JP2620955B2 - Thin film internal stress measurement device - Google Patents

Thin film internal stress measurement device

Info

Publication number
JP2620955B2
JP2620955B2 JP12973388A JP12973388A JP2620955B2 JP 2620955 B2 JP2620955 B2 JP 2620955B2 JP 12973388 A JP12973388 A JP 12973388A JP 12973388 A JP12973388 A JP 12973388A JP 2620955 B2 JP2620955 B2 JP 2620955B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
internal stress
load
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12973388A
Other languages
Japanese (ja)
Other versions
JPH01299426A (en
Inventor
晋一 大藤
洋一 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12973388A priority Critical patent/JP2620955B2/en
Publication of JPH01299426A publication Critical patent/JPH01299426A/en
Application granted granted Critical
Publication of JP2620955B2 publication Critical patent/JP2620955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜を堆積した基板のそりを利用して該薄
膜の内部応力を測定するもので、特に、半導体基板に形
成した薄膜の内部応力を測定する装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION (Industrial application field) The present invention measures the internal stress of a thin film by using the warpage of the substrate on which the thin film is deposited. The present invention relates to an apparatus for measuring stress.

(従来の技術) 薄膜の内部応力を測定する方法としては、従来から、
片持ち梁法,回折法,円板法などが知られている。
(Prior art) As a method of measuring the internal stress of a thin film, conventionally,
Known methods include a cantilever method, a diffraction method, and a disk method.

(発明が解決しようとする課題) 片持ち梁法は、基板表面の全面に一様に堆積した薄膜
により誘起された基板のそりを検出する方法で、基板を
短冊状に切断し、基板の一端を固定して、他端の変位を
測定するものである。変位の測定には直接顕微鏡で測定
するもの、基板と測定基準との間の静電容量を検出する
ものなどがあるが、いずれも基板を短冊状に破壊加工す
ることから、円型基板を用いる半導体製造工程の非破壊
モニタ等には適さなかった。
(Problems to be Solved by the Invention) The cantilever method is a method of detecting the warpage of a substrate induced by a thin film uniformly deposited on the entire surface of the substrate, and cutting the substrate into strips. Is fixed, and the displacement of the other end is measured. Displacement can be measured directly with a microscope or by detecting the capacitance between the substrate and the measurement reference.However, a circular substrate is used because the substrate is broken into strips. It is not suitable for a non-destructive monitor in a semiconductor manufacturing process.

回折法は、応力により生ずる薄膜結晶の歪を検出する
方法であるが、基板表面に平行な応力成分の測定が容易
でないことが欠点になっている。
The diffraction method is a method of detecting a strain of a thin film crystal caused by a stress, but has a drawback that it is not easy to measure a stress component parallel to a substrate surface.

一方、円板法は、非破壊で、かつ円形の基板を必要と
することから、半導体基板とも良く整合し、半導体製造
工程の評価に広く利用されている。この方法は、円形基
板のそりを球面状で近似して、その球の曲率半径を種々
の方法で測定し、内部応力に換算するものである。曲率
半径の測定方法には、基板上の膜表面に入射させた平行
光線の反射後の広がり、および縮小を光学測定するも
の、光学的平面と対向する膜表面との間の間隙で生ずる
光干渉によるニュートリングを測定するものなどがあ
る。
On the other hand, since the disk method requires a nondestructive and circular substrate, it is well matched with a semiconductor substrate and is widely used for evaluation of a semiconductor manufacturing process. In this method, the warpage of a circular substrate is approximated by a spherical shape, the radius of curvature of the sphere is measured by various methods, and converted into internal stress. The method of measuring the radius of curvature includes optically measuring the spread and reduction after reflection of a parallel light beam incident on a film surface on a substrate, and optical interference generated in a gap between an optical plane and an opposite film surface. There is one that measures neutrining due to

