流が弱められてしまうので図6において左上の傾向を示す。そのため、これらの吸気ポートは、図6中の線Lの関係を示す。本発明の吸気ポート2では、外周内側壁面2aと吸気ポート6aとの境界のみをエッジ7に形成し、他の境界はアール8に形成するので、強いタンブル流Tを形成しつつ内燃機関1の燃焼に必要な吸入空気量を確保することができる。従って、吸入空気量とタンブル流の強さとの関係を、図6において右上の点Iの方向へ変化させることができる。   FIG. 6 shows the relationship between the intake air amount and the strength of the tumble flow (tumble ratio). The tumble ratio is a ratio between the rotational speed of the tumble flow T and the rotational speed of the internal combustion engine 1. In the case of the intake port at the all-around edge, a strong tumble flow can be formed, but since the intake air amount decreases, the lower right tendency is shown in FIG. On the other hand, in the case of an all-around rounded intake port, the amount of intake air increases, but the tumble flow is weakened, so the upper left tendency is shown in FIG. Therefore, these intake ports show the relationship of line L in FIG. In the intake port 2 of the present invention, only the boundary between the outer peripheral inner wall surface 2a and the intake port 6a is formed at the edge 7 and the other boundary is formed at the round 8, so that a strong tumble flow T is formed and the internal combustion engine 1 is The amount of intake air necessary for combustion can be secured. Therefore, the relationship between the intake air amount and the strength of the tumble flow can be changed in the direction of the upper right point I in FIG.

本発明におけるエッジ7及びアール8は、例えば図7に示したような機械加工により製作される。吸気ポート2を備えたシリンダヘッド11は鋳造品に機械加工をして製作される。シリンダヘッド11の鋳造時、吸気ポート2の壁面とスロート部6aとの境界には全周に亘ってアール8が形成されている。シリンダヘッド11の鋳造後、吸気ポート2の終端側からスロートカッター12によって、アールに加工されたシリンダヘッドの一部11aを切削する。この切削により、エッジ7が形成される。一方、エッジ7を加工する範囲以外はスロートカッター12により切削しないので、鋳造時のアールをそのまま残すことにより、アール8を形成することができる。   The edge 7 and the round 8 in the present invention are manufactured by machining as shown in FIG. 7, for example. The cylinder head 11 provided with the intake port 2 is manufactured by machining a cast product. When the cylinder head 11 is cast, a round 8 is formed over the entire circumference at the boundary between the wall surface of the intake port 2 and the throat portion 6a. After the cylinder head 11 is cast, a part 11a of the cylinder head that is processed into a round shape is cut by the throat cutter 12 from the end side of the intake port 2. By this cutting, the edge 7 is formed. On the other hand, since the throat cutter 12 does not cut the part other than the range where the edge 7 is processed, the round 8 can be formed by leaving the round at the time of casting.

本発明は上述した実施形態に限定されることなく、種々の形態にて実施してよい。例えば、本実施形態ではシリンダ内に正タンブル流を形成しているが、本発明はシリンダ内に逆タンブル流を形成する吸気ポートを備えた内燃機関にも適用可能である。一つのシリンダに対して二つの吸気ポートが並べて設けられる内燃機関であれば、吸気ポートは独立しているものに限定されない。例えば、一つの吸気ポートが途中で分岐して二つの吸気ポートになる、いわゆるサイアミーズ式の吸気ポートを備えた内燃機関にも本発明を適用することができる。排気ポートの数は、二つに限定されない。例えば、排気ポートが一つの内燃機関にも本発明を適用することができる。   The present invention is not limited to the embodiments described above, and may be implemented in various forms. For example, in the present embodiment, a normal tumble flow is formed in the cylinder, but the present invention is also applicable to an internal combustion engine provided with an intake port that forms a reverse tumble flow in the cylinder. As long as the internal combustion engine has two intake ports arranged side by side with respect to one cylinder, the intake ports are not limited to being independent. For example, the present invention can also be applied to an internal combustion engine having a so-called siamese type intake port in which one intake port branches in the middle to become two intake ports. The number of exhaust ports is not limited to two. For example, the present invention can be applied to an internal combustion engine having one exhaust port.

本発明の一実施形態に係る内燃機関の要部を示す図。The figure which shows the principal part of the internal combustion engine which concerns on one Embodiment of this invention. 図1の吸気ポートを図1の右側から見たときの輪郭を示す図。The figure which shows the outline when the intake port of FIG. 1 is seen from the right side of FIG. 図1の上側の吸気ポートを図1の上側及び下側から見たときの輪郭を示す図。The figure which shows the outline when the upper intake port of FIG. 1 is seen from the upper side and lower side of FIG. 図1の上側の吸気ポート出口における吸気の流速分布を示す図。The figure which shows the flow velocity distribution of the intake air in the upper intake port exit of FIG. 図1のシリンダ内における混合気の流れの一例を示す図。The figure which shows an example of the flow of the air-fuel | gaseous mixture in the cylinder of FIG. 吸入空気量とタンブル流の強さとの関係を示す図。The figure which shows the relationship between the amount of intake air and the strength of a tumble flow. 吸気ポートの壁面とスロート部との境界の加工時の状態を示す図。The figure which shows the state at the time of the process of the boundary of the wall surface of an intake port, and a throat part.

