WO2019178822A1 - Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit - Google Patents

Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit Download PDF

Info

Publication number
WO2019178822A1
WO2019178822A1 PCT/CN2018/080104 CN2018080104W WO2019178822A1 WO 2019178822 A1 WO2019178822 A1 WO 2019178822A1 CN 2018080104 W CN2018080104 W CN 2018080104W WO 2019178822 A1 WO2019178822 A1 WO 2019178822A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
orthogonal
polarizations
shear
birefringent
Prior art date
Application number
PCT/CN2018/080104
Other languages
French (fr)
Inventor
Xian Chen
Shengwang Du
Teng ZHAO
Luwei ZHAO
Zhuohui ZENG
Hoi Chun CHIU
Original Assignee
Light Innovation Technology Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Light Innovation Technology Limited filed Critical Light Innovation Technology Limited
Priority to PCT/CN2018/080104 priority Critical patent/WO2019178822A1/en
Priority to CN201880091655.0A priority patent/CN112219096A/en
Publication of WO2019178822A1 publication Critical patent/WO2019178822A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0215Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods by shearing interferometric methods

Definitions

  • the present disclosure relates to optical characterization of the optical shear of birefringent devices.
  • a birefringent crystal or prism can be used to split the incident light into two orthogonally polarized beams either along different directions or shifting by some lateral displacement.
  • Figure 1 illustrates schematics of such devices.
  • an input light ray 101 is incident to a birefringent device 102 and is split into two (104 and 105) at the shear plane 103, which have orthogonal polarizations (P + and P - ) with a shear angle ⁇ .
  • P + and P - orthogonal polarizations
  • an input light ray 106 is incident to a birefringent device 107 and is split into two parallel rays (109 and 110) at the shear plane 108 which have orthogonal polarizations (P + and P - ) with a lateral shear displacement S.
  • a birefringent device 107 is the Nomarski prism, consisting of two birefringent crystal wedges aligned with different optical axes. It is the key component of a differential interference contrast (DIC) microscope.
  • DIC differential interference contrast
  • the shear angles are typically about 10 -5 rad or even smaller. While this shear angle is critical for a DIC microscope's spatial resolution, contrast, and depth, commercial manufacturers usually do not provide any such information.
  • the required beam size should be greater or equal than 5 cm.
  • the sizes of most birefringent devices are much smaller than that, which hinders the development of the direct method in this field.
  • the system for measuring the shear angle comprises an illumination module, a polarization control unit or polarizer, the said birefringent device, a lens module, and a data acquisition module for recording the light intensity distribution.
  • the system for measuring the shear displacement comprises an illumination module, a polarization control unit or polarizer, the said birefringent device, an imaging module, and a data acquisition module for recording the light intensity distribution.
  • the polarization of the input light beam from the illumination module is controlled such that we can record the two light spots with orthogonal polarizations separately at different frames.
  • the polarizer is used, with mixed polarizations of the input beam from the illumination module, the polarizer is placed before the data acquisition module to record the two spots with orthogonal polarizations separately at different frames. Then we apply localization analysis to determine the central positions of the two spots with perpendicular polarizations and calculate the value of the shear angle/displacement between laterally sheared beams. This method can resolve the shear angle/displacement beyond optical diffraction limit.
  • FIG. 1 shows the schematic drawings of the optical shear effects of two different birefringent devices.
  • FIG. 1A illustrates the shear angle effect when a light ray passes through a type of birefringent device.
  • FIG. 1B illustrates the shear displacement effect when a light ray passes through another type of birefringent device.
  • FIG. 2A is the schematic drawing of the optical setup for measuring the shear angle of a birefringent device using the polarization control unit (PCU) .
  • FIG. 2B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device using the polarization control unit (PCU) .
  • FIG. 3A is the schematic drawing of the optical setup for measuring the shear angle of a birefringent device using the polarizer.
  • FIG. 3B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device using the polarizer.
  • FIG. 4A is the schematic drawing of the optical setup for measuring the shear displacement of a birefringent device using the polarization control unit (PCU) .
  • FIG. 4B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device using the polarization control unit (PCU) .
  • FIG. 5A is the schematic drawing of the optical setup for measuring the shear displacement of a birefringent device using the polarizer.
  • FIG. 5B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device using the polarizer.
  • FIG. 6 shows the intensity distributions collected by the data acquisition module and the results of the localization analysis.
  • FIG. 6A shows the intensity distribution of two overlapped spots with mixed polarizations P + and P - .
  • FIG. 6B shows the intensity distribution of the spot with polarization P + .
  • FIG. 6C shows the intensity distribution of the spot with polarization P - .
  • FIG. 7 is the block diagram showing the procedures of the methods in measuring the shear angle and displacement of a birefringent device.
  • the first optical setup for directly measuring the shear angle of a birefringent device is illustrated in Fig. 2A.
  • a light beam 201 with a diameter D is incident into the birefringent device, which spatially shears the output light beam 203 of polarization P + relative to the output light beam 204 of polarization P - by an angle ⁇ after the shear plane 202.
  • the polarizations P + and P - are orthogonal to each other.
  • the polarization control unit (PCU) 209 is used to control the polarization state of the input light beam 201 and alter the intensity contributions to P + and P - components of the output sheared beams.
  • a lens 205 with focal length f is used to focus the two sheared beams 203 and 204 to two spots 206 and 207 whose centers are separated by ⁇ on the focal plane, which is the Fourier transform of the two beams in the momentum space.
  • the intensity distribution I (x, y) of the spots is collected by the record device 208 on the focal plane.
  • the centroid separation between the two spots 206 and 207 is estimated as
  • the spot size of each of the beams on the focal plane is estimated as
  • the necessary condition for resolving the two spots 206 and 207 in an image is ⁇ >d, i.e.
  • the PCU comprises different optical components.
  • the PCU In the case of nonpolarized incident light, the PCU is made up of a switchable polarization filter for selecting P + or P -. 2)
  • the PCU In the case of polarized incident light, the PCU can be a half-wave plate or a combination of a half-wave plate and quarter-wave plate for selecting P + or P -. .
  • the polarization components P + and P - are either linearly orthogonal or circular orthogonal to each other, depending on the type of the birefringent crystal used.
  • FIG. 2B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device in the first optical setup.
  • a system to implement the function of Fig. 1A, is made up of an illumination module 210 that delivers a light beam, a PCU 209, a birefringent device 212, a lens module 215, and a data acquisition module 218.
  • Fig. 3A illustrate the second optical setup for directly measuring the shear angle of a birefringent device.
  • the polarizer 309 is placed in front of the light intensity distribution record device 208.
  • the incident beam consists of a mixed polarizations of both P + and P - , of which the polarizer 309 only allows one passing through and being collected at 208.
  • the bypass of the polarizer 309 we can individually collect the intensity I + (x, y) and I - (x, y) at different data frames without overlapping.
  • FIG. 3B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device in the second optical setup.
  • a system to implement the function of Fig. 3A, is made up of an illumination module 310 that delivers a light beam, the birefringent device 212, a lens module 215, a switchable polarizer 309, and a data acquisition module 218.
  • Fig. 4A illustrate the first optical setup for directly measuring the shear displacement of a birefringent device.
  • a light beam 401 is focused on the shear plane 402 where the two output orthogonal polarization components 403 and 404 are laterally shifted by displacement S.
  • the shear plane is imaged onto the light intensity distribution record device 208 through an imaging system 405 with a magnification M.
  • two spots 406 and 407 are collected 208.
  • the PCU 209 is used to control the polarization state of the incident light beam such that I + (x, y) and I - (x, y) can be taken separately at different data frames.
  • FIG. 4B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device in the first optical setup.
  • a system to implement the function of Fig. 4A, is made up of an illumination module 410 that delivers a focused light beam, a PCU 209, the birefringent device 412, an imaging module 415, and a data acquisition module 218.
  • Fig. 5A illustrate the second optical setup for directly measuring the shear displacement of a birefringent device.
  • the switchable polarizer 309 is placed in front of the light intensity distribution record device 208.
  • the incident light beam comprises mixed polarization states, i.e. P + and P - , of which the polarizer 309 allows only one passing through and being collected at 208 so that the intensity distributions I + (x, y) and I - (x, y) are separately recorded at 208 at different data frames.
  • FIG. 5B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device in the second optical setup.
  • a system to implement the function of Fig. 5A, is made up of an illumination module 510 that delivers a focused light beam with mixed polarizations, the birefringent device 412, an imaging module 415, a polarizer 309, and a data acquisition module 218.
  • Fig. 6A Intensity distribution 601 of I + (x, y) +I - (x, y) ; 2) Fig. 6B Intensity distribution 602 of I + (x, y) ; 3) Fig. 6C Intensity distribution 604 of I - (x, y) . It is obvious that the separation ⁇ cannot be resolved in Fig. 6A.
  • the corresponding shear angle is determined by Eq. (1) .
  • the localization precision is estimated as
  • is the standard deviation of the single spot intensity distribution
  • a is the pixel size of the data acquisition module
  • N is the number of photons collected
  • b is the background noise.
  • the nanometer localization precision leads to a shear angle measurement precision of 10 -8 rad.
  • the shear displacement is determined by
  • Fig. 7 summarize the methods and procedures in measuring and determining the shear angle ⁇ and shear displacement S.
  • step 703 we take frame 1 with I + (x, y) and frame 2 with I - (x, y) , and obtain their center positions (x + , y + ) and (x - , y - ) with localization analysis.
  • step 704 we obtain the separation distance between the two centers
  • step 705 we obtain the value of the shear angle where f is the local length of the lens system in Fig. 2 and Fig. 3.
  • step 706 we go to step 706 and use the setup in Fig. 4 or Fig. 5.
  • step 707 we take frame 1 with I + (x, y) and frame 2 with I - (x, y) , and obtain their center positions (x + , y + ) and (x - , y - ) with localization analysis.
  • step 708 we obtain the separation distance between the two centers
  • step 709 we obtain the value of the shear displacement
  • M is the transverse image magnification of the imaging module in Fig. 4 and Fig. 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The methods and systems directly measure the optical shear angle and lateral displacement of a light beam passing through a birefringent device (212) with resolution beyond the diffraction limit. The system for measuring the shear angle comprises an illumination module (310), a polarization control unit (209) or polarizer (309), the said birefringent device (212), a lens module (215), and a data acquisition module (218) for recording the light intensity distribution. When the polarization control unit (209) is used, the polarization of the input light beam (201) from the illumination module (310) is controlled such that we can record the two light spots (206, 207) with orthogonal polarizations separately at different frames. When the polarizer (309) is used, with mixed polarizations of the input beam (201) from the illumination module (310), the polarizer (309) is placed before the data acquisition module (218) to record the two spots (206, 207) with orthogonal polarizations separately at different frames. Then it applys localization analysis to determine the central positions of the two spots (206, 207) with perpendicular polarizations and calculate the value of the shear angle/displacement between laterally sheared beams. This method can resolve the shear angle/displacement beyond optical diffraction limit.

Description

Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit FIELD
The present disclosure relates to optical characterization of the optical shear of birefringent devices.
BACKGROUND
A birefringent crystal or prism can be used to split the incident light into two orthogonally polarized beams either along different directions or shifting by some lateral displacement. Figure 1 illustrates schematics of such devices. In Fig. 1A, an input light ray 101 is incident to a birefringent device 102 and is split into two (104 and 105) at the shear plane 103, which have orthogonal polarizations (P + and P -) with a shear angle ε. In Fig. 1B, an input light ray 106 is incident to a birefringent device 107 and is split into two parallel rays (109 and 110) at the shear plane 108 which have orthogonal polarizations (P + and P -) with a lateral shear displacement S. An example of such a device is the Nomarski prism, consisting of two birefringent crystal wedges aligned with different optical axes. It is the key component of a differential interference contrast (DIC) microscope. For the prisms used in a DIC microscope, the shear angles are typically about 10 -5 rad or even smaller. While this shear angle is critical for a DIC microscope's spatial resolution, contrast, and depth, commercial manufacturers usually do not provide any such information. The increasing interests in label-free biological imaging and surface topography push the development of the quantitative DIC microscopy, which demands an accurate determination of the beam shear parameters of the prism. However, by far only indirect methods have been proposed and demonstrated, such as use of calibrated specimens or standard optical wedges, dual-focus fluorescence correlation spectroscopy, spatial interference, and retardance derivative. These  measurements require complicated setups and data analysis.
Consider a collimated monochromatic light beam (e.g. laser) of wavelength λ and diameter D passing through a birefringent prism. The output is two orthogonally polarized light beams propagating along directions separated by a small angle ε. Restricted by the diffraction effect of light, the shear angle has to be larger than the diffraction angle of the beam, i.e., 
Figure PCTCN2018080104-appb-000001
so that the spatially sheared beams can be resolved. This condition suggests that a sufficiently large incident beam (i.e. 
Figure PCTCN2018080104-appb-000002
) is required if we want to directly measure the separation of the scattered beams with a small shear angle. For example, in a typical configuration with λ =400 nm and a shear angle ε=10 μrad (μrad=10 -6rad) , the required beam size should be greater or equal than 5 cm. However, the sizes of most birefringent devices are much smaller than that, which hinders the development of the direct method in this field.
For measuring the lateral displacement, it is also not feasible using the direct method if the displacement S is less and equal than the diffraction limit
Figure PCTCN2018080104-appb-000003
where n is the refractive index.
In this invention, we revisit the direct spatial measurement of the optical shear of birefringent devices with the application of the localization analysis, which can precisely determine the each of the centroids of the two light waves beyond the diffraction limit. The novelty is that the momentum and polarization are not overlap  in the
Figure PCTCN2018080104-appb-000004
joint space.
SUMMARY
We describe the methods and systems to directly measure the optical shear angle and lateral displacement of a light beam passing through a birefringent device with resolution beyond the diffraction limit. The system for measuring the shear angle comprises an illumination module, a polarization control unit or polarizer, the said birefringent device, a lens module, and a data acquisition module for recording the light intensity distribution. The system for measuring the shear displacement comprises an illumination module, a polarization control unit or polarizer, the said birefringent device, an imaging module, and a data acquisition module for recording the light intensity distribution. When the polarization control unit is used, the polarization of the input light beam from the illumination module is controlled such that we can record the two light spots with orthogonal polarizations separately at different frames. When the polarizer is used, with mixed polarizations of the input beam from the illumination module, the polarizer is placed before the data acquisition module to record the two spots with orthogonal polarizations separately at different frames. Then we apply localization analysis to determine the central positions of the two spots with perpendicular polarizations and calculate the value of the shear angle/displacement between laterally sheared beams. This method can resolve the shear angle/displacement beyond optical diffraction limit.
DRAWINGS
FIG. 1 shows the schematic drawings of the optical shear effects of two different birefringent devices. FIG. 1A illustrates the shear angle effect when a light ray passes through a type of birefringent device. FIG. 1B illustrates the shear displacement effect when a light ray passes through another type of birefringent device.
FIG. 2A is the schematic drawing of the optical setup for measuring the shear angle of a birefringent device using the polarization control unit (PCU) . FIG. 2B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device using the polarization control unit (PCU) .
FIG. 3A is the schematic drawing of the optical setup for measuring the shear angle of a birefringent device using the polarizer. FIG. 3B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device using the polarizer.
FIG. 4A is the schematic drawing of the optical setup for measuring the shear displacement of a birefringent device using the polarization control unit (PCU) . FIG. 4B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device using the polarization control unit (PCU) .
FIG. 5A is the schematic drawing of the optical setup for measuring the shear displacement of a birefringent device using the polarizer. FIG. 5B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device using the polarizer.
FIG. 6 shows the intensity distributions collected by the data acquisition module and the results of the localization analysis. FIG. 6A shows the intensity distribution of two overlapped spots with mixed polarizations P + and P -. FIG. 6B shows the intensity distribution of the spot with polarization P +. FIG. 6C shows the intensity distribution of the spot with polarization P -.
FIG. 7 is the block diagram showing the procedures of the methods in  measuring the shear angle and displacement of a birefringent device.
DETAILED DESCRIPTION
The first optical setup for directly measuring the shear angle of a birefringent device is illustrated in Fig. 2A. A light beam 201 with a diameter D is incident into the birefringent device, which spatially shears the output light beam 203 of polarization P + relative to the output light beam 204 of polarization P - by an angle ε after the shear plane 202. The polarizations P + and P - are orthogonal to each other. The polarization control unit (PCU) 209 is used to control the polarization state of the input light beam 201 and alter the intensity contributions to P + and P -components of the output sheared beams. A lens 205 with focal length f is used to focus the two sheared  beams  203 and 204 to two  spots  206 and 207 whose centers are separated by Δ on the focal plane, which is the Fourier transform of the two beams in the momentum space. The intensity distribution I (x, y) of the spots is collected by the record device 208 on the focal plane. The centroid separation between the two  spots  206 and 207 is estimated as
Figure PCTCN2018080104-appb-000005
The spot size of each of the beams on the focal plane is estimated as
Figure PCTCN2018080104-appb-000006
Using conventional direct measurement, the necessary condition for resolving the two  spots  206 and 207 in an image is Δ>d, i.e. 
Figure PCTCN2018080104-appb-000007
In our system, we can control the input beam polarization using PCU 209 so that we can individually collect the intensity distribution from each of the spots at different camera frames to avoid spot overlapping. It is implemented by means of: 1) at P=P +, we take an image showing P +-polarized spot I + (x, y) ; 2) at P=P -, we take an image with P --polarized spot I - (x, y) .
Depending on the polarization state, the PCU comprises different optical components. 1) In the case of nonpolarized incident light, the PCU is made up of a switchable polarization filter for selecting P + or P -. 2) In the case of polarized incident light, the PCU can be a half-wave plate or a combination of a half-wave plate and quarter-wave plate for selecting P + or P -.. The polarization components P + and P - are either linearly orthogonal or circular orthogonal to each other, depending on the type of the birefringent crystal used.
FIG. 2B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device in the first optical setup. Such a system, to implement the function of Fig. 1A, is made up of an illumination module 210 that delivers a light beam, a PCU 209, a birefringent device 212, a lens module 215, and a data acquisition module 218.
Fig. 3A illustrate the second optical setup for directly measuring the shear angle of a birefringent device. Different from the first one in Fig. 2A, the polarizer 309 is placed in front of the light intensity distribution record device 208. In this setup, the incident beam consists of a mixed polarizations of both P + and P -, of which the polarizer 309 only allows one passing through and being collected at 208. By switching the bypass of the polarizer 309, we can individually collect the intensity I + (x, y) and I - (x, y) at different data frames without overlapping.
FIG. 3B shows the block diagram of the corresponding system for measuring the shear angle of a birefringent device in the second optical setup. Such a system, to implement the function of Fig. 3A, is made up of an illumination module 310 that delivers a light beam, the birefringent device 212, a lens module 215, a switchable polarizer 309, and a data acquisition module 218.
Fig. 4A illustrate the first optical setup for directly measuring the shear displacement of a birefringent device. A light beam 401 is focused on the shear plane 402 where the two output  orthogonal polarization components  403 and 404 are laterally shifted by displacement S. Then the shear plane is imaged onto the light intensity distribution record device 208 through an imaging system 405 with a magnification M. Finally two  spots  406 and 407 are collected 208. The PCU 209 is used to control the polarization state of the incident light beam such that I + (x, y) and I - (x, y) can be taken separately at different data frames.
FIG. 4B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device in the first optical setup. Such a system, to implement the function of Fig. 4A, is made up of an illumination module 410 that delivers a focused light beam, a PCU 209, the birefringent device 412, an imaging module 415, and a data acquisition module 218.
Fig. 5A illustrate the second optical setup for directly measuring the shear displacement of a birefringent device. The switchable polarizer 309 is placed in front of the light intensity distribution record device 208. In this setup, the incident light beam comprises mixed polarization states, i.e. P + and P -, of which the polarizer 309 allows only one passing through and being collected at 208 so that the intensity distributions I + (x, y) and I - (x, y) are separately recorded at 208 at different data frames.
FIG. 5B shows the block diagram of the corresponding system for measuring the shear displacement of a birefringent device in the second optical setup. Such a system, to implement the function of Fig. 5A, is made up of an illumination module 510 that delivers a focused light beam with mixed polarizations, the birefringent  device 412, an imaging module 415, a polarizer 309, and a data acquisition module 218.
To illustrate the localization analysis of our method and without the loss of generality, an example that the optical shear of a birefringent device (either Fig. 1 A or B) is less or equal than
Figure PCTCN2018080104-appb-000008
is given in Fig. 6. We represent three types of results collected by the data acquisition module 218: 1) Fig. 6A Intensity distribution 601 of I + (x, y) +I - (x, y) ; 2) Fig. 6B Intensity distribution 602 of I + (x, y) ; 3) Fig. 6C Intensity distribution 604 of I - (x, y) . It is obvious that the separation Δ cannot be resolved in Fig. 6A. By localization analysis, we determine the positions (x +, y +) and (x -, y -) of  centroids  603 and 605 of the  spots  602 and 604 corresponding to the intensity distributions I + (x, y) and I - (x, y) respectively. Then the separation between them can be calculated as
Figure PCTCN2018080104-appb-000009
The corresponding shear angle is determined by Eq. (1) . The localization precision is estimated as
Figure PCTCN2018080104-appb-000010
where σ is the standard deviation of the single spot intensity distribution, a is the pixel size of the data acquisition module, N is the number of photons collected, and b is the background noise. Because we do not have any limitation on the photon budget in principle and N is only limited by the camera sensor saturation. Accounting systematic perturbations from the environment, such as mechanical vibration and temperature fluctuation, a nanometer localization accuracy beyond diffraction limit is practically achievable.
For measuring the shear angle of the birefringent device of Fig. 2 and Fig. 3, we apply equation (1) to obtain the value of the shear angle
Figure PCTCN2018080104-appb-000011
The shear angle measurement precision or resolution is given by
Figure PCTCN2018080104-appb-000012
For a typical configuration with f=10 cm in Fig. 2 and 3, the nanometer localization precision leads to a shear angle measurement precision of 10 -8 rad.
For measuring the shear displacement of the birefringent device of Fig. 4 and Fig. 5, the shear displacement is determined by
Figure PCTCN2018080104-appb-000013
Fig. 7 summarize the methods and procedures in measuring and determining the shear angle ε and shear displacement S. We start checking the type of birefringent device in step 701. If the task is to measure the shear angle ε, we go to step 702 and use the setup in Fig. 2 or Fig. 3. In step 703, we take frame 1 with I + (x, y) and frame 2 with I - (x, y) , and obtain their center positions (x +, y +) and (x -, y -) with localization analysis. In step 704, we obtain the separation distance between the two centers
Figure PCTCN2018080104-appb-000014
In step 705, we obtain the value of the shear angle
Figure PCTCN2018080104-appb-000015
where f is the local length of the lens system in Fig. 2 and Fig. 3. If the task is to measure the shear displacement S, from 701 we go to step 706 and use the setup in Fig. 4 or Fig. 5. In step 707, we take frame 1 with I + (x, y) and frame 2 with I - (x, y) , and obtain their center positions (x +, y +) and (x -, y -) with localization analysis. In step 708, we obtain the  separation distance between the two centers
Figure PCTCN2018080104-appb-000016
In step 709, we obtain the value of the shear displacement
Figure PCTCN2018080104-appb-000017
Here M is the transverse image magnification of the imaging module in Fig. 4 and Fig. 5.

Claims (29)

  1. A method for measuring the shear angle of a birefringent device, comprising:
    shining a light beam on the said birefringent device;
    splitting two orthogonally polarized output beams (the first polarization beam and the second polarization beam) after the said birefringent device into two different directions with a shear angle;
    using a lens system to focus the said two beams;
    placing a light intensity distribution record device after the said lens system where the said beams are focused on;
    recording the first frame in the said light intensity distribution record device with the said first polarization beam;
    determining the first center position of the light intensity distribution in the first frame using localization analysis;
    recording the second frame in the said record device with the said second polarization beam;
    determining the second center position of the light intensity distribution in the second frame using localization analysis;
    calculating the separation distance between the said first center position and the said second center position;
    and calculating the said shear angle from the said separation distance and the focal length of the said lens system
  2. The method according to claim 1, wherein the said two orthogonal polarizations can be either two orthogonal linear polarizations or two orthogonal circular polarizations, depending on the type of the said birefringent device.
  3. The method according to claim 1, wherein the said lens system can be either  a single lens or a combined multiple lenses system.
  4. A first system for measuring the shear angle of a birefringent device, comprising:
    a light illumination module outputting a light beam;
    a polarization control unit;
    the said birefringent device;
    a lens module;
    and a data acquisition module placed where the beams are focused.
  5. The system according to claim 4, wherein the said polarization control unit is used to control the polarization of the input light beam so that the polarization of the output light beam from the said illumination module can be switched between the two orthogonal polarizations.
  6. The polarization control unit according to claim 5, can be a polarizer if the said light beam is nonpolarized, or a half-wave plate, or a combination of a half-wave plate and a quarter-wave plate, or other polarization units.
  7. The polarization control unit according to claim 5, wherein the said two orthogonal polarizations can be either two orthogonal linear polarizations or two orthogonal circular polarizations, depending on the type of the said birefringent prism.
  8. The system according to claim 4, wherein the said lens system can either a single lens or a combined multiple lenses system.
  9. The system according to claim 5, wherein the said data acquisition module can be a CCD camera or a CMOS camera.
  10. A second system for measuring the shear angle of a birefringent device, comprising:
    a light illumination module outputting a light beam;
    the said birefringent device;
    a lens module;
    a switchable polarization filter;
    and a data acquisition module placed where the beams are focused.
  11. The system according to claim 10, wherein the said switchable polarization filter is used to select one of the two orthogonal polarization light components passing through the filter.
  12. The system according to claim 10, wherein the said switchable polarization filter can be either a linear polarizer or a circular polarization filter, depending on the types of the two orthogonal polarizations.
  13. The system according to claim 10, wherein the said two orthogonal polarizations can be either two orthogonal linear polarizations or two orthogonal circular polarizations, depending on the type of the said birefringent prism.
  14. The system according to claim 10, wherein the said lens system can either a single lens or a combined multiple lenses system.
  15. The system according to claim 10, wherein the said data acquisition module can be a CCD camera or a CMOS camera.
  16. A method for measuring the shear displacement S of a birefringent device, comprising:
    shining a light beam focused on the shear plane of the said birefringent device;
    splitting two orthogonally polarized output beams (the first polarization beam and the second polarization beam) at the shear plane with a lateral shear displacement S;
    using an imaging system to image the shear plane to a light intensity distribution record device with an image magnification M;
    recording the first frame in the said record device with the said first polarization beam;
    determining the first center position of the light intensity distribution in the first frame using localization analysis;
    recording the second frame in the said record device with the said second polarization beam;
    determining the second center position of the light intensity distribution in the second frame using localization analysis;
    calculating the separation distance Δ between the said first center position and the said second center position;
    and calculating the said shear displacement S from the measured separation distance d divided by the imaging magnification M. That is S=Δ/M.
  17. The method according to claim 16, wherein the said two orthogonal polarizations can be either two orthogonal linear polarizations or two orthogonal circular polarizations, depending on the type of the said birefringent device.
  18. A first system for measuring the shear displacement S of a birefringent device, comprising:
    a light illumination module outputting a focused light beam;
    a polarization control unit;
    the said birefringent device with s shear plane when the light beam is focused on;
    an imaging module;
    and a data acquisition module placed where the image of the shear plane is formed.
  19. The system according to claim 18, wherein the said polarization control unit is used to control the polarization of the input light beam so that the polarization of the input light beam can switched between the two orthogonal polarizations.
  20. The polarization control unit according to claim 19, can be a polarizer if the said input light beam is nonpolarized, or a half-wave plate, or a combination of a half-wave plate and a quarter-wave plate, or other polarization units.
  21. The polarization control unit according to claim 19, wherein the said two orthogonal polarizations can be either two orthogonal linear polarizations or two orthogonal circular polarizations, depending on the type of the said birefringent prism.
  22. The system according to claim 18, wherein the said imaging module can be a single lens or a multiple lenses system.
  23. The system according to claim 18, wherein the said data acquisition module can be a CCD camera or a CMOS camera.
  24. A second system for measuring the shear displacement S of a birefringent device, comprising:
    a light illumination module outputting a focused light beam;
    the said birefringent device with s shear plane when the light beam is focused on;
    a switchable polarization filter;
    an imaging module;
    and a data acquisition module placed where the image of the shear plane is formed.
  25. The system according to claim 24, wherein the said switchable polarization filter is used to select one of the two orthogonal polarization light components passing through the filter.
  26. The system according to claim 24, wherein the said switchable polarization filter can be either a linear polarizer or a circular polarization filter, depending on the types of the two orthogonal polarizations.
  27. The system according to claim 24, wherein the said two orthogonal polarizations can be either two orthogonal linear polarizations or two orthogonal circular polarizations, depending on the type of the said birefringent device.
  28. The system according to claim 24, wherein the said imaging module can be a single lens or a multiple lenses system.
  29. The system according to claim 24, wherein the said data acquisition module can be a CCD camera or a CMOS camera.
PCT/CN2018/080104 2018-03-23 2018-03-23 Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit WO2019178822A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/080104 WO2019178822A1 (en) 2018-03-23 2018-03-23 Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit
CN201880091655.0A CN112219096A (en) 2018-03-23 2018-03-23 Method and system for measuring optical shear of a birefringent device beyond the diffraction limit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080104 WO2019178822A1 (en) 2018-03-23 2018-03-23 Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit

Publications (1)

Publication Number Publication Date
WO2019178822A1 true WO2019178822A1 (en) 2019-09-26

Family

ID=67988094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080104 WO2019178822A1 (en) 2018-03-23 2018-03-23 Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit

Country Status (2)

Country Link
CN (1) CN112219096A (en)
WO (1) WO2019178822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100013949A1 (en) * 2021-05-28 2022-11-28 Univ Degli Studi Di Napoli Federico Ii Photonic system for the detection of transversal displacements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201096526Y (en) * 2007-08-22 2008-08-06 中国科学院上海光学精密机械研究所 Phase-shifting lateral shearing interferometer
JP2010002846A (en) * 2008-06-23 2010-01-07 Univ Nagoya Multiple image polarization element group
CN102981268A (en) * 2012-11-23 2013-03-20 西安交通大学 Birefringent crystal beam splitter with adjustable lateral shearing quantity
CN103424195A (en) * 2013-08-09 2013-12-04 中国科学院上海光学精密机械研究所 Phase-shifting shearing interferometer by rotating crystal plate
CN103424196A (en) * 2013-08-09 2013-12-04 中国科学院上海光学精密机械研究所 Double-plate polarization phase-shifting shearing interferometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370223C (en) * 2005-12-21 2008-02-20 哈尔滨工业大学 Double hole type measural apparatus for scattering angle of laser beam
TWM381175U (en) * 2009-12-22 2010-05-21 Li-Yu Lin Improved ceramic radiator structure
WO2015052715A1 (en) * 2013-10-07 2015-04-16 Ramot At Tel-Aviv University Ltd. Polarization-independent differential interference contrast optical arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201096526Y (en) * 2007-08-22 2008-08-06 中国科学院上海光学精密机械研究所 Phase-shifting lateral shearing interferometer
JP2010002846A (en) * 2008-06-23 2010-01-07 Univ Nagoya Multiple image polarization element group
CN102981268A (en) * 2012-11-23 2013-03-20 西安交通大学 Birefringent crystal beam splitter with adjustable lateral shearing quantity
CN103424195A (en) * 2013-08-09 2013-12-04 中国科学院上海光学精密机械研究所 Phase-shifting shearing interferometer by rotating crystal plate
CN103424196A (en) * 2013-08-09 2013-12-04 中国科学院上海光学精密机械研究所 Double-plate polarization phase-shifting shearing interferometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100013949A1 (en) * 2021-05-28 2022-11-28 Univ Degli Studi Di Napoli Federico Ii Photonic system for the detection of transversal displacements
WO2022249127A1 (en) * 2021-05-28 2022-12-01 Universita' Degli Studi Di Napoli Federico Ii Photonic system for detecting transverse displacements

Also Published As

Publication number Publication date
CN112219096A (en) 2021-01-12

Similar Documents

Publication Publication Date Title
TWI659204B (en) Spectroscopic beam profile metrology
US9297980B2 (en) Optical device for transmission-type scanning by moving scanning beam without moving observation sample
CN107076663B (en) Double refraction measuring device and method, film checking device and method
US20050157294A1 (en) Method and apparatus for multi-mode spectral imaging
US10393579B2 (en) Miniature spectrometer and a spectroscopic method
JP5599790B2 (en) Method and apparatus for reducing optical interference and crosstalk of double optical tweezers using one laser light source
CN104165582A (en) Phase shift point-diffraction interference detection device and method based on reflecting grating
US20180246307A1 (en) Polarisation microscope
CN109470173A (en) A kind of binary channels simultaneous phase shifting interference microscopic system
CN113218635A (en) Non-contact vector polarization light field test system
CN111156926A (en) Four-dimensional hyperspectral detection system
CN107084665B (en) A kind of Spectral Confocal displacement sensor
WO2019178822A1 (en) Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit
JP6188823B2 (en) Improvements in or related to hyperspectral imaging
US10921721B1 (en) Measurement system and grating pattern array
EP3574333A1 (en) Devices, methods, and sample holder for testing photonic integrated circuits, and photonic integrated circuits
JP2017090581A (en) Lighting device and observation system
US11635608B2 (en) Method and microscope for determining the refractive index of an optical medium
KR20150044291A (en) Automatic focus control apparatus and automatic focus control method using the same
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens
Maeda et al. Birefringence compensation for single-shot 3D profilometry using a full-Stokes imaging polarimeter
Chiu et al. Measuring optical beam shear angle of polarizing prisms beyond the diffraction limit with localization method
Chatterjee Design considerations and fabrication techniques of Nomarski reflection microscope
Maeda et al. Single-shot 3D profilometry using a color imaging polarimeter
RU2649045C2 (en) Multichannel confocal microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910664

Country of ref document: EP

Kind code of ref document: A1