JPS6042736A - Illumination assay diagnostic method - Google Patents
Illumination assay diagnostic methodInfo
- Publication number
- JPS6042736A JPS6042736A JP58149912A JP14991283A JPS6042736A JP S6042736 A JPS6042736 A JP S6042736A JP 58149912 A JP58149912 A JP 58149912A JP 14991283 A JP14991283 A JP 14991283A JP S6042736 A JPS6042736 A JP S6042736A
- Authority
- JP
- Japan
- Prior art keywords
- illumination
- circuit
- abnormality
- order light
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Facsimiles In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産朶上の利用分野〕
本発明は、レーザ発振器と該レーザ発振器がら照射され
るレーザ光を変調する光変調器とを少なくとも具えたイ
ルミネーションアッシーにおける前記レーザ発振器の発
振異常もしくは前記光変調器の変調異常を検出するだめ
のイルミネーションアッシー診断方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of industrial application] The present invention relates to oscillation of a laser oscillator in an illumination assembly including at least a laser oscillator and an optical modulator that modulates laser light emitted from the laser oscillator. The present invention relates to an illumination assembly diagnostic method for detecting an abnormality or a modulation abnormality of the optical modulator.
第1図はファクシミリあるいはレーザプリンタ等に用い
られるレーザ走査光学系の一般的構成例を示す略図であ
りレーデ発振器l,光変調器2。FIG. 1 is a schematic diagram showing a general configuration example of a laser scanning optical system used in a facsimile machine, a laser printer, etc., and includes a Rade oscillator 1 and an optical modulator 2.
ミラー3,レンズ4から成るイルミネーションアッシー
100と回転多面鏡5,シリンダレンズ6から成るスキ
ャナーアッシー200および感光体ドラム7とを少なく
とも備えて構成される。係るレーザ走査光学系における
記録走査は以下のような方法により行なわれる。まずレ
ーザ発振器lから発振された所定光量のレーザ光は光変
調器2に入射し、該光変調器2に加えられているビデオ
信号■8によって変調され偏向されずに直進する0次光
と、偏光され光学的画情報を含む1次光として出力され
る。この両川力のうち前記光学的画情報を含む1次光は
ミラー3.レンズ4を介して回転多面鏡5の1偏向面に
導かれ該回転多面鏡5の回転に伴って偏向されシリング
レンズ6を通して感光体ト°ラム7上を一定方向に走査
される。このような回転多面鏡5の回転によって前記1
次光の走査を該回転多面鏡5の各偏向開缶に順次行い前
記感光体1°ラム7上に該1次光の画情報に応じた潜像
を形成する。その後該感光体ドラム7の外周に備わって
いる図示しない現像、転写、定着、清掃の各機構を順次
通過させることにより前記潜像にもとづいた画情報の記
録を行うものである。ところで係る構成のレーザ走査光
学系に生じる各種の異常の検出は従来以下に示すような
診断方法により行なわれていた。すなわち第1図に示す
8は前記感光体ドラム7の走査開始位置と物理的に等価
となる空間に設けられた光センサであり該光センサ8に
よって上述した如く回転多面鏡5の回転に伴って走査さ
れる前記レーザ光を受光しその光址に応じた光゛屯変換
出力を検出するとともに該光電変換出力の有無あるいは
出力レベルの変化を監視することによって前記レーデ光
の毎走査時における走査開始位置のズレあるいはレーザ
パワーの出力異常等の診断を行っていた。しかしながら
上記従来の診断方法を上述した如くのイルミネーション
アッシー100とスキャナーアッシー200の独立した
2つのサブアツシーにより構成されるレーザ走査光学系
に適用した場合には実際にはスキャナーアッシー200
の異常例えば前記回転多面鏡5の駆動系の故障によって
前記レーデ光が走査されていない時などは、前記光セン
サ8には受光出力が得られずこの状態がイルミネーショ
ンアッシー100の異常(前記レーザ発振器lの発振異
常若しくは光変調器2の変調異常との誤検出)として検
出されサブアツシ一単位での正確な異常診断ができない
という欠点があった。゛また前記光センサ8を含むレー
ザ光検出部では該光センサ8に光電変換出力が「有」の
状態すなわちレーザ光が常に入射している状態を「正常
」として検出しているから上述とは反対に光変調器2が
例えば変調しっばなしになりイルミネーションアッシー
1o。The illumination assembly 100 includes a mirror 3 and a lens 4, a scanner assembly 200 includes a rotating polygon mirror 5 and a cylinder lens 6, and a photosensitive drum 7. Recording scanning in such a laser scanning optical system is performed by the following method. First, a predetermined amount of laser light oscillated from a laser oscillator 1 enters an optical modulator 2, and is modulated by a video signal 8 applied to the optical modulator 2, resulting in zero-order light that travels straight without being deflected. It is polarized and output as primary light containing optical image information. Among these Ryokawa forces, the primary light containing the optical image information is the mirror 3. The light is guided through a lens 4 to one deflection surface of a rotating polygon mirror 5, is deflected as the rotating polygon mirror 5 rotates, and is scanned in a fixed direction on a photosensitive drum 7 through a Schilling lens 6. By such rotation of the rotating polygon mirror 5, the above 1