これらの方法は測定精度が高いが、次のような欠点を
有している。第1に、半導体基板の直径の増大に伴い、
応力測定精度が低下する点である。半導体基板の直径が
年々増大する傾向にあり、比例拡大で基板の厚さも増す
が、基板上の薄膜の厚さは減少しても増大する傾向には
ないため、同一の内部応力が発生した場合にも比較的直
径の大なる基板では、そり量が減少して検出が困難にな
る。また、基板表面の被観測領域の面積が、装置上の制
約により、必ずしも直径の増大と共には増大しないこと
も一因である。
Although these methods have high measurement accuracy, they have the following disadvantages. First, as the diameter of the semiconductor substrate increases,
The point is that the stress measurement accuracy is reduced. The diameter of the semiconductor substrate tends to increase year by year, and the thickness of the substrate increases with the proportional expansion.However, even if the thickness of the thin film on the substrate decreases, it does not tend to increase. In the case of a substrate having a relatively large diameter, however, the amount of warpage is reduced and detection becomes difficult. Another reason is that the area of the observation region on the substrate surface does not always increase with an increase in diameter due to restrictions on the device.

第2は、1回の曲率半径の測定だけでは応力が求まら
ない点である。基板の機械的変形は等方弾性体として近
似しており、曲率半径は基板上の各方位について、同一
の値が求まるはずである。しかし、実際には基板の厚
さ,薄膜の厚さ等に種々の要因でゆらぎを生じ、方位に
より値が異なるため、数方位について測定して値を平均
化する必要がある。また、2方位でのそりの凹凸傾向が
逆転して基板上に鞍点を生じた場合には、各方位の測定
値の平均化が困難になる。
Second, stress cannot be determined by only one measurement of the radius of curvature. The mechanical deformation of the substrate is approximated as an isotropic elastic body, and the same radius of curvature should be obtained for each direction on the substrate. However, in practice, fluctuations occur in the thickness of the substrate, the thickness of the thin film, and the like due to various factors, and the values differ depending on the orientation. Therefore, it is necessary to measure several orientations and average the values. Also, when the tendency of the warpage in two directions is reversed to produce a saddle point on the substrate, it becomes difficult to average the measured values in each direction.

本発明の目的は、以上に述べた従来技術の欠点である
基板直径の増大に伴う測定精度低下を改善し、かつ方位
に依存しない平均化した測定値を容易に得ることができ
る薄膜の内部応力測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the measurement accuracy decrease with an increase in the substrate diameter, which is a drawback of the above-described conventional technology, and to obtain an internal stress of a thin film that can easily obtain an averaged measurement value independent of orientation. It is to provide a measuring device.

(課題を解決するための手段) 上記の目的を達成するため、本発明は薄膜形成基板の
そりを検出して成る薄膜の内部応力測定装置において、
薄膜を堆積した比較的大面積の基板が円盤状を有し、該
基板の凹状のそりを生じたる一片面が接する剛体平面基
盤と、該基板の反対側の凸状の片面が接する、該基板と
同心円状の剛体リングと、該基板を略平面状に加圧矯正
するに要する該剛体リングへの荷重印加と該荷重量を検
出する手段と、かつ、該基板と該剛体平面基盤との間の
隙間量を観測する手段とを設けたことを特徴とする薄膜
の内部応力測定装置を発明の要旨とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an apparatus for measuring internal stress of a thin film formed by detecting warpage of a thin film forming substrate,
A substrate having a relatively large area on which a thin film is deposited has a disk shape, and a rigid flat substrate in contact with one side of the substrate, which has a concave warp, and a convex surface on the opposite side of the substrate is in contact with the substrate. And a means for detecting the amount of load applied to the rigid ring and the amount of load required to correct the substrate to a substantially planar pressure, and between the substrate and the rigid planar base. And a means for observing the gap amount.

しかして、本発明では円形基板上の薄膜の内部応力測
定装置として、次の構成を有することを特徴とする。
According to the present invention, a device for measuring internal stress of a thin film on a circular substrate has the following configuration.

従来は、薄膜の内部応力に起因した円形基板の凹凸面
状のそり量を試料に外力を加えることなく測定していた
が、本発明では、これとは根本的に異なり、外力を加え
て基板を変形する前の平面状にもどし、この時の矯正に
要する外力を測定することを測定原理とする。これを可
能にする具体的な装置構成は、(イ)基板の凹状をした
片面を押し当てるべき透明な剛体平面基板、(ロ)基板
を該平面基盤に押しつける剛体リング、(ハ)剛体リン
グを用いて基板を平面基盤上に略平面状になるまで押し
つけた時の剛体リングへの荷重の検出部、(ニ)押しつ
けられた基板が略平面状に加圧矯正されたことを検出す
る隙間量の観測部から成る。
Conventionally, the amount of warpage of an irregular surface of a circular substrate due to the internal stress of a thin film was measured without applying an external force to the sample. Is returned to a flat shape before deformation, and the measurement principle is to measure the external force required for correction at this time. Specific device configurations that enable this include (a) a transparent rigid flat substrate to be pressed against one concave surface of the substrate, (b) a rigid ring for pressing the substrate against the flat substrate, and (c) a rigid ring. Detector for detecting the load on the rigid ring when the substrate is pressed to a substantially flat surface on a flat base using (d) Gap amount for detecting that the pressed substrate has been pressed and corrected to a substantially flat shape Consists of an observation section.