符号の説明Explanation of symbols

1 内燃機関
2 吸気ポート
2a 各吸気ポートの並び方向内側でかつタンブル流を形成する吸気が導入される側に対して反対側の壁面
3 シリンダ
6 バルブシート
6a スロート部
7 エッジ
8 アール
T タンブル流
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake port 2a Wall surface on the opposite side with respect to the side into which the intake air which forms a tumble flow is introduced in the arrangement direction of each intake port 3 Cylinder 6 Valve seat 6a Throat part 7 Edge 8 R T Tumble flow

Claims (2)

一つのシリンダに対して二つの吸気ポートが並べて設けられ、各吸気ポートは前記シリンダ内にタンブル流が形成されるように吸気を方向付けて前記シリンダへ導くよう構成された内燃機関であって、
前記吸気ポートの壁面のうち各吸気ポートの並び方向内側でかつ前記タンブル流を形成する吸気が導入される側に対して反対側の壁面と前記吸気ポートに連なるバルブシートのスロート部との境界にエッジが形成され、前記吸気ポートの壁面と前記スロート部との境界のうち前記エッジが形成された境界以外は滑らかなアールに形成されていることを特徴とする内燃機関。
Two intake ports are provided side by side with respect to one cylinder, and each intake port is an internal combustion engine configured to direct intake air to the cylinder so as to form a tumble flow in the cylinder,
At the boundary between the wall surface of the intake port and the wall surface on the inner side of the intake ports in the arrangement direction and opposite to the side where the intake air forming the tumble flow is introduced, and the throat portion of the valve seat connected to the intake port An internal combustion engine characterized in that an edge is formed and a smooth radius is formed at a boundary between the wall surface of the intake port and the throat portion other than the boundary where the edge is formed.
一つのシリンダに対して二つの吸気ポートが並べて設けられ、各吸気ポートは前記シリンダ内に正タンブル流が形成されるように吸気を方向付けて前記シリンダ内に導くよう構成された内燃機関であって、
前記吸気ポートの壁面のうち各吸気ポートの並び方向内側でかつ前記シリンダの外周に位置する側の壁面と前記吸気ポートに連なるバルブシートのスロート部との境界にはエッジが形成され、前記吸気ポートの壁面と前記スロート部との境界のうち前記エッジが形成された境界以外は滑らかなアールに形成されていることを特徴とする内燃機関。
Two intake ports are provided side by side with respect to one cylinder, and each intake port is an internal combustion engine configured to direct intake air into the cylinder so that a normal tumble flow is formed in the cylinder. And
An edge is formed at a boundary between a wall surface of the intake port on the inner side in the arrangement direction of each intake port and located on the outer periphery of the cylinder and a throat portion of the valve seat connected to the intake port, and the intake port An internal combustion engine having a smooth round shape except the boundary where the edge is formed among the boundary between the wall surface and the throat portion.
JP2003347227A 2003-10-06 2003-10-06 Internal combustion engine with intake port for tumble flow formation Expired - Fee Related JP4254464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347227A JP4254464B2 (en) 2003-10-06 2003-10-06 Internal combustion engine with intake port for tumble flow formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347227A JP4254464B2 (en) 2003-10-06 2003-10-06 Internal combustion engine with intake port for tumble flow formation

Publications (2)

Publication Number Publication Date
JP2005113737A true JP2005113737A (en) 2005-04-28
JP4254464B2 JP4254464B2 (en) 2009-04-15

Family

ID=34539882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347227A Expired - Fee Related JP4254464B2 (en) 2003-10-06 2003-10-06 Internal combustion engine with intake port for tumble flow formation

Country Status (1)

Country Link
JP (1) JP4254464B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013915A (en) * 2007-07-06 2009-01-22 Fuji Heavy Ind Ltd Combustion chamber structure for engine
JP2016079963A (en) * 2014-10-22 2016-05-16 本田技研工業株式会社 Internal combustion engine
KR20180010446A (en) 2016-07-21 2018-01-31 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Intake port for improving performance of engine
US10233825B2 (en) * 2015-09-08 2019-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013915A (en) * 2007-07-06 2009-01-22 Fuji Heavy Ind Ltd Combustion chamber structure for engine
JP2016079963A (en) * 2014-10-22 2016-05-16 本田技研工業株式会社 Internal combustion engine
US10233825B2 (en) * 2015-09-08 2019-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
KR20180010446A (en) 2016-07-21 2018-01-31 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Intake port for improving performance of engine

Also Published As

Publication number Publication date
JP4254464B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
US6655347B2 (en) Intake port of internal combustion engine
JPH07150945A (en) Combustion chamber structure for four cycle engine
JP4254464B2 (en) Internal combustion engine with intake port for tumble flow formation
US8869771B2 (en) Combustion chamber construction for engine
JP2010174702A (en) Intake port structure
JP2004316609A (en) Internal combustion engine having intake port for forming tumble flow
CN215444236U (en) Motorcycle engine and cylinder head air inlet structure thereof
JP2016169668A (en) Internal combustion engine
JP2005061368A (en) Internal combustion engine
JP6524726B2 (en) Engine intake port structure
WO2016121482A1 (en) Intake port structure for engine
JP2007162517A (en) Intake device for internal combustion engine
JPS6127568B2 (en)
JP3541597B2 (en) Engine intake port
JP2004144071A (en) Internal combustion engine equipped with air inlet port for tumble stream formation
JPS6350533B2 (en)
JPS58122323A (en) Air intake port of internal-combustion engine
JPS5951129A (en) Intake port of internal-combustion engine
JPH08158873A (en) Multiple valve suction type engine
KR100206740B1 (en) Production method for cylinder head with tumble induced intake port
JPS5849383Y2 (en) Intake port of direct injection internal combustion engine
JPH07269361A (en) Multi-cylinder engine suction port structure and its setting method
JP4320954B2 (en) Engine intake structure
JPH10299495A (en) Intake port for internal combustion engine
JP2016169714A (en) Intake port structure of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees