JPS6042905B2 - Method for measuring impurity concentration in semiconductors - Google Patents

Method for measuring impurity concentration in semiconductors

Info

Publication number
JPS6042905B2
JPS6042905B2 JP10688979A JP10688979A JPS6042905B2 JP S6042905 B2 JPS6042905 B2 JP S6042905B2 JP 10688979 A JP10688979 A JP 10688979A JP 10688979 A JP10688979 A JP 10688979A JP S6042905 B2 JPS6042905 B2 JP S6042905B2
Authority
JP
Japan
Prior art keywords
absorption
impurity
wavelength
thickness
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10688979A
Other languages
Japanese (ja)
Other versions
JPS5630627A (en
Inventor
耕一郎 本田
昭 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10688979A priority Critical patent/JPS6042905B2/en
Publication of JPS5630627A publication Critical patent/JPS5630627A/en
Publication of JPS6042905B2 publication Critical patent/JPS6042905B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、半導体の不純物濃度の測定方法、特に赤外波
長領域の光を用いて、シリコンウェハー中の不純物濃度
の平均値を測定する方法に関する。 集積回路の高密度化、大規模集積化に伴ない、シリコン
基板中の結晶欠陥が素子の特性、歩留り、に及ぼす影響
はますます大きくなつてきてい−る。 この結晶欠陥を誘起する原因となる不純物として酸素、
炭素、重金属などが挙げられており、特に酸素の影響が
大きいと云われている。 *It■IeXP(−KdO
リC(1−Rア+−4β2sinθ〔1−Rexp(−
Kd(x))〕2+4Rexp(−Kd(x))s2π
nd(x)ここで、β=n=01112・・・・・・λ
d(x):試料上xという位置での試料の厚さ* シリ
コン結晶中の酸素、炭素などの不純物の測定には放射化
分析法、赤外分光測定法などがあるが、このうち赤外分
光測定法は簡便な方法で、赤外線吸収スペクトルを観察
し、その吸収強度より不純物濃度を算出することができ
る。 従来赤外線の光源として炭化硅素などの抵抗発熱体を利
用し、これから放射される光を回折格子またはプリズム
によつて分光しスリットによつて、特定波長のビームに
する方法で、赤外分光測’定が行なわれてきた。 この方法でシリコン結晶中の不純物を測定しようとする
と、表離両面間の多重反射による干渉の為、入射波長を
変化させると、それに応じて、透過光強度に周期的な変
化を生ずる。この困難を避けるため、通常第1図に示す
ように、これらの吸収測定に用いる試料1に対して、表
裏両面が、微小角度φをもつたくさび形をなすように鏡
面研磨をほどこす。第2図に示すように試料に入射した
強度10波長λの光束は、光束を構成する光線のうち、
干渉の条件を満足する厚さの部分へ入射した光が、それ
ぞれ強めあい、あるいは弱めあつて(1)式を満足する
透過強度Itの光束として、観測される。(第3図)。
・・・・・・・・・田 ’(θ+β) R:シリコン表面反射率 tanθ:n2fk2−1シリコンに対してに(吸収係
数)〜0,n(屈折率)〜3K:定量しようとする不純
物の吸収係数 即ち、透過光の束は、理想的な場合第3図の様に、光束
の断面内での強度分布を持つことになる。 第3図において横軸Xはウエフア上の位置を示し、破線
の間隔aは光束の径であり、縦軸1tは透過強度であり
、厚さが舎だけ変化すると、それに従つて1周期分だけ
干渉が観察される。 現実に検知される光強度は、(1)の強度の光束の断面
積での平均値である。 従つて、である。 試料が理想的に微小角度φをなす様、くさび形に研磨さ
れている場合、波長に対して、充分大きな面積を有する
光線束に対して(2)は、ここで光線束は第4図の様な
縦1cm1横17mの矩形をなしているものとする。 矩形の幅の方向に対して対称性があるから、長さ方向の
積分に変換できる。 lは光線束の長さである。 また角度φは非常に微小な角度であつて、厚さはほとん
ど変化がなく、平均値でおきかえてよいとすると、θは
ほぼ0だからSinθもほぼ0となり、上記(3)式の
変数は干渉項のみとなつて、となる。ここでiは、光線
束の中心が透過する部分のシリコンの厚さ、即ち光線束
が通過する部分の平均の厚さである。 従つて理想的に微小角度だけで、斜研磨されている場合
光線が通過する部分の平均の厚さを測定できれば、(4
)式を用いて不純物濃度をKより算出することができる
。しかし理想的に微小角度で、精度よく研磨することも
極めて困難.であり通常のマイクロメーター等の器具を
持いて光が通過する部分の試料の厚さを精度よく測定す
ることは極めて困難である。ところで、第5図の様に、
光線束が入射する部分で鏡面にひずみがあつた場合、光
線束S=S1+.52が成り立つているとすると、Fd
s=Fdsl+FdS2・・・・・・・・(5)が成立
する。 このSlS2の領域がいずれも波長に比して大きければ
、従つて、光線束が入射する表面が理想的に斜研磨され
ていなくても、波長に比して大きないくつかの領域から
形成されているならば、(4)式が成立する。 この式は入射する光線束が波長に比して大きければ、入
射光の波長に依存しないことを意味している。 これを用いて既知の吸収係数を持つスペクトルたとえば
フォノンのスペクトルを観察することにより、光線束が
入射する部分の平均の厚さを算出することができる。本
発明の方法は、上記赤外吸収測定の方法において、測定
試料であるシリコンウェハー両面による多重反射による
干渉を相殺しながら波長領域を変化させる測定方法で、
目的とする不純物による吸収波長λと異なつた波長λ1
を有するフォノンによる吸収より赤外ビーム光が入射す
る部分の厚さの平均値を算出し、目的とする不純物濃度
を精度よく求める方法である。 以下実施例により詳細に説明する。 CZ(100)のボロンをドープした比抵抗5〜10〜
礪のシリコンウェハーを用いる。 この試料は、1C1ri×2Gの矩形で約0.3度の斜
研磨がほどこされている。この試料の赤外吸収測定の結
果の二つの例を第6図、第7図に示す。 ここで、それぞれの図で波長差が0.9μmの部分のピ
ークは格子間酸素による吸収であり、16.0pmに見
られるピークはシリコン結晶のTO(L)+TA(L)
フォノンのニフオノン過程による吸収である。TO(L
)+TA(L)フォノンとは光学フォノンと音響フォノ
ンの吸収の和である。このフォノンによる吸収は第6図
、第7図に見られるように、厚さによつて顕著に変化す
る。そして、このフォノンの吸収係数と厚さには第8図
に見られる相関関係が得られる。従つて、第6図、第7
図の様に、7μm〜20pmの波長領域で吸収測定を行
なつて、16μmのフォノンのピーク値より厚さを算出
すると、これは即ぢ光線が透過する部分の厚さの平均値
であり、この値を用いて9μmの酸素による吸収スペク
トルにより酸素濃度を算出することができる.第4式よ
り■−0283押?となり、これが透過 し−1
−R2e″′率をあられす。 通常の赤外波長領域では、Slの反射率はR=0.3で
一定であり、この式の分母は、ほぼ1となるため、怯)
(1−R)2e?Kd〜近似できる。 第6図、第7図の試料の吸収スペクトルの610(−1
にあるTO+TA(L)フォノンの吸収に着目すると、
61h−1での透過率がれぞれ2S9%、(9)%であ
一る。これを上式に代人すると、Kフォノン(フォノン
の吸収係数)●d了はそれぞれ0.64,0.49と求
まりこれが吸収係数×厚さの値となるゅこれより第8図
を用いて試料の厚さがそれぞれ800pm.600pm
と算出することが出来る。この様に、6鴇(−1のフォ
ノンの吸収に着目して、それぞれの試料の厚さを求める
ことができる。第6図、第1図の110戊『1のSj2
Oの吸収に着目するど透過率がそれぞれ、45.4%、
40%であるから、これを上式に代人し、上記で求めた
試料の厚さiを用いると、KSl2Oはそれぞれ、0.
954.3.38となり、酸素濃度
The present invention relates to a method for measuring the impurity concentration of a semiconductor, and particularly to a method for measuring the average value of the impurity concentration in a silicon wafer using light in the infrared wavelength region. As integrated circuits become denser and larger-scale integrated, crystal defects in silicon substrates are having an increasingly large effect on device characteristics and yield. Oxygen is the impurity that causes these crystal defects.
Examples include carbon and heavy metals, and oxygen is said to have a particularly large effect. *It■IeXP(-KdO
RiC(1-R a+-4β2sinθ[1-Rexp(-
Kd(x))]2+4Rexp(-Kd(x))s2π
nd(x) where β=n=01112...λ
d(x): Thickness of sample at position x on sample Spectrometry is a simple method in which the infrared absorption spectrum is observed and the impurity concentration can be calculated from the absorption intensity. Conventionally, infrared spectrometry is a method that uses a resistance heating element such as silicon carbide as an infrared light source, and uses a diffraction grating or prism to separate the light emitted from it and convert it into a beam of a specific wavelength using a slit. determination has been made. When trying to measure impurities in a silicon crystal using this method, changing the incident wavelength causes periodic changes in the transmitted light intensity due to interference due to multiple reflections between the front and outer surfaces. To avoid this difficulty, as shown in FIG. 1, a sample 1 used for these absorption measurements is usually mirror-polished so that both the front and back surfaces form a wedge shape with a small angle φ. As shown in Fig. 2, a light beam with an intensity of 10 wavelengths λ that is incident on a sample is composed of the following light beams:
The light incident on a portion having a thickness that satisfies the interference condition strengthens or weakens each other, and is observed as a luminous flux with a transmission intensity It that satisfies equation (1). (Figure 3).
・・・・・・・・・Ta'(θ+β) R: Silicon surface reflectance tanθ: n2fk2-1 (absorption coefficient) ~ 0 for silicon, n (refractive index) ~ 3K: Impurity to be quantified In an ideal case, the absorption coefficient of , that is, the transmitted light beam will have an intensity distribution within the cross section of the light beam, as shown in FIG. In Fig. 3, the horizontal axis X indicates the position on the wafer, the interval a between the broken lines is the diameter of the luminous flux, and the vertical axis 1t is the transmitted intensity. Interference is observed. The light intensity that is actually detected is the average value of the intensity (1) in the cross-sectional area of the luminous flux. Therefore, it is. If the sample is ideally polished into a wedge shape with a small angle φ, then (2) for a ray bundle with a sufficiently large area with respect to the wavelength, the ray bundle is as shown in Figure 4. It is assumed that it is a rectangle with a length of 1 cm and a width of 17 m. Since there is symmetry in the width direction of the rectangle, it can be converted into an integral in the length direction. l is the length of the ray bundle. Also, since the angle φ is a very small angle, and the thickness hardly changes and can be replaced with an average value, since θ is almost 0, Sinθ is also almost 0, and the variables in equation (3) above are due to interference. It becomes only the term, and becomes . Here, i is the thickness of the silicon at the portion through which the center of the beam of light passes, that is, the average thickness of the portion through which the beam of light passes. Therefore, ideally, if we could measure the average thickness of the area through which the light beam passes in the case of oblique polishing at only a small angle, then (4
) can be used to calculate the impurity concentration from K. However, it is extremely difficult to polish with high precision at ideally small angles. Therefore, it is extremely difficult to accurately measure the thickness of a sample through which light passes using an ordinary instrument such as a micrometer. By the way, as shown in Figure 5,
If the mirror surface is distorted at the part where the beam of light is incident, the beam of light S=S1+. 52 holds, then Fd
s=Fdsl+FdS2 (5) holds true. If all of these regions of SlS2 are large compared to the wavelength, it means that even if the surface on which the light beam is incident is not ideally obliquely polished, it is formed from several regions that are large compared to the wavelength. If so, equation (4) holds true. This formula means that if the incident light beam is large compared to the wavelength, it does not depend on the wavelength of the incident light. By using this to observe a spectrum having a known absorption coefficient, such as a phonon spectrum, it is possible to calculate the average thickness of the portion where the light beam is incident. The method of the present invention is a method of infrared absorption measurement described above, in which the wavelength region is changed while canceling interference caused by multiple reflections from both surfaces of a silicon wafer, which is a measurement sample.
A wavelength λ1 different from the absorption wavelength λ by the target impurity
This method calculates the average thickness of the part where the infrared beam light is incident from the absorption by phonons having , and accurately determines the target impurity concentration. This will be explained in detail below using examples. CZ (100) boron doped specific resistance 5~10~
A flat silicon wafer is used. This sample has a rectangular shape of 1C1ri×2G and has been obliquely polished by about 0.3 degrees. Two examples of the results of infrared absorption measurements of this sample are shown in FIGS. 6 and 7. Here, in each figure, the peak where the wavelength difference is 0.9 μm is absorption due to interstitial oxygen, and the peak seen at 16.0 pm is TO(L) + TA(L) of the silicon crystal.
This is the absorption of phonons by the niphonone process. T.O.(L
)+TA(L) phonon is the sum of optical phonon and acoustic phonon absorption. This absorption by phonons changes significantly depending on the thickness, as seen in FIGS. 6 and 7. The correlation between the absorption coefficient of this phonon and the thickness as shown in FIG. 8 is obtained. Therefore, Figures 6 and 7
As shown in the figure, when absorption is measured in the wavelength range of 7 μm to 20 pm and the thickness is calculated from the peak value of the phonon at 16 μm, this is immediately the average value of the thickness of the part through which the light beam passes. Using this value, the oxygen concentration can be calculated from the absorption spectrum of oxygen at 9 μm. From the 4th formula ■-0283 press? So, this is transparent -1
-R2e''' rate. In the normal infrared wavelength region, the reflectance of Sl is constant at R = 0.3, and the denominator of this equation is approximately 1, so
(1-R)2e? Kd~ can be approximated. 610 (-1) of the absorption spectrum of the samples in Figures 6 and 7
Focusing on the absorption of TO+TA(L) phonons in
The transmittance at 61h-1 is 2S9% and (9)%, respectively. Substituting this into the above formula, K phonon (phonon absorption coefficient) d = 0.64 and 0.49, respectively, which becomes the value of absorption coefficient x thickness. From this, using Figure 8, The thickness of each sample was 800 pm. 600pm
It can be calculated as follows. In this way, the thickness of each sample can be determined by focusing on the absorption of 6-1 phonons.
Focusing on the absorption of O, the transmittance is 45.4% and 45.4%, respectively.
40%, so by substituting this into the above equation and using the sample thickness i determined above, KSl2O is 0.
954.3.38, oxygen concentration

〔0〕は、[0] is

〔0〕=
Ksip×2.8X1伊7(]−3であるから第6図、
第7図の試料の濃度は、2.7X1017a11!−3
、9.5X1017C1111L−3とそれぞれ算出す
ることができる。このようにTO+TA(L)フォノン
の吸収係数を測定することによつて、測定すべき不純物
による吸収が見られる部分での平均の厚さを求めること
ができて、不純物による吸収係数を精度よく求めること
ができる。以上本発明の説明として、TO+TA(L)
フォノンの吸収係数を利用したが、本発明はこれに限定
されないことは勿論である。
[0] =
Since Ksip×2.8X1I7(]-3, Fig. 6,
The concentration of the sample in Figure 7 is 2.7X1017a11! -3
, 9.5X1017C1111L-3, respectively. By measuring the absorption coefficient of TO + TA (L) phonons in this way, it is possible to determine the average thickness of the part where absorption due to the impurity to be measured is observed, and the absorption coefficient due to the impurity can be determined with high accuracy. be able to. As an explanation of the present invention above, TO+TA(L)
Although the phonon absorption coefficient is used, it goes without saying that the present invention is not limited thereto.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収測定に使用する試料、第2図は試料に光を
入射させた時の状態を示す図、第3図は透過強度1tを
示す図、第4図は光線束を示す図、第5図は光線束が入
射する部分で鏡面にひずみがある場合の状態を示す図、
第6図、第7図は本発j明の方法を説明するための試料
のデータ、第8図は吸収係数と厚さの関係を示す図であ
る。 図に於いて、1は試料であるシリコンウエフア、φは傾
斜角、1tは透過強度、xは位置を示す。
Figure 1 is a sample used for absorption measurement, Figure 2 is a diagram showing the state when light is incident on the sample, Figure 3 is a diagram showing transmitted intensity 1t, Figure 4 is a diagram showing ray flux, Figure 5 is a diagram showing the state when there is distortion in the mirror surface at the part where the beam of light is incident.
6 and 7 are sample data for explaining the method of the present invention, and FIG. 8 is a diagram showing the relationship between absorption coefficient and thickness. In the figure, 1 is the silicon wafer sample, φ is the tilt angle, It is the transmission intensity, and x is the position.

Claims (1)

【特許請求の範囲】[Claims] 1 表裏両面が、くさび形をなす様に鏡面研磨されたシ
リコンウェハーに、赤外線を照射し、この赤外線の吸収
波長と吸収強度より、シリコンウェハー中の不純物濃度
の厚さ方向の平均値を測定する方法において、測定すべ
き不純物の吸収波長以外の波長の吸収強度を、不純物に
よる吸収測定と同時に測定し、測定すべき不純物以外の
吸収強度より、上記シリコンウェハーにおける赤外線通
過部分の平均厚さを算出し、その値を用いて、不純物に
よる吸収係数を、求めることを特徴とする半導体の不純
物濃度の測定方法。
1. A silicon wafer whose front and back surfaces have been mirror-polished to form a wedge shape is irradiated with infrared rays, and the average impurity concentration in the silicon wafer in the thickness direction is measured from the absorption wavelength and absorption intensity of this infrared ray. In this method, the absorption intensity of a wavelength other than the absorption wavelength of the impurity to be measured is measured at the same time as the absorption measurement by the impurity, and the average thickness of the infrared passing portion of the silicon wafer is calculated from the absorption intensity of the impurity other than the impurity to be measured. A method for measuring the impurity concentration of a semiconductor, characterized in that the absorption coefficient due to the impurity is determined using the obtained value.
JP10688979A 1979-08-22 1979-08-22 Method for measuring impurity concentration in semiconductors Expired JPS6042905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10688979A JPS6042905B2 (en) 1979-08-22 1979-08-22 Method for measuring impurity concentration in semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10688979A JPS6042905B2 (en) 1979-08-22 1979-08-22 Method for measuring impurity concentration in semiconductors

Publications (2)

Publication Number Publication Date
JPS5630627A JPS5630627A (en) 1981-03-27
JPS6042905B2 true JPS6042905B2 (en) 1985-09-25

Family

ID=14445041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10688979A Expired JPS6042905B2 (en) 1979-08-22 1979-08-22 Method for measuring impurity concentration in semiconductors

Country Status (1)

Country Link
JP (1) JPS6042905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358750U (en) * 1986-10-06 1988-04-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358750U (en) * 1986-10-06 1988-04-19

Also Published As

Publication number Publication date
JPS5630627A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
EP0536382A1 (en) Non-contact optical techniques for measuring surface conditions
JPH0224502A (en) Film-thickness measuring method
JPH0317505A (en) Method and device for measuring thickness of thin-film
JPS6257936B2 (en)
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
US5467732A (en) Device processing involving an optical interferometric thermometry
EP1212580B1 (en) Method and apparatus for performing optical measurements of layers and surface properties
JP2000031229A (en) Inspection method of semiconductor thin film and manufacture of semiconductor thin film by use thereof
Dietrich et al. Experimental challenges of stress measurements with resonant micro‐Raman spectroscopy
KR20140096308A (en) Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction
JPS6042905B2 (en) Method for measuring impurity concentration in semiconductors
JP2015232450A (en) Film thickness measurement method and film thickness measurement device
JP2002286632A (en) Method for optically evaluating sample to be measured and device therefor
JPS61200407A (en) Fourier transformation type infrared film thickness measuring apparatus
RU2733391C1 (en) Method of measuring refractive indices of optical materials in solid state or in form of melt
JPH04297028A (en) Etching speed monitor for wafer machining and method for monitoring etching speed in wafer machining
JP2000074648A (en) Surface evaluating device for substrate
JPS6117032A (en) Microscope-laser raman spectrometer
WO2020261745A1 (en) Semiconductor wafer thickness measurement method and semiconductor wafer thickness measurement system
JP2715999B2 (en) Evaluation method for polycrystalline materials
JP2620955B2 (en) Thin film internal stress measurement device
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JP3155569B2 (en) Dispersion distribution measurement method
JPH06331320A (en) Film thickness measuring device
JPH0743281B2 (en) Infrared laser beam detector plate