JPS6117032A - Microscope-laser raman spectrometer - Google Patents

Microscope-laser raman spectrometer

Info

Publication number
JPS6117032A
JPS6117032A JP13761684A JP13761684A JPS6117032A JP S6117032 A JPS6117032 A JP S6117032A JP 13761684 A JP13761684 A JP 13761684A JP 13761684 A JP13761684 A JP 13761684A JP S6117032 A JPS6117032 A JP S6117032A
Authority
JP
Japan
Prior art keywords
light
solid angle
scattered light
variable aperture
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13761684A
Other languages
Japanese (ja)
Inventor
Katsu Kanamori
金森 克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13761684A priority Critical patent/JPS6117032A/en
Publication of JPS6117032A publication Critical patent/JPS6117032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To determine the azimuth of a crystal without contact and without destruction quickly, by providing a variable aperture, whose light converging solid angle can be varied arbitrarily, in an optical path of scattered light, which is converted by an objective lens having sufficiently large numerical aperture. CONSTITUTION:Light is converged at a large solid angle by an objective lens having sufficiently large numerical aperture. Then the light converging solid angle is variably adjusted by a variable aperture 5. The scattered light, which is transmitted through the variable aperture 5, is guided to a spectroscope 10 through following optical systems 6, 7, 8 and 9. In order to change the conditions of polarized light, a 1/2 wavelength plate 11 and a polarizing filter 12 are provided. Light intensities YY, YX, XY and XX are measured in this way. Thus the scattered light in an arbitrary solid angle can be divided, and the azimuth of a crystal can be quickly determined without contact and without destruction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は結晶方位決定を可能とする顕微レーザラマン分
光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microlaser Raman spectroscopy device that enables crystal orientation determination.

(従来技術とその問題点) 近年、集積回路の高速化、3次元化を目的として、絶縁
体上のシリコン膜(SOI)作成の技術が開発され、デ
バイスの試作も行われる段階に致っている。SOIにお
ける欠陥の主要なものはクラック及びグレインバウンダ
リであり、この低減が極めて重要な課題となってきた。
(Prior art and its problems) In recent years, with the aim of increasing the speed of integrated circuits and making them three-dimensional, technology for creating silicon films on insulators (SOI) has been developed, and devices are now at the stage of being prototyped. There is. The main defects in SOI are cracks and grain boundaries, and their reduction has become an extremely important issue.

もう一つの問題として、レーザ等によって再結晶化され
たシリコングレインの結晶方位の制御という点が6C1
このためには再結晶化グレインの方位を非破壊・非接触
で、速やかに測定する必要がある。従来、このために用
いられてきfcX111回折法、あるいはエレクトロン
・チャンネリング法(ECP法)には、それぞれ大領域
からの信号しか得られない、あるいは極めて表面層の信
、号しか得られないという欠点があった。
Another problem is the control of crystal orientation of silicon grains recrystallized by laser etc.
For this purpose, it is necessary to quickly measure the orientation of recrystallized grains in a non-destructive and non-contact manner. Conventionally, the fcX111 diffraction method and the electron channeling method (ECP method) that have been used for this purpose have the disadvantage that they can only obtain signals from a large area or only from the very surface layer. was there.

(発明の目的) 本発明は、光分に収束されたレーザ光をプローブとして
用いる顕微レーザラマン分光装置を改良して、SOI等
の結晶に内在する歪のみならず、その結晶方位の決定を
も可能にすることを目的としている。
(Objective of the Invention) The present invention improves a microlaser Raman spectrometer that uses a focused laser beam as a probe, making it possible to determine not only the strain inherent in crystals such as SOI but also their crystal orientation. It is intended to be.

(発明の構成) 本発明によれば励起レーザ光を絞って試料に照射し、放
出されるラマン散乱光を集光し11分光する顕微レーザ
ラマン分光装置において;開口数の充分大きb対物レン
ズによって集光した散乱光の光学径路中に、集光立体角
を任意に可変できる可変アパーチャを設け、任意の立体
角内の散乱光を分光可能とし、結晶方位決定を可能りし
た事を特徴とする顕微レーザラマン分光装置が得られる
(Structure of the Invention) According to the present invention, in a microlaser Raman spectrometer that narrows down the excitation laser beam and irradiates the sample, and collects the emitted Raman scattered light into 11 minutes; A microscope characterized in that a variable aperture is provided in the optical path of the scattered light that can arbitrarily change the solid angle of convergence, thereby making it possible to separate the scattered light within any solid angle and determining the crystal orientation. A laser Raman spectrometer is obtained.

(構成の詳細な説明) 本発明は、上述の構成をとることにより、従来技術の問
題点を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

従来、レーザラマン分光によって、主に測定さVl’−
ス(Appl、 Phys−Lett 、44 (19
84)535)に述べられている、入射角の偏光方向を
変えて測定する方法が知られているが、この方法は補正
が複雑になるという欠点がある。
Conventionally, Vl'- is mainly measured by laser Raman spectroscopy.
Appl, Phys-Lett, 44 (19
84) and 535), in which measurement is performed by changing the polarization direction of the incident angle, but this method has the disadvantage that correction is complicated.

本発明は散乱光の方向性について注目し、集光立体角を
、極めて大きい範囲で変化させるために光学径路中に可
変アパーチャを設けたものである。
The present invention focuses on the directionality of scattered light, and provides a variable aperture in the optical path in order to change the solid angle of convergence over an extremely large range.

′基本的構成の一例を第1図に示す。'An example of the basic configuration is shown in Figure 1.

図中の1は励起レーザ光全示し、ハーフミラ2と対物レ
ンズ3を通って試料4上で直径約11tmにまで収束さ
れる。ラマン散乱光は図中では点線で示されているが、
開口数の大きい対物レンズを大きい立体角で集光した後
、可変アパーチャ5によって、“その集光立体角を可変
に調節される。本発明の主要々働きをする、この可変ア
パーチャ5の位置は、この位置に限定されるものではな
いが、対物レンズの直径の位置は励起レーザ光収光に不
都合を生じさせるため好ましくなく、効果的に立体角が
可変できるように、光径の広がった位置に置くことが望
ましい。可変アパーチャを通過した散乱光は、これに続
く光学系6,7・8・ 9を通シ、分光器10内に導か
れる。偏光の条件を変えるための、%波長板11、偏光
フィルタ12が、さらに必要であり、これにより、YY
ハ■コα、XX光強度をそれぞれ測定する。
1 in the figure indicates the entire excitation laser beam, which passes through the half mirror 2 and the objective lens 3 and is focused onto the sample 4 to a diameter of about 11 tm. Raman scattered light is shown as a dotted line in the figure,
After condensing light at a large solid angle using an objective lens with a large numerical aperture, the condensing solid angle is variably adjusted by the variable aperture 5. Although it is not limited to this position, the position of the diameter of the objective lens is not preferable because it causes problems in convergence of the excitation laser beam, and the position where the diameter of the objective lens is widened is preferable so that the solid angle can be effectively varied. The scattered light that has passed through the variable aperture is guided into the spectrometer 10 through the following optical systems 6, 7, 8, and 9. A % wavelength plate is used to change the polarization conditions. 11, a polarizing filter 12 is additionally required, which allows YY
Measure the light intensity of box α and XX, respectively.

(実施例) 励起光としてArイオンレーザからの488OAの光を
使用し、棒状ヒータによりPo7ySiを再結晶化させ
た再結晶化Si / 510g/Si 構造のSOIを
測定した。対物レンーイとして開口数0.9、倍率10
0倍のレンズを使用すると、レーザ光はLc+mまで収
束され、照射位置を確認した状態で散乱光が取シ出せる
。構成は第1図に示すものとはぼ同じであり、ミラー7
の上部に試料像観察光学系が付加されている。可変アパ
ーチャ5は、直径が4mmから0.5 qnまで可変で
きるいわゆる可変しぼりを使用した。この範囲の直径変
化で、開口数は実効的に0.9から0.2まで変化し、
かつ観察像倍率の低下も生じない。この開口数の変化に
より、方向性を持つラマン散乱光の収集される割合は変
化し、YY、YX、XY、XX光強度も変化する。
(Example) Using 488 OA light from an Ar ion laser as excitation light, the SOI of a recrystallized Si/510 g/Si structure in which Po7ySi was recrystallized using a rod-shaped heater was measured. As an objective lens, numerical aperture is 0.9 and magnification is 10.
When a 0x lens is used, the laser beam is converged to Lc+m, and the scattered light can be extracted while confirming the irradiation position. The configuration is almost the same as that shown in FIG.
A sample image observation optical system is added to the top of the unit. The variable aperture 5 uses a so-called variable aperture whose diameter can be varied from 4 mm to 0.5 qn. With a diameter change in this range, the numerical aperture effectively changes from 0.9 to 0.2,
Moreover, no decrease in observation image magnification occurs. Due to this change in the numerical aperture, the rate at which directional Raman scattered light is collected changes, and the YY, YX, XY, and XX light intensities also change.

実際の方位決定には、さらに、この値を用いての数値計
算シミーレージ盲ンが必要になるが、この数値計算はい
ったん必要なパラメータを用いて計算しておけば充分で
あり、解析の手続きは、充分簡単なものとなる。
In order to actually determine the orientation, a numerical calculation using this value is required, but it is sufficient to perform this numerical calculation once using the necessary parameters, and the analysis procedure is , is simple enough.

結晶粒方位が実験室座標系からオイラ角α、β。The grain orientation is Euler angle α, β from the laboratory coordinate system.

いて Bs=M(α、β、γ)Rz−M(α、β、γ)・Ei
となる。散乱光が方向性を持っているという点を考慮す
れば、特定の立体角に入る後方散乱光だけを集めればY
X!=;XYとなり、YY、 YX、 XY、 XX魔 光強摩を測定し、偏光による感度差を補正する。
Bs=M(α, β, γ)Rz−M(α, β, γ)・Ei
becomes. Considering that scattered light has directionality, if we collect only the backscattered light that falls within a specific solid angle, Y
X! =;

数種類のNAの状態で測定し、α、β、γを変えて計算
しておき一致するようなものを、選び出す。
Measurements are made under several different NA conditions, and calculations are performed while changing α, β, and γ, and those that match are selected.

上記の試料においては棒状ヒーターが走査された方向K
 <100)方向に配向し、面垂直方向にわずかな傾き
が存在する事が示された。アパーチャ径が可変である点
は、方位決定の精度を本向上させる。
In the above sample, the direction K in which the rod-shaped heater was scanned
<100) direction, with a slight inclination in the direction perpendicular to the surface. The variable aperture diameter greatly improves the accuracy of orientation determination.

(発明の効果) 以上に述べた様に1本発明け、非接触φ非破壊で結晶の
方位決定を速やかに行う事を可能とした。
(Effects of the Invention) As described above, the present invention has made it possible to quickly determine the orientation of a crystal in a non-contact and non-destructive manner.

また、対象とする結晶はSiに限定されるものでは々く
、他の対称性を持つ結晶についても、これに固有のラン
ツルを用いて数値計算を行なっておけば利用可能である
Furthermore, the target crystal is not limited to Si; crystals with other symmetries can also be used if numerical calculations are performed using the Landzl specific to the crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構成の一例を示す図で、図中の1
は励起レーザ光、2はハーフミラ、3は対物レンズ、4
1−j:試料、5は可変アパーチャ、6はレンズ、7は
ミラー、8はピンホール、9は結合レンズ、10は分光
器、11は各波長板、12は偏光フィルタ金示す。 −目
FIG. 1 is a diagram showing an example of the basic configuration of the present invention.
is an excitation laser beam, 2 is a half mirror, 3 is an objective lens, 4
1-j: Sample, 5 is a variable aperture, 6 is a lens, 7 is a mirror, 8 is a pinhole, 9 is a coupling lens, 10 is a spectrometer, 11 is each wavelength plate, and 12 is a polarizing filter gold. -eyes

Claims (1)