The scanning of the secondary light is sequentially performed on each deflection opening of the rotating polygon mirror 5 to form a latent image on the photoreceptor 1° ram 7 in accordance with the image information of the primary light. Thereafter, image information based on the latent image is recorded by sequentially passing through developing, transferring, fixing, and cleaning mechanisms (not shown) provided on the outer periphery of the photosensitive drum 7. By the way, detection of various abnormalities occurring in the laser scanning optical system having such a configuration has conventionally been carried out by the following diagnostic method. That is, 8 shown in FIG. 1 is an optical sensor provided in a space physically equivalent to the scanning start position of the photoreceptor drum 7, and the optical sensor 8 detects the rotation of the rotating polygon mirror 5 as described above. Scanning is started at each scan of the laser beam by receiving the laser beam to be scanned, detecting the optical conversion output according to the light location, and monitoring the presence or absence of the photoelectric conversion output or changes in the output level. We were diagnosing misalignment or abnormal laser power output. However, when the conventional diagnostic method is applied to a laser scanning optical system composed of two independent sub-assemblies, the illumination assembly 100 and the scanner assembly 200, the scanner assembly 200 actually
For example, when the radar light is not being scanned due to a failure in the drive system of the rotating polygon mirror 5, the optical sensor 8 cannot receive a received light output, and this state causes an abnormality in the illumination assembly 100 (the laser oscillator). This is detected as an oscillation abnormality in the optical modulator 2 or a modulation abnormality in the optical modulator 2), making it impossible to accurately diagnose the abnormality in units of subassemblies.゛Also, the laser light detection section including the optical sensor 8 detects the state where the photoelectric conversion output is "present" on the optical sensor 8, that is, the state where the laser light is always incident, as "normal", so the above is not true. On the contrary, the optical modulator 2 becomes, for example, modulated and the illumination assembly 1o.
に異常がある場合でも前記光センサ8の受光出力が「有
」の状態であることから該イルミネーションアッシー1
00の異常は検出できないという欠点もあった。Even if there is an abnormality in the illumination assembly 1, the light reception output of the optical sensor 8 remains in the "present" state.
There was also a drawback that abnormalities of 00 could not be detected.
本発明は上記欠点を除去するだめになされたものであり
スキャナーアッシーの動作状態(例えば走査異常)の影
響を受けることなくしがも変調器の変調しっばなし異常
の検出にも有効であシサブアッシ一単位での異常診断と
りわけイルミネーションアッシー内での異常診断を正確
かつ確実に行うことができるイルミネーションアッシー
診断方法を提供することを目的とする。The present invention has been devised to eliminate the above-mentioned drawbacks, and is effective in detecting abnormalities in the modulation of the modulator without being affected by the operational status of the scanner assembly (for example, abnormal scanning). It is an object of the present invention to provide an illumination assembly diagnostic method that can accurately and reliably perform abnormality diagnosis on a unit basis, especially within an illumination assembly.
そこで本発明においては前記光変調器の出力のうちV=
されずに直進的に出力されスキャナーアラ7−における
記録走査のだめの偏向にも竿からない0次光に着目し前
記光センサを新たにイルミネーションアッシー内の前記
0次光の通過光路に設けるとともに該光センサから得ら
れる前記0次光の受光出力の変化・ぐターンと、前記ビ
デオ信号の変化・母ターンとを比較し該両者の変化パタ
ーンに差異を生じた時の出力により前記イルミネーショ
ンアッシーの異常を検出することによって上記した目的
を達成している。Therefore, in the present invention, among the outputs of the optical modulator, V=
Focusing on the zero-order light that is outputted in a straight line without being reflected and is not reflected in the deflection of the recording scanning end in the scanner array 7-, the optical sensor is newly installed in the optical path of the zero-order light in the illumination assembly, and the A change in the received light output of the zero-order light obtained from the optical sensor is compared with a change in the video signal, and an abnormality in the illumination assembly is determined by the output when a difference occurs in the change pattern between the two. The above purpose is achieved by detecting.
以下本発明の一実施例を添付図面にもとづいて詳細1に
説明する。第2図は本発明のイルミネーションアッシー
診断方法を適用したレーザ走査光学系の一構成例を示す
概略図であり第1図に示した従来装置の各部と同様の機
能を果すものについては同様の符号を符している。An embodiment of the present invention will now be described in detail 1 based on the accompanying drawings. FIG. 2 is a schematic diagram showing an example of the configuration of a laser scanning optical system to which the illumination assembly diagnostic method of the present invention is applied. Components that perform the same functions as those of the conventional device shown in FIG. 1 have the same reference numerals. It is marked.
係る本発明のレーザ走査光学系によれば前記光センサ8
をイルミネーションアッシーlOO内の前記光変調器2
0の出力のうちO次光Loの通過光路に設けたことおよ
び該イルミネーションアッシー100の外部にイルミネ
ーションアッシー異常検出回路(以下単に異常検出回路
と略す)9を設けたことを新たな特徴としている。係る
本発明のレーザ走査光学系において、前記光変調器20
および異常検出回路9にはともに図示しない画情報供給
回路からビデオ信号V8が加えられている。According to the laser scanning optical system of the present invention, the optical sensor 8
The optical modulator 2 in the illumination assembly lOO
The new features include that the illumination assembly abnormality detection circuit (hereinafter simply referred to as abnormality detection circuit) 9 is provided outside the illumination assembly 100 and provided in the optical path through which the O-order light Lo among the zero outputs passes. In the laser scanning optical system of the present invention, the optical modulator 20
A video signal V8 is applied to both the abnormality detection circuit 9 from an image information supply circuit (not shown).
一方レーザ発振器lから発振されたレーザ光は前記光変
調器20に入射される。そこで該光変調器20は該レー
ザ光を上述の如く加えられるビデオ信号V8により変調
し0次光Loもしくは1次光Llとして出力する。ここ
で前記0次光Loは前記光変調器20によって変調され
なかったレーザ光であり前記レーデ発振器lからの入射
光路に沿って直進的に出力される。また前記1次光L1
は前記光変調器20により変調された光学的画情報を含
むレーザ光であり所定角度に偏向されて出力される。壕
だこれらO次光Loおよび1次光L1の光量は、レーザ
発振器1から照射される被変調レーザ光の光量が一定で
あることから例えば0次光Loの光量が増せば1次光L
1の光量が減り、反対に()次光Loの光量が減少すれ
ば1次元L1の光量が増すというように互いに相反して
増減するようガ関係をもって前記光変調器20のビデオ
信号VBによる変調をうけるものである。従ってこれら
の光電変換出力と前記ビデオ信号との関係は、等測的に
観て第3図(、)〜(c)に示す如くのタイムチャート
で表わすことができる。すなわち第3図(、)に示すビ
デオ信号v8に対して1次光り、の光電変換出力は同図
(b)に示す如く前記ビデオ信号VSと同特性を示(、
ておりO次光Loの光電変換出力は同図(c)に示す如
く前者の特性に対して全く反転した特性を示している。On the other hand, the laser beam oscillated from the laser oscillator l is incident on the optical modulator 20. Therefore, the optical modulator 20 modulates the laser beam with the video signal V8 applied as described above and outputs it as the zero-order light Lo or the first-order light Ll. Here, the zero-order light Lo is laser light that has not been modulated by the optical modulator 20, and is output straight along the incident optical path from the Rade oscillator I. In addition, the primary light L1
is a laser beam containing optical image information modulated by the optical modulator 20, and is output after being deflected at a predetermined angle. Since the light intensity of the modulated laser beam emitted from the laser oscillator 1 is constant, the light intensity of these O-order light Lo and the first-order light L1 is, for example, as the light intensity of the zero-order light Lo increases, the first-order light L1 increases.
The light intensity of the light modulator 20 is modulated by the video signal VB in such a manner that the light intensity of the first dimension L1 decreases, and conversely, when the light intensity of the ()-order light Lo decreases, the light intensity of the one-dimensional L1 increases. It is something that receives. Therefore, the relationship between these photoelectric conversion outputs and the video signal can be expressed isometrically by time charts as shown in FIGS. 3(,) to (c). That is, the photoelectric conversion output of the primary light beam for the video signal v8 shown in FIG. 3(,) shows the same characteristics as the video signal VS as shown in FIG. 3(b).
The photoelectric conversion output of the O-order light Lo exhibits a completely inverted characteristic to the former characteristic, as shown in FIG. 3(c).
一般的に感光体ドラム7上に画情報に応じた潜像を形成
する為に用いられるのは上述したレーデ光のうち1次光
L1の方である。すなわち上述の如く光変調器20によ
り変調され、偏向を受けた1次光り、はまずミラー3に
入射し反射されレンズ4を介し、回転多面鏡5の回転に
伴って偏向されつつシリンダレンズ6全通して感光体ド
ラム7上を一定方向に走査され該レーザ光の画情報に応
じた潜像を形成する。ここでシリンダレンズ6は、上述
した如く回転多面鏡50飼向によって該レーザ光の走査
方向と垂直な方向に対する該レーザ光の位置ズレを補正
すべく機能するものである。一方前記光変調器20から
偏向されずに出力されだ0次光Loは前記レーザ発振器
lから照射される被変調レーザ光の光路に沿って直進し
、光センサ8に入射し該光センサ8により′6気信号に
変換されその光電変換出力は更に前記異常検出回路9に
導かれる。第4図はこの異常検出回路9の一構成例をブ
ロック図で示したものであり遅延回路91,2値化回路
92.比較回路93から成る。そして上述した如く光セ
ンサ8により検出された前記0次光Loの光電変換出力
はまず前記2値化回路92に加えられ一定レベルの閾値
で2値化された後頁に比較回路93に加えられる。他方
、上述したビデオ信号V8は該異常検出回路9の遅延回
路91Kまず加えられ所定タイムだけ遅延された後前記
比較回路93に加克られる。ここでの前記ビデオ信号V
sの遅延は該ビデオ信号Vsとの比較入力である前記0
次光Loの2値化出力の当該比較回路93への人力タイ
ミングがAiJ記光変光変調器20調により遅れるのを
補正するだめに行なわれるものでありこの遅延補正をす
ることにより前記比較回路93への前記ビデオ信号v8
および0次光り。の2値化出力の入力タイミングを合致
させ後述するような比較を可能としている。先にも述べ
たように通常すなわち前記レーザ発振器1および光変調
器20で正常な発振動作および変調動作が行なわれてい
る時には前記ビデオ信号VsとO次光Loの光電変換出
力とけ互いに正反対の特性を示し、その変化パターンは
同じである。ところが何等かの理由によってもし前記レ
ーザ発振器1での発振異常あるいは光変調器20での変
調異常が起こった場合すなわちイルミネーションアッシ
ー100で異常が発生した場合には、前記0次光Loも
この影響で変化し当然ながら前記2値化回路92から比
較回路93に加わる当該0次光Loの光電変換出力の2
値出力も上述とは違った特性を示すことに々る。そこで
前記比較回路93では上述の如く入力されるビデオ信号
VsとO次光Loの光電変換出力の2値化出力の変化状
態を検索し、これら両者の出カバターンに差異を生じた
時にイルミネーションアッシー異常検出信号を出力する
。そして前記異常検出回路9の外部ではこの異常検出出
力によって警報鳴動あるいは異常表示等を行うことによ
り前記イルミネーションアッシー100に異常の発生し
たことを扱者にうながす。ところで該イルミネーション
アッシー100の異常と1.では上述したレーザ発振器
lの発振異常、光変調器20の変調異常の他、ミラー3
.レンズ4の故障等の要因も含まれるが該ミラー3.レ
ンズ4の故障は構造上はとんど考える必要がない。この
為前記イルミネーションアッシー100の異常を知った
扱者は前記レーザ発振器lおよび光変調器20の所定ケ
所のみを点検しその異常を摘出するとともに該異常に対
する対索を構じればよい。このように前記イルミネーシ
ョンアッシー100内の光変調器20のO次光L0の光
路に光センサ8を配設し、該光センサ8から得られる前
記0次光Loの光電変換出力を2値化し該2値化出力と
前記ビガオ伯号vl]との変化ノセターンを比較し、該
両者間に生じる出カバターンの差異をもってイルミネー
ションアッシーt o o ノ異常を診断するようにし
たため前記光センサ8を感光体ドラム7の周面に配設[
7該光センサの検出出力のレベルおよび・やターンから
異常を診断する従来、の方法に比べ、回転多面鏡の回転
不能等の影響によってl/〜ザ光を受光できないためこ
の状態をイルミネーションアッシーの異常として診断し
てしまったりあるいけまた光変調器が変調しつばな(〜
の状態となった時に前記レーザ光を常に受光できるため
この状態を異常として診断できなかったりという誤診断
を回避することができる。Generally, the primary light L1 of the above-mentioned Rede light is used to form a latent image on the photoreceptor drum 7 according to image information. That is, the primary light that has been modulated and deflected by the optical modulator 20 as described above first enters the mirror 3, is reflected, passes through the lens 4, and is deflected as the rotating polygon mirror 5 rotates until it reaches the entire cylinder lens 6. The photoreceptor drum 7 is scanned in a fixed direction through the laser beam, forming a latent image according to the image information of the laser beam. Here, the cylinder lens 6 functions to correct the positional deviation of the laser beam in the direction perpendicular to the scanning direction of the laser beam by the rotating polygon mirror 50 as described above. On the other hand, the zero-order light Lo output from the optical modulator 20 without being deflected travels straight along the optical path of the modulated laser beam irradiated from the laser oscillator l, enters the optical sensor 8, and is detected by the optical sensor 8. The photoelectric conversion output is converted into an abnormality signal and is further guided to the abnormality detection circuit 9. FIG. 4 is a block diagram showing an example of the configuration of this abnormality detection circuit 9, including a delay circuit 91, a binarization circuit 92, and so on. It consists of a comparison circuit 93. As described above, the photoelectric conversion output of the zero-order light Lo detected by the optical sensor 8 is first applied to the binarization circuit 92, binarized with a threshold value of a certain level, and then applied to the comparison circuit 93. . On the other hand, the above-mentioned video signal V8 is first applied to the delay circuit 91K of the abnormality detection circuit 9, delayed by a predetermined time, and then applied to the comparison circuit 93. The video signal V here
The delay of s is the comparison input with the video signal Vs.
This is done in order to correct the delay in the manual timing of the binary output of the secondary light Lo to the comparison circuit 93 due to the AiJ optical variable modulator 20 adjustment, and by making this delay correction, the comparison circuit 93 said video signal v8 to 93
and zero-order light. The input timings of the binarized outputs are matched to enable the comparison described below. As mentioned above, normally, that is, when the laser oscillator 1 and the optical modulator 20 are performing normal oscillation and modulation operations, the photoelectric conversion outputs of the video signal Vs and the O-order light Lo have characteristics that are opposite to each other. , and the change pattern is the same. However, if for some reason an oscillation abnormality occurs in the laser oscillator 1 or a modulation abnormality in the optical modulator 20, that is, if an abnormality occurs in the illumination assembly 100, the zero-order light Lo will also be affected by this. 2 of the photoelectric conversion output of the zero-order light Lo that changes and is naturally applied from the binarization circuit 92 to the comparison circuit 93.
Value outputs also often exhibit characteristics different from those described above. Therefore, the comparison circuit 93 searches for the state of change in the binary output of the input video signal Vs and the photoelectric conversion output of the O-order light Lo as described above, and when a difference occurs in the output pattern of these two, the illumination assembly is abnormal. Outputs a detection signal. Outside the abnormality detection circuit 9, this abnormality detection output causes an alarm to sound or an abnormality display to notify the operator that an abnormality has occurred in the illumination assembly 100. By the way, the abnormality of the illumination assembly 100 and 1. In addition to the oscillation abnormality of the laser oscillator l and the modulation abnormality of the optical modulator 20 described above, the mirror 3
.. This includes factors such as failure of the lens 4, but the mirror 3. There is almost no need to think about the failure of the lens 4 from a structural point of view. For this reason, an operator who learns of an abnormality in the illumination assembly 100 only needs to inspect predetermined locations of the laser oscillator 1 and optical modulator 20, identify the abnormality, and take countermeasures against the abnormality. In this way, the optical sensor 8 is disposed in the optical path of the O-order light L0 of the optical modulator 20 in the illumination assembly 100, and the photoelectric conversion output of the O-order light Lo obtained from the optical sensor 8 is binarized. In order to compare the change turn between the binarized output and the above-mentioned Bigao Hakugo vl, and to diagnose an abnormality in the illumination assembly based on the difference in output pattern between the two, the optical sensor 8 is connected to the photoreceptor drum. Arranged on the circumference of 7 [
7.Compared to the conventional method of diagnosing an abnormality based on the level and turn of the detection output of the optical sensor, this condition cannot be detected by the illumination assembly because it cannot receive the light due to the inability of the rotating polygon mirror to rotate. It may be diagnosed as an abnormality, or the optical modulator may be modulated (~
Since the laser beam can always be received when this state occurs, it is possible to avoid a misdiagnosis in which this state cannot be diagnosed as an abnormality.
以上説明したように本発明のイルミネーションアッシー
診断方法によれば、光変調器通過後のイルミネーション
アッシー内における0次光出力の変化ノ9ターンと前記
ビデオ信号の変化パターンとを比較し、該両者の変化・
ぐターンに差異を生じた時をイルミネーションアラ7−
の異常と診断するようにしたためスキャナーアッシーの
作動状態の影響を受けずにイルミネーションアッシーの
異常を検出できしかも光変調器の変調しっばなし異常の
検出にも有効であることからザブアッシ一単位での正確
な機能診′断が実現できるという優れた効果が得られる
。As explained above, according to the illumination assembly diagnostic method of the present invention, the nine turns of change in the zero-order light output within the illumination assembly after passing through the optical modulator are compared with the change pattern of the video signal, and the two are compared. change·
Illumination Ara 7-
Since it is possible to detect abnormalities in the illumination assembly without being affected by the operating status of the scanner assembly, it is also effective in detecting abnormalities in the optical modulator, so it is possible to detect abnormalities in the illumination assembly without being affected by the operating status of the scanner assembly. The excellent effect of realizing accurate functional diagnosis can be obtained.
第1図は、従来の異常診断方法を適用したレーザ走査光
学系の概略構成図、第2図は、本発明のイルミネーショ
ンアッシー診断方法を適用したレーデ走査光学系の概略
構成図、第3図は第2図に示したレーザ走査光学系の各
部における各種信号を等節約に表わしたタイムチャート
、第4図は本発明に係るイルミネーションアッシー異常
検出回路の一構成例を示すブロック図である。
1・・・レーザ発振器、2.20・・・光変調器、3・
・・ミラー、4・・・レンズ、5・・・回転多面鏡、6
・・・シリンダレンズ、7・・・感光体ドラム、8・・
・光センサ、9・・・イルミネーションアッシー異常検
出回路、91・・・遅延回路、92・・・2値化回路、
93・・・比較回路。
第1図
第2図
第3図
第4図FIG. 1 is a schematic configuration diagram of a laser scanning optical system to which a conventional abnormality diagnosis method is applied, FIG. 2 is a schematic configuration diagram of a radar scanning optical system to which the illumination assembly diagnosis method of the present invention is applied, and FIG. FIG. 2 is a time chart showing various signals in each part of the laser scanning optical system shown in an equally economical manner, and FIG. 4 is a block diagram showing an example of the configuration of an illumination assembly abnormality detection circuit according to the present invention. 1... Laser oscillator, 2.20... Optical modulator, 3.
...Mirror, 4...Lens, 5...Rotating polygon mirror, 6
... Cylinder lens, 7... Photosensitive drum, 8...
- Optical sensor, 9... Illumination assembly abnormality detection circuit, 91... Delay circuit, 92... Binarization circuit,
93... Comparison circuit. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
光を特定のビデオ信号により変調し、それぞれ偏向角の
異なる0次光および1次光として出力する光変調器を具
えたイルミネーションアッシー′と前記光変調器から出
力される前記1次光を走査するスキャナーアッシーとを
有するレーザ走査光学系におけるイルミネーションアッ
シー診断方法において前記スキャナーアッシーによって
用いられない前記0次光の光電変換出力の変化状態と前
記ビデオ信号の変化状態とを比較し、該両者の変化状態
が異なっ7’C場合を前記イルミネーションアップ−の
異常として判断することを特徴とするイルミネーション
アッシー診断方法。An illumination assembly' comprising a laser oscillator and an optical modulator that modulates the laser light emitted from the laser oscillator with a specific video signal and outputs it as zero-order light and first-order light with different deflection angles, respectively; and the optical modulator. In an illumination assembly diagnostic method in a laser scanning optical system having a scanner assembly that scans the first-order light outputted from a device, a change state of the photoelectric conversion output of the zero-order light not used by the scanner assembly and a change state of the photoelectric conversion output of the zero-order light and the video signal. A method for diagnosing an illumination assembly, characterized in that the illumination assembly diagnosis method is characterized in that when the two change states are different and the two change states are different and the case is 7'C, it is determined as an abnormality in the illumination up.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58149912A JPS6042736A (en) | 1983-08-17 | 1983-08-17 | Illumination assay diagnostic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58149912A JPS6042736A (en) | 1983-08-17 | 1983-08-17 | Illumination assay diagnostic method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6042736A true JPS6042736A (en) | 1985-03-07 |
Family
ID=15485304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58149912A Pending JPS6042736A (en) | 1983-08-17 | 1983-08-17 | Illumination assay diagnostic method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6042736A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5538509A (en) * | 1978-09-11 | 1980-03-18 | Hitachi Ltd | Electrophotographic printer |
JPS56123522A (en) * | 1980-03-05 | 1981-09-28 | Ricoh Co Ltd | Optical scanner |
JPS57124755A (en) * | 1981-01-27 | 1982-08-03 | Hitachi Koki Co Ltd | Failure detector |
-
1983
- 1983-08-17 JP JP58149912A patent/JPS6042736A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5538509A (en) * | 1978-09-11 | 1980-03-18 | Hitachi Ltd | Electrophotographic printer |
JPS56123522A (en) * | 1980-03-05 | 1981-09-28 | Ricoh Co Ltd | Optical scanner |
JPS57124755A (en) * | 1981-01-27 | 1982-08-03 | Hitachi Koki Co Ltd | Failure detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4620237A (en) | Fast scan jitter measuring system for raster scanners | |
JP3722785B2 (en) | Image quality detection apparatus and image forming apparatus | |
KR20030094301A (en) | An improved displacement and torque sensor | |
JPH0914941A (en) | Detection device for rotary angle of rotary shaft | |
JPS6042736A (en) | Illumination assay diagnostic method | |
JP2007133006A (en) | Device for detecting failure of exposure machine | |
JPH0712747A (en) | Method of inspecting outer surface of disc covered with thin film and device therefor | |
JP2000238330A (en) | Image-forming apparatus | |
JP2582436B2 (en) | Laser light scanning device | |
JPH023080A (en) | Optical print head | |
JPH07253552A (en) | Image forming device | |
JP2004058492A (en) | Image formation device | |
JP2006267665A (en) | Scanning type exposure device and image forming device | |
JPS60213919A (en) | Electrophotographic recorder | |
KR100503378B1 (en) | Self-test method of optical coherence tomography system | |
JPH10132704A (en) | Optical inspection device | |
JPH10185834A (en) | Method and device for inspecting defect | |
JPS63202713A (en) | Light beam scanning device | |
JP3391888B2 (en) | Light reflection type sensor and its detection method | |
JPS5818640A (en) | Detecting method for movement of endless belt recording body | |
JPH01257912A (en) | Image recorder | |
JPS5927988Y2 (en) | Laser processing equipment | |
JPS633212A (en) | Measuring instrument | |
JP2822231B2 (en) | Circular substrate positioning device | |
EP0087235A1 (en) | Surface fault detector |