(作用) 本発明においては、基板をオプティカルフラット上に
置き、荷重制御検出部から前記の基板に力を加え、ニュ
ートンリングによって隙間量を測定するため、応力精度
を低下させることなく測定が可能である。
(Operation) In the present invention, since the substrate is placed on an optical flat, a force is applied to the substrate from the load control detection unit, and the gap amount is measured by a Newton ring, the measurement can be performed without lowering the stress accuracy. is there.

(実施例) 次に本発明の実施例について説明する。なお、実施例
は一つの例示であって、本発明の精神を逸脱しない範囲
で、種々の変更あるいは改良を行いうることは言うまで
もない。
(Example) Next, an example of the present invention will be described. It should be noted that the embodiments are merely examples, and it is needless to say that various changes or improvements can be made without departing from the spirit of the present invention.

第1図は実施例の薄膜の内部応力測定装置の構成と主
要な光路を示す。本装置は、荷重制御検出部1、剛体リ
ング2、一片面の全面に均一に薄膜を堆積した基板3、
剛体平面基盤と見なせる十分に厚いオプティカルフラッ
ト4、および隙間量観測部5から構成される。隙間量の
観測には種々の方式が考えられるが、本実施例では、ニ
ュートンリング検出法を示す。第1図に示す光路図は、
その構成の一例で、コリメータレンズ6、半透明鏡7、
結像レンズ8、接眼鏡部9、および点光源10から構成さ
れるものを示す。
FIG. 1 shows a configuration of a thin film internal stress measuring apparatus of the embodiment and main optical paths. The apparatus comprises a load control detecting unit 1, a rigid ring 2, a substrate 3 on which a thin film is uniformly deposited on one entire surface,
It is composed of an optical flat 4 that is sufficiently thick to be regarded as a rigid flat base, and a gap amount observation unit 5. Various methods are conceivable for observing the gap amount. In this embodiment, a Newton ring detection method will be described. The optical path diagram shown in FIG.
In an example of the configuration, a collimator lens 6, a translucent mirror 7,
1 shows an imaging lens 8, an eyepiece unit 9, and a point light source 10.

薄膜を堆積した基板3は半導体ウェハの様な均質な円
盤状平行平面板に薄膜を堆積させたものであり、薄膜の
内部応力により、一片面は凹状、その反対側の片面は凸
状にそりを生じているものである。このうち、凹状のそ
りを生じた片面をオプティカルフラット4上に対向して
接しせしめる。剛体リング2は、薄膜を堆積した基板3
に比べて直径が小さく、かつ基板と同心円を構成するよ
うに薄膜を堆積した基板3の凸状の片面に接触させる。
この剛体リング2を通して、荷重制御検出部1から力を
印加し、薄膜を堆積した基板3を剛体と見なせるオプテ
ィカルフラット4に押しあてて、薄膜を堆積した基板3
を平面状にのばす。荷重制御検出部1は、この時に基板
に印加した力を剛体リング2の重量も含めて検出する。
The substrate 3 on which the thin film is deposited is a thin film deposited on a uniform disk-shaped parallel flat plate such as a semiconductor wafer, and one side is concave and the other side is convex due to internal stress of the thin film. Is caused. One of the surfaces having the concave warp is brought into contact with the optical flat 4 so as to face the optical flat 4. The rigid ring 2 comprises a substrate 3 on which a thin film is deposited.
Is brought into contact with one of the convex surfaces of the substrate 3 on which the thin film is deposited so as to have a smaller diameter than that of the substrate 3 and form a concentric circle with the substrate.
A force is applied from the load control detection unit 1 through the rigid ring 2, and the substrate 3 on which the thin film is deposited is pressed against an optical flat 4 that can be regarded as a rigid body, and the substrate 3 on which the thin film is deposited is applied.
Is extended in a plane. The load control detector 1 detects the force applied to the substrate at this time, including the weight of the rigid ring 2.

印加した力、すなわち荷重Pと薄膜の内部応力σとの
関係は、基板を等方弾性体、基板のそりを球面状、薄膜
の内部応力を膜内の位置には依らずに一定と仮定する
と、近似的に次式で与えられる。
The relationship between the applied force, that is, the load P and the internal stress σ of the thin film is assuming that the substrate is an isotropic elastic body, the warpage of the substrate is spherical, and the internal stress of the thin film is constant irrespective of the position in the film. Approximately given by:

ただし、νは基板のポアソン比、tは膜厚、Dは基板
の厚さ、aは基板の半径、bは剛体リング2の半径で、
a>bの関係を充たす。
Where ν is the Poisson's ratio of the substrate, t is the film thickness, D is the thickness of the substrate, a is the radius of the substrate, b is the radius of the rigid ring 2,
The relationship a> b is satisfied.

前記(1)式は、以下のように導出される。 Equation (1) is derived as follows.

基板上に堆積された薄膜の内部応力により薄膜を堆積
した基板3がそったとき、基板が等方的な弾性体でそり
量が基板の厚さDに比べて大きくなければ、薄膜を堆積
した基板3のそりをフックの法則に従うものと見なすこ
とができ、かつそりを球面で近似できる。その球面の曲
率半径Rと薄膜の内部応力σとの間には、 の関係が成り立つ。ただし、Eは基板のヤング率を示
す。
When the substrate 3 on which the thin film is deposited is deformed due to the internal stress of the thin film deposited on the substrate, if the substrate is an isotropic elastic body and the amount of warpage is not larger than the thickness D of the substrate, the thin film is deposited. The warp of the substrate 3 can be regarded as obeying the Hooke's law, and the warp can be approximated by a spherical surface. Between the radius of curvature R of the spherical surface and the internal stress σ of the thin film, Holds. Here, E indicates the Young's modulus of the substrate.

(参考文献:J.Appl.Phys.Vol49 2424ページ(1978)
(2)式参照) 一方、基板3と同じ半径a、厚さDであってそりのな
い円盤状平板の周辺部を単純支持し、この円盤状平板と
同心で、aより小さい半径bの剛体リングでこの円盤状
平板に荷重Pを加えたとき、中心部のたわみ量ωは、 で与えられる。式中のE′は縦弾性係数である。(参考
文献:機械工学便覧改訂第6版 日本機械学会編1977) この場合には、中心点に集中荷重を加えた場合とは異
なり、半径bの剛体リングの内側の領域においては、表
面に平行な方向では位置にはよらずに一定で、厚さ方向
にのみ距離に依存した内部応力が円盤状平板に発生す
る。従って、前記の薄膜を堆積した基板3の場合と同様
に円盤状平板のそりを球面で近似できる。この球面のた
わみ量がωとなったときの曲率半径R′は、簡単な幾
何学の関係から、 で近似できる。
(Reference: J. Appl. Phys. Vol 49, p. 2424 (1978)
(See formula (2).) On the other hand, a rigid body having the same radius a as the substrate 3 and a thickness D and having no warpage is simply supported around the periphery of the disk-shaped flat plate, and is concentric with the disk-shaped flat plate and has a radius b smaller than a. When a load P is applied to this disk-shaped flat plate by a ring, the amount of deflection ω 0 at the center is Given by E 'in the equation is a longitudinal elastic modulus. In this case, unlike the case where a concentrated load is applied to the center point, the region inside the rigid ring having the radius b is parallel to the surface, unlike the case where a concentrated load is applied to the center point. In any direction, the internal stress is constant irrespective of the position and depends on the distance only in the thickness direction. Therefore, similarly to the case of the substrate 3 on which the thin film is deposited, the warpage of the disk-shaped plate can be approximated by a spherical surface. The radius of curvature R ′ when the amount of deflection of the spherical surface becomes ω 0 is given by a simple geometric relationship, Can be approximated by

ところで、薄膜の内部応力は、薄膜を堆積した基板3
の曲率半径を測定することにより、(A)式で求まる
が、この曲率半径にも(C)式をあてはめることができ
るので、内部応力を求めることはたわみ量を求めること
になる。
By the way, the internal stress of the thin film depends on the substrate 3 on which the thin film is deposited.
Is determined by measuring the radius of curvature of equation (1), the equation (A) can be applied to this radius of curvature. Therefore, determining the internal stress means determining the amount of deflection.

一方、たわみ量の測定には前述のごとく片持ち梁法や
円板法などが用いられてきたが、本発明では薄膜の厚さ
が基板の厚さに比べて十分に小さいことから、薄膜の厚
さを無視し、薄膜を堆積した厚さDの基板3を剛体リン
グ2で平面状にまで矯正したときの荷重から矯正前のた
わみ量を求める。この矯正時のたわみ量と荷重との関係
は、円盤状平板を荷重でたわませたときのたわみ量と荷
重との関係式(B)に等しい。従って、(B)式を用い
て荷重Pからたわみ量ωを求め、さらにこのたわみ量
ωを(C)式に代入して、たわみ量を曲率半径R′に
変換する。そしてR=R′およびE=E′として、
(A)式のRにR′を代入して整理することにより
(1)式が導き出される。
On the other hand, the cantilever method or the disk method has been used for measuring the amount of deflection as described above. However, in the present invention, since the thickness of the thin film is sufficiently smaller than the thickness of the substrate, the thickness of the thin film is reduced. Disregarding the thickness, the amount of deflection before correction is obtained from the load when the substrate 3 having a thickness D on which the thin film is deposited is corrected to a flat shape by the rigid ring 2. The relationship between the amount of deflection at the time of this correction and the load is equal to the relational expression (B) between the amount of deflection and the load when the disk-shaped flat plate is bent by the load. Therefore, the amount of deflection ω 0 is obtained from the load P using the equation (B), and the amount of deflection ω 0 is substituted into the equation (C) to convert the amount of deflection into a radius of curvature R ′. And R = R ′ and E = E ′,
By substituting R 'for R in equation (A) and rearranging, equation (1) is derived.

薄膜を堆積した基板3にリングから荷重を加えて加圧
矯正した時の荷重印加は、ニュートンリングを観察する
ことにより終点を検出する。このために、剛体平面基盤
であるオプティカルフラット4は透明で、薄膜を堆積し
た基板3との間で生ずる光学的干渉縞であるニュートン
リングをオプティカルフラット4の側から観察すること
を可能にしている。隙間量観測部5では、点光源10から
放出される単一波長の光をコリメータレンズ6により平
行光源に変えて、薄膜を堆積した基板3の一片面に照射
する。薄膜を堆積した基板3とオプティカルフラット4
との間隙で生じたニュートンリングは、半透明鏡7を通
して、結像レンズ8により、接眼鏡部9の観察者の網膜
上に、またはテレビカメラ内に結像される。以上の隙間
量観測部の機能により、徐々に印加された荷重によるニ
ュートンリングの変化を観察し、荷重を増してもニュー
トンリングが十分に荒い縞を示し、変化が生じなくなっ
た時点で、基板が平板状に加圧矯正されたものと判定す
る。この時の荷重を読み取ることにより、応力に換算で
きる。
The load is applied when the load is corrected by applying a load from the ring to the substrate 3 on which the thin film is deposited, and the end point is detected by observing the Newton ring. For this reason, the optical flat 4 which is a rigid plane base is transparent, and it is possible to observe from the optical flat 4 side a Newton ring which is an optical interference fringe generated between the optical flat 4 and the substrate 3 on which the thin film is deposited. . In the gap amount observing section 5, the light of a single wavelength emitted from the point light source 10 is changed to a parallel light source by the collimator lens 6, and is irradiated on one surface of the substrate 3 on which the thin film is deposited. Substrate 3 on which thin film is deposited and optical flat 4
Is formed on the retina of the observer of the eyepiece unit 9 or in the television camera by the imaging lens 8 through the translucent mirror 7. By the function of the gap amount observation unit described above, the change of the Newton ring due to the gradually applied load is observed, and even when the load is increased, the Newton ring shows sufficiently rough stripes, and when no change occurs, the substrate is It is determined that the sheet has been flattened under pressure. By reading the load at this time, it can be converted into stress.