【特許請求の範囲】[Claims] 励起レーザ光を絞って試料に照射し、放出されるラマン
散乱光を集光し分光する顕微レーザラマン分光装置にお
いて、開口数の充分大きい対物レンズによって集光した
散乱光の光学径路中に、集光立体角を任意に可変できる
可変アパーチャを設けた事を特徴とする顕微レーザラマ
ン分光装置。
In a microlaser Raman spectrometer that narrows down the excitation laser beam and irradiates the sample, and then collects and spectrally spectra the emitted Raman scattered light, an objective lens with a sufficiently large numerical aperture focuses the scattered light into an optical path. A microlaser Raman spectrometer characterized by having a variable aperture that can arbitrarily vary the solid angle.
JP13761684A 1984-07-03 1984-07-03 Microscope-laser raman spectrometer Pending JPS6117032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13761684A JPS6117032A (en) 1984-07-03 1984-07-03 Microscope-laser raman spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13761684A JPS6117032A (en) 1984-07-03 1984-07-03 Microscope-laser raman spectrometer

Publications (1)

Publication Number Publication Date
JPS6117032A true JPS6117032A (en) 1986-01-25

Family

ID=15202840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13761684A Pending JPS6117032A (en) 1984-07-03 1984-07-03 Microscope-laser raman spectrometer

Country Status (1)

Country Link
JP (1) JPS6117032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802760A (en) * 1987-03-25 1989-02-07 Mitsubishi Denki Kabushiki Kaisha Raman microprobe apparatus for determining crystal orientation
JPH03123560U (en) * 1990-03-26 1991-12-16
WO2009014306A1 (en) * 2007-07-25 2009-01-29 Yong Bum Kim Raman microscope with excellent ratio of signal to noise
WO2009133980A1 (en) * 2008-05-01 2009-11-05 Yong Bum Kim Raman microscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802760A (en) * 1987-03-25 1989-02-07 Mitsubishi Denki Kabushiki Kaisha Raman microprobe apparatus for determining crystal orientation
JPH03123560U (en) * 1990-03-26 1991-12-16
WO2009014306A1 (en) * 2007-07-25 2009-01-29 Yong Bum Kim Raman microscope with excellent ratio of signal to noise
KR100882490B1 (en) * 2007-07-25 2009-02-06 김영범 Raman microscope with excellent ratio of signal to noise
WO2009133980A1 (en) * 2008-05-01 2009-11-05 Yong Bum Kim Raman microscope
KR100936645B1 (en) 2008-05-01 2010-01-14 김영범 Raman microscope

Similar Documents

Publication Publication Date Title
KR101394058B1 (en) Measuring Overlay And Profile Asymmetry Using Symmetric And Anti-systemtric Signals
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
US9410880B2 (en) Laser differential confocal mapping-spectrum microscopic imaging method and device
JP2002520589A (en) Spectroscopic ellipsometer
JP2010530074A (en) Single polarizer focus ellipsometer
EP1730570A1 (en) Light profile microscopy apparatus and method
US20210148695A1 (en) Apparatus and method for metrology
CN114442257B (en) Large-range high-precision light beam focal plane tracking device
JP2000031229A (en) Inspection method of semiconductor thin film and manufacture of semiconductor thin film by use thereof
JPH11211654A (en) Polarization analysis device
KR20170055661A (en) Apparatus of real time imaging spectroscopic ellipsometry for large-area thin film measurements
Tan et al. Development of a tomographic Mueller-matrix scatterometer for nanostructure metrology
JPS6117032A (en) Microscope-laser raman spectrometer
US11397109B2 (en) Apparatus for carrying out polarization resolved Raman spectroscopy
WO2021102331A1 (en) High-quality-factor metasurface for phase contrast imaging and spatial frequency filtering
Bykov et al. Combined laser heating and tandem acousto-optical filter for two-dimensional temperature distribution on the surface of the heated microobject
JPH10281876A (en) Polarizing imaging system
JPH10176906A (en) Measuring device
WO2019178822A1 (en) Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit
JP2000356611A (en) Method and system for analyzing micro amount with thermal lens microscope
JP2715999B2 (en) Evaluation method for polycrystalline materials
US6081335A (en) Phase difference measuring device with visible light source for providing easy alignment of optical axes and method therefor
US20230003576A1 (en) Apparatus for carrying out polarization resolved raman spectroscopy
JPH08210972A (en) Polarization analyzing device
JP3046505B2 (en) Particle measuring method and particle measuring device