本実施例の特徴の1つは、基板の直径及び厚さの増大
に対しても容易に薄膜の内部応力を測定できることであ
る。第1式に示したように、内部応力は、基板半径aと
リング半径bの比には依存するが、aのみには依存しな
い。
One of the features of this embodiment is that the internal stress of the thin film can be easily measured even when the diameter and the thickness of the substrate are increased. As shown in the first equation, the internal stress depends on the ratio between the substrate radius a and the ring radius b, but does not depend only on a.

また、ウェハ径の増大に伴う基板の厚さDの増大に対
して、内部応力σが一定の場合には、検出される荷重P
がDに比例して増大するため、測定精度は低下せずむし
ろ高まる。
When the internal stress σ is constant with respect to the increase in the thickness D of the substrate accompanying the increase in the wafer diameter, the detected load P
Increases in proportion to D, so that the measurement accuracy does not decrease but rather increases.

さらに、本実施例の特徴は、一回の荷重の測定により
基板の各方位についての内部応力の平均値が求まること
にあり、従来のように各種方位についてそりを測定して
平均化する操作を必要としない。これにより、測定の再
現性向上と測定時間の短縮が図れる。また、基板のゆら
ぎ等に起因して鞍点が発生した場合にも、一回の荷重の
測定で概略的に内部応力を測定することが可能である。
Further, the feature of the present embodiment is that the average value of the internal stress in each direction of the substrate is obtained by a single measurement of the load. do not need. This can improve the reproducibility of the measurement and shorten the measurement time. Further, even when a saddle point occurs due to fluctuation of the substrate or the like, it is possible to roughly measure the internal stress by measuring the load once.

また、隙間量観測部にニュートンリング検出法を用い
ることにより、全ウェハの変形を一目で観察できるた
め、上記の一回測定での平均的なそりの回復を容易に確
認せしめることが可能である。
Further, since the deformation of all wafers can be observed at a glance by using the Newton ring detection method in the gap amount observation unit, it is possible to easily confirm the average warpage recovery in the single measurement described above. .

(発明の効果) 叙上のように本発明においては、薄膜形成基板のそり
を検出して成る薄膜の内部応力測定装置において、薄膜
を堆積した基板が円盤状を有し、該基板の凹状のそりを
生じたる一片面が接する剛体平面基盤と、該基板の反対
側の凸状の片面が接する、該基板と同心円状の剛体リン
グと、該基板を略平面状に加圧矯正するに要する該剛体
リングへの荷重印加と該荷重量を検出する手段と、か
つ、該基板と該剛体平面基盤との間の隙間量を観測する
手段とを備えることにより、円形基板の直径および厚さ
が増大しても、剛体リングの半径を該基板半径に比例し
て変化させることにより、応力測定精度を低下させずむ
しろ高められる利点がある。また、測定原理からして基
板上の各方位についてのそりのゆらぎを平均化して荷重
として検出できるため、一回の測定のみで応力が高ま
り、各方位についての平均化操作を必要としないという
利点を有する。
(Effects of the Invention) As described above, according to the present invention, in a thin film internal stress measuring device that detects warpage of a thin film forming substrate, the substrate on which the thin film is deposited has a disk shape, and the concave shape of the substrate is A rigid flat base where one side that causes warpage is in contact, a convex ring on the opposite side of the substrate is in contact, and a rigid ring that is concentric with the substrate, and that is required to correct the pressure of the substrate to a substantially planar shape. The provision of a means for applying a load to the rigid ring and detecting the amount of the load, and a means for observing the amount of gap between the substrate and the rigid planar base increases the diameter and thickness of the circular substrate. However, by changing the radius of the rigid ring in proportion to the radius of the substrate, there is an advantage that the accuracy of stress measurement can be increased rather than reduced. Also, from the measurement principle, it is possible to average the fluctuation of the warp in each direction on the substrate and detect it as a load, so the stress is increased by only one measurement and the advantage that the averaging operation in each direction is not required. Having.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例について、構成と主要な光路を
示す図である。 1……荷重制御検出部 2……剛体リング 3……薄膜を堆積した基板 4……オプティカルフラット 5……隙間量観測部 6……コリメータレンズ 7……半透明鏡 8……結像レンズ 9……接眼鏡部 10……点光源
FIG. 1 is a diagram showing a configuration and main optical paths in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Load control detection part 2 ... Rigid ring 3 ... Substrate on which a thin film was deposited 4 ... Optical flat 5 ... Gap amount observation part 6 ... Collimator lens 7 ... Translucent mirror 8 ... Imaging lens 9 …… Eyepiece unit 10 …… Point light source

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】薄膜形成基板のそりを検出して成る薄膜の
内部応力測定装置において、薄膜を堆積した比較的大面
積の基板(3)が円盤状を有し、該基板(3)の凹状の
そりを生じたる一片面が接する剛体平面基盤(4)、該
基板(3)の反対側の凸状の片面が接する、該基板
(3)と同心円状の剛体リング(2)と、該基板を略平
面状に加圧矯正するに要する該剛体リング(2)への荷
重印加と該荷重量を検出する手段(1)と、かつ、該基
板と該剛体平面基盤との間の隙間量を観測する手段
(5)とを設けたことを特徴とする薄膜の内部応力測定
装置。
An apparatus for measuring internal stress of a thin film formed by detecting a warp of a substrate on which a thin film is formed, wherein a relatively large area substrate (3) on which the thin film is deposited has a disk shape, A rigid planar base (4), one side of which is in contact with a warp, a rigid ring (2) concentric with the substrate (3), and a convex side on the opposite side of the substrate (3), and the substrate Means (1) for applying a load to the rigid ring (2) and detecting the amount of the load necessary to correct the pressure to a substantially planar shape, and determining the amount of clearance between the substrate and the rigid planar substrate. An apparatus for measuring internal stress of a thin film, comprising an observation means (5).
JP12973388A 1988-05-27 1988-05-27 Thin film internal stress measurement device Expired - Fee Related JP2620955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12973388A JP2620955B2 (en) 1988-05-27 1988-05-27 Thin film internal stress measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12973388A JP2620955B2 (en) 1988-05-27 1988-05-27 Thin film internal stress measurement device

Publications (2)

Publication Number Publication Date
JPH01299426A JPH01299426A (en) 1989-12-04
JP2620955B2 true JP2620955B2 (en) 1997-06-18

Family

ID=15016857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12973388A Expired - Fee Related JP2620955B2 (en) 1988-05-27 1988-05-27 Thin film internal stress measurement device

Country Status (1)

Country Link
JP (1) JP2620955B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054193B4 (en) * 2005-11-14 2009-08-13 Rodenstock Gmbh Stress measurement of coatings with a piezoactuator
CN102829898B (en) * 2012-08-08 2014-08-20 广西交通科学研究院 Internal force detecting method for hanger rod with shock absorber

Also Published As

Publication number Publication date
JPH01299426A (en) 1989-12-04

Similar Documents

Publication Publication Date Title
US9423243B1 (en) Strain sensor and method of measuring strain amount
US6219139B1 (en) Full field photoelastic stress analysis
US6469788B2 (en) Coherent gradient sensing ellipsometer
US8844367B2 (en) Micromaterial strain measurement apparatus and method therefor
US10580706B2 (en) Thin-film fabrication system employing mechanical stress measurement
JP3220544B2 (en) Stress measurement method using optical fiber
US7388675B2 (en) Interferometers for the measurement of large diameter thin wafers
JP6740855B2 (en) Strain sensor and strain amount measuring method
WO2006027568A1 (en) Method and apparatus for thin film metrology
JP2016517631A (en) Enhanced inspection and measurement techniques and systems using bright-field differential interference contrast
US3523736A (en) Method of and means for surface measurement
US4309618A (en) Precision optical distance measurement
US6762846B1 (en) Substrate surface profile and stress measurement
US20060225484A1 (en) Bolt tension gauging system
JP2620955B2 (en) Thin film internal stress measurement device
TWI649535B (en) Optical element characteristic measuring device
US6829944B1 (en) Bolt tension gauging system
TWI619933B (en) A stress measurement method of optical materials and system thereof
CN110243510A (en) A new type of stress detection instrument for transparent materials
Hodgkinson The application of fringes of equal chromatic order to the assessment of the surface roughness of polished fused silica
CN112964671B (en) Method and system for measuring refractive index of transparent liquid
JP2831428B2 (en) Aspherical shape measuring machine
JP7525119B2 (en) Sample measurement device and sample measurement method
CN210221371U (en) Micro-pressure measuring device based on Michelson interference principle
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees