JPS604271A - Manufacture of solar battery - Google Patents

Manufacture of solar battery

Info

Publication number
JPS604271A
JPS604271A JP58110980A JP11098083A JPS604271A JP S604271 A JPS604271 A JP S604271A JP 58110980 A JP58110980 A JP 58110980A JP 11098083 A JP11098083 A JP 11098083A JP S604271 A JPS604271 A JP S604271A
Authority
JP
Japan
Prior art keywords
substrate
layer
semiconductor substrate
plating
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58110980A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58110980A priority Critical patent/JPS604271A/en
Publication of JPS604271A publication Critical patent/JPS604271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To attain the improvement of performance and the reduction of the number of processes by improving the property of plating adhesion by the use of a semiconductor substrate having crystal grain boundaries. CONSTITUTION:The surface of a P type Si ribbon crystal substrate 21 is coated with a reflection preventing solution with phosphorus added and is then calcined, resulting in the formation of a reflection preventing film 22 and at the same time of an N<+> layer 23. Next, when it is calcined after the formation of an Al paste 24 over the entire back surface by a screen printing method, a P<+> layer 25 an alloy layer is formed by the diffusion of Al atoms into the substrate 21. Then, the film 22 is removed by etching, with a plating resist 26 as a mask, down to the N<+> layer 23 of the substrate 21. Ni layers 27 are formed on both surfaces back and front by Ni electroless plating, thus being made as electrode bases. Solder layers 28 are formed thereon and lead wires 29 are connected thereto, resulting in the completion of the title device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は太陽電池の製造方法(二係り、特(二高4゛孕
性を維持しながら低コスト化を満足する結晶粒yr−を
有する半導体基板を用いた太陽電池の製造エイ呈の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a solar cell (2), particularly (2) and (4) a semiconductor having crystal grains yr- that satisfies cost reduction while maintaining fertility. This invention relates to improvements in the manufacturing process of solar cells using substrates.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、太陽光な光電変換するにはシ1jコン単結れてい
る。
Conventionally, to convert sunlight into electricity, a single silicone was connected.

その−例を第1図(二より説明すると、例え(ず厚さ0
.3〜0.4非のP型シリコン単結晶基板(1)の表面
から0.2〜0.6μmの深さく二熱拡散等の方法によ
lJi拡散層(2)が設けられて破線で示すpn接合部
を形成しており、この計拡散層(2)(二元が当るよう
(二格子電極(3)、P型シリコン単結晶基板(1)の
裏面(二は全面(−わたり裏面電極が形成されている。
An example of this is shown in Figure 1.
.. A lJi diffusion layer (2) is provided by a method such as bithermal diffusion to a depth of 0.2 to 0.6 μm from the surface of a P-type silicon single crystal substrate (1) of 3 to 0.4 μm, as shown by a broken line. A p-n junction is formed, and this diffusion layer (2) (two lattice electrodes (3)) is connected to the back surface of the P-type silicon single crystal substrate (1) (two is the entire surface (-crossing back surface electrode)). is formed.

また空気中から計拡散層(2)L二元が入射するとき(
二表面で光の一部が反射されるが、この反射(−よる損
失を改善するため(二通常表面には反射防止膜(5)が
形成されている。これはn型シリコン単結晶基板にp+
拡散層を形成したものでも同じである。
Also, when the binary L of the meter diffusion layer (2) is incident from the air (
A part of the light is reflected by the two surfaces, but in order to improve the loss caused by this reflection (-), an anti-reflection film (5) is usually formed on the two surfaces.This is applied to the n-type silicon single crystal substrate. p+
The same applies to those in which a diffusion layer is formed.

このような太陽電池の製造方法(二は槙々のものが知ら
れているが、太陽電池の製造方法はpH接合形成工程、
電極形成工程2反射防止膜形成工程の3工程に大別でき
る。
The manufacturing method of such a solar cell (the second one is known as Makisan), the manufacturing method of a solar cell is a pH junction formation step,
The process can be roughly divided into three steps: electrode formation process 2, antireflection film formation process.

このうちpH接合形成工程には、従来より基板と異なる
導電型の不純物を含む雰囲気中で基板を高温に保ち、不
純物の41;3により基板中に不純物を拡散させる拡散
炉を用いる方法が一般的であり。
Among these, the conventional method for the pH junction formation process is to keep the substrate at high temperature in an atmosphere containing impurities of a conductivity type different from that of the substrate, and use a diffusion furnace to diffuse the impurities into the substrate using impurities. Yes.

均一性、量産性の点から広く採用されている。その他、
pn接合の形成にはイオン注入法やエピタキシ苓ル成長
法も半尋体#、業界では行われているが。
It is widely adopted due to its uniformity and mass productivity. others,
Ion implantation and epitaxial growth methods are also used in the industry to form pn junctions.

太陽電池用としては生産性が低いため、あまり使用され
ていない。
It is not widely used for solar cells because of its low productivity.

また反射防止膜形成工程には従来蒸着法、スピンコーテ
ィング法などが一般に試みられてきたが、実用的には特
別にコーティング層を設けない方法エツチング性を利用
した異方性エツチング面を形成する方法がとられている
Conventionally, methods such as vapor deposition and spin coating have been tried in the anti-reflection film formation process, but in practice, methods that do not require a special coating layer and methods that utilize etching properties to form an anisotropically etched surface. is taken.

上述のようにpn接合形成工程と、反射防止膜形成工程
については現状の単結晶シリコン基板を用いて低価格化
を指向した場合、それぞれ、不純物熱拡散と異方性エツ
チング面が、現状では最も好ましい。
As mentioned above, in the pn junction formation process and the antireflection film formation process, if we aim to reduce the cost by using the current single crystal silicon substrate, the impurity thermal diffusion and anisotropic etching surface, respectively, are currently the most effective. preferable.

一方、シリコン基板自体に安価な多結晶シリコンや、リ
ボン結晶シリコンを使用することが最近試みられ、一部
製晶化されている。これらについては基板中にさまざま
な方位の結晶粒が存在するところから、異方性エツチン
グを行っても良好な反射防止効果が得られない。
On the other hand, attempts have recently been made to use inexpensive polycrystalline silicon or ribbon crystalline silicon for the silicon substrate itself, and some of these have been crystallized. In these cases, since crystal grains with various orientations exist in the substrate, a good antireflection effect cannot be obtained even if anisotropic etching is performed.

すなわち(100)面に近い方位の而は比較的異方性エ
ツチングされるが、他の方位を有する面は等性的にエツ
チングされたり、そのレートが異なるため、単に粒界に
段差が生じるのみで反射防止(二ならない。従ってこの
ような結晶粒界を有する安価な基板に対しては反射防止
膜を形成しなければならず、この場合、仮封防止材料に
予め、ドーパントを混入した溶液を塗布形成後、焼成に
よって反射防止膜形成と接合形成とを同時に行う方法が
現状では一谷船縮された工程と考えられる。
In other words, planes with orientations close to the (100) plane are etched relatively anisotropically, but planes with other orientations are etched isotropically or at different rates, resulting in simply a step at the grain boundary. Therefore, it is necessary to form an anti-reflection film on inexpensive substrates with such grain boundaries.In this case, a solution containing a dopant is added to the temporary sealing prevention material in advance. At present, the method of simultaneously forming an antireflection film and forming a bond by baking after coating is considered to be a shortened process.

次(二集電菟極を形成する111極形成工程について幻
、蒸儀法やスパッタリング法により、金属薄膜を形成す
る方法がJνも信頼性の点で優れているものの、極めて
処理能力が低いものとして低価格を指向の点では優れて
いるものの、極めて処理能力が低いものとして、低価格
を指向した量産工程からは敬遠されている。
Next (about the 111 pole formation process that forms the second current collector pole) Jν is a method of forming a metal thin film using a steam method or a sputtering method, which is excellent in terms of reliability, but has extremely low throughput. Although it is superior in terms of aiming for low price, it is avoided from mass production processes aiming at low price as it has extremely low processing capacity.

このti量産工程実用化されている電極形成工程として
は、印刷法によるものと、めっき法によるものとがある
Electrode forming processes that have been put into practical use in this ti mass production process include a printing method and a plating method.

この内、印刷法(二よるものは原飼料として高価な銀を
多嵐に含むベーストを使用することが通常であり、現状
ではともがく、近い将来における全体コストの低下時に
は使用がむずがしくなる。この銀に替イっる卑金属を主
成分とするペースト甲、現在のところ、太陽電池用には
P型の高濃度層(88F)を作る場合のアルミニウムペ
ーストがあるが、このアルミニウムペーストtri、 
電極用として使用することがむずかしい。
Among these methods, the printing method (the second method usually uses basest containing a large amount of expensive silver as raw material feed, which is difficult to use at present, and will become difficult to use when the overall cost decreases in the near future. .At present, there is an aluminum paste for making a P-type high concentration layer (88F) for solar cells, but this aluminum paste tri,
Difficult to use as an electrode.

また印刷法による電極では、後処理として高温の焼成工
程が必要であるし、H7fにその後、表面の酸化した層
をエツチング除去しないと、半FBのつきが悪<、実用
化できない。捷た、このエツチング除去には通常弗酸を
使用するが、この場合、印刷電極金属が介在すると、基
板にステイニング現象を起こし、1.み状の汚れを生じ
ることがある。
Further, electrodes produced by printing require a high-temperature firing step as a post-treatment, and unless the oxidized layer on the surface is removed by etching after H7F, the half-FB has poor adhesion and cannot be put to practical use. Usually, hydrofluoric acid is used to remove this etching, but in this case, if the printed electrode metal is present, it will cause a staining phenomenon on the substrate. May cause stains.

また銀が表面に露出した電極は、長期的な使用時に酸化
が進行し、更にかつ色に変色して商品価値を低下させた
(3、賽子のiFi列抵抗抵抗9大して、特性の低下を
きたすことがしばしばあった。更に印刷電極は基板との
密着性が悪く、電極剥離事故を起すことがあり、信頼性
の点で問題がある。
In addition, electrodes with exposed silver on the surface progressed to oxidation during long-term use, and also changed color, reducing the commercial value. In addition, printed electrodes have poor adhesion to the substrate, which can lead to electrode peeling accidents, which poses problems in terms of reliability.

他方、めっき電極は、ニッケル、銅など、比較的安価に
材料を効率よく形成できるので量産用にむいているが、
電極を形成しない部分の基板上にマスクを形成する工程
と従来の単結晶シリコン基板では密煎件の点で電極形成
後に400〜500℃のシンターを行う工程を有し、工
程を複雑なものにしていた。即ち、マスクを形成する工
程≦二おいてけ半稈体ノ、1・折中への汚染の混入を嫌
い、半導体工業で一般的なフォトレジストの塗布・乾燥
、光露光、現像、エツチングをJllj′i次行う方法
が用いられる。また高温でのシンターに金1の基板中へ
の拡散を併う点から効率向上に有利とされている接合深
さを浅くすることが不可能である。
On the other hand, plated electrodes are suitable for mass production because materials such as nickel and copper can be formed efficiently at relatively low cost.
There is a step of forming a mask on the parts of the substrate where no electrodes will be formed, and a step of sintering at 400 to 500 degrees Celsius after forming the electrodes due to the high density of conventional single-crystal silicon substrates, which complicates the process. was. In other words, the process of forming a mask ≦ 2. The process of forming a semi-culm. 1. We do not want to introduce contamination into the process, so we do not apply photoresist coating, drying, light exposure, development, and etching, which are common in the semiconductor industry. 'i-th order method is used. Furthermore, since high-temperature sintering involves diffusion of gold 1 into the substrate, it is impossible to reduce the junction depth, which is considered advantageous for improving efficiency.

以上より、太陽電池低価格化の為に結晶粒界を有する安
価な基板を用い、複雑なめっき用マスク形成工程や高温
でのシンタ一工程を省き、かっ電イ返の密着性、零子イ
q;の良好なめつき電極形成工程が要望されていた。
Based on the above, in order to reduce the cost of solar cells, we have used an inexpensive substrate with grain boundaries, omitted the complicated plating mask formation process and high-temperature sintering process, and improved the adhesion of Kaden-eki and zero-element There has been a demand for a process for forming plated electrodes with good quality.

〔発明の目的〕[Purpose of the invention]

本発明は上述した問題点及び要望(二鑑みkされたもの
であり、めっきの下地と々る基板を密着性の点から好ま
しい結晶粒界を有する基板に選び、高温シンタ一工程が
省け、/ハつその結果、安価なめつき、レジストを最初
からパター状(=形成することができるよう(−して工
程の簡略化を計った高性能、低価格の太陽電池を得るこ
とが可能力太陽電池の製造方法を提供することを目的と
している。
The present invention has been made in view of the above-mentioned problems and demands.The present invention has been made in view of the above-mentioned problems and demands.The substrate on which the plating is applied is selected as a substrate having preferable grain boundaries from the viewpoint of adhesion, and the high temperature sintering process can be omitted. As a result, it is possible to obtain high-performance, low-cost solar cells by simplifying the process by using inexpensive plating and resist formation from the beginning. The purpose is to provide a manufacturing method for.

〔発明の軒要〕[Essentials of the invention]

本発明の太陽電池の製造方法は、結晶粒界に多少の段差
を有し、めっき電極として好ましい状態の半導体基板を
用意し、この半導体基板の表面(二この半導体基板とは
異なるクイズのドーパントを含み、かつ反射防止膜を形
成する溶液を塗する工程と焼成により反射防止膜の形成
とドーパントのドーピングを同時に行ってpn接合を形
成する工程と、基板の裏面(二裏面電極を形成するため
のM−8iの合金層をアルミニウムペーストの印刷とそ
れ(二続く焼成(二より行う。この焼成C二も、めっき
電極を密着性良く均一につけるために焼成条件を適正化
するととが大事である。即ち合金層の凹凸が著しく増加
する800’0を越える焼成温度を避け700〜soo
”oの間で10〜30秒程度の最高温度保持短時間焼成
とする。続いて通常のめっき用レジストからフィラー及
び顔料2色素等を除去した組成J:りなるめっきレジス
トをスクリーン印刷法により、所望の71’A部を残[
2て形成し、この溝部からエツチング(二より反射防止
+=aを除去し、半導体基板の−さ面をi′!で出させ
た後、このパさせた半導体基板の表面及び半導体基板の
裏面のAI −S i合金層上にニッケル+:・:qを
弓1i極下地として無′屯解めつき法(二より形成し、
シンターを行うか、または行イつず(−ニッケルjjり
上(二はんだ層を形成することを特徴とする太陽°「(
旬11Lの製造方法である。このシンターは通常必要な
いがパターンAi’i!幅が狭い場合(二は、150〜
300″CI位のシンターをfIへした力が密着性が向
上する場合がある。
The method for manufacturing a solar cell of the present invention involves preparing a semiconductor substrate that has some steps in the grain boundaries and is in a favorable condition as a plating electrode, and applying a dopant that is different from the surface of the semiconductor substrate A process of applying a solution that contains the anti-reflection film and forming an anti-reflection film, a process of simultaneously forming an anti-reflection film and doping with a dopant by baking, and forming a p-n junction, and a process of forming a p-n junction on the back surface of the substrate (two The M-8i alloy layer is printed with aluminum paste and then fired (performed from the second step).For this firing C2, it is also important to optimize the firing conditions in order to uniformly attach the plating electrode with good adhesion. In other words, avoid firing temperatures exceeding 800'0, which will significantly increase the unevenness of the alloy layer.
Hold the maximum temperature for about 10 to 30 seconds and bake for a short time.Next, a composition J: Rinaru plating resist, which is obtained by removing fillers, pigments, two dyes, etc. from a regular plating resist, was prepared by screen printing. Leave the desired 71'A part [
After etching (removing the anti-reflection +=a from the groove part and exposing the -side surface of the semiconductor substrate by i'!), the surface of the etched semiconductor substrate and the back surface of the semiconductor substrate are On the AI-S i alloy layer, nickel +:.
Perform sintering or solder process by forming two solder layers (-nickel solder).
This is the manufacturing method for Shun 11L. This sinter is usually not necessary, but pattern Ai'i! If the width is narrow (second is 150~
Adhesion may be improved by applying force to fI of sinter of about 300″CI.

〔発明の実施例〕[Embodiments of the invention]

本発明は/1−!?にめつきの晋fn性を向させるよう
にしプこところに特徴があり、その結果、性能の向上と
工程の短縮化が達成されろ。
The present invention is /1-! ? The process is characterized by a process that improves the smoothness of the polishing process, resulting in improved performance and shortened processes.

このためC二めつき下地となる基板の表裏面の状態を改
良した。 ′ まず表面は異方性エツチングが不可能なことから、平滑
にし、反射防止膜を形成する。この平滑にする方法とし
ては、混酸によるエッチ−ジグを行えばよい。ステイニ
ングが生じる。・扇合(二は高濃度のアルカリ液でイつ
ずか)Iエツチングをする方法が有効である。ご−の平
滑穴は反射防止性や後工程への影、Htを出さない程度
に結晶粒界でのi役lΩを高々故μつけてやることが、
この21掲合、密着性の点から肝要である。
For this reason, the conditions of the front and back surfaces of the substrate, which will serve as the base for C second plating, were improved. ' First, the surface cannot be anisotropically etched, so it is smoothed and an anti-reflection film is formed. As a method for smoothing the surface, an etch jig using a mixed acid may be used. Staining occurs.・The method of etching with a fan (the second is etching with a highly concentrated alkaline solution) is effective. The smooth hole has an anti-reflection property, affects post-processing, and it is best to add an IΩ of IΩ at the grain boundary to the extent that it does not cause Ht.
This 21st combination is important from the point of view of adhesion.

裏面)二ついては、その形状に太き7)変化を与えずに
AI!−S i 、 1331i’kj刀イ成を、や(
けり−1′4シい起伏の生じkい条件で行うことにより
・−f二成できる。
Back side) If there are two, the shape will be thicker 7) AI without changing the shape! -S i, 1331i'kj sword, ya (
By conducting the test under conditions where there are large undulations, -f2 can be obtained.

即ち、A/ペーストを印にコリし、乾テ学しに、後、迎
春外線による短時間アニールにより合金化させる。
That is, the A/paste is hardened to the mark, dried, and then alloyed by short-time annealing using an external wire.

この方向i−を従〕:4の雰囲気加熱炉を用いた方法に
比較し、めっきの密着性に対し2、−メキしく良好な!
噂面状二・ηとなる。
Compared to the method using an atmosphere heating furnace according to this direction i-]: 2, the adhesion of the plating is much better!
The rumored surface shape is 2・η.

とりわけ合金化が光分に行、(つれる700″O以上の
ピーク温度で数10秒のアニール条f、’p)5;よぐ
、800Cυ上にすると面の凹凸が不規則に大きくなっ
たり、アルミニラl、の球状析出現宏が起ζり好下しぐ
ない状態となるので、これ以下の温!疋ζニすることが
大切である。これC二対、し従来の雰囲気加熱法だと8
00〜850°Cにしないと十分な特性が得られず凹凸
の発生を阻止できなかった。
In particular, alloying occurs in the optical range (annealing process for several tens of seconds at a peak temperature of 700"O or higher)5; when the alloying temperature exceeds 800C, the irregularities on the surface become irregularly large. It is important to keep the temperature below this temperature because the appearance of spherical precipitates of aluminum oxide and aluminium oxide will quickly deteriorate. and 8
Unless the temperature was 00 to 850°C, sufficient characteristics could not be obtained and the occurrence of unevenness could not be prevented.

以上の表裏面の処理により、めっきののりが良くなり、
密着性が向上する。その結果、更(二工程の工夫により
性能の向上と、工程の短縮化が可能と々る。
The above treatment of the front and back surfaces improves the adhesion of the plating,
Adhesion is improved. As a result, it is possible to improve performance and shorten the process by devising a two-step process.

まず性能の向上であるが、従来の太陽電池を安価に形成
するプロセスでは、電極の形成に印刷法やJl常のめつ
き方法が用いられ、いずれも450〜800℃の焼成を
必要とした。このような高い温度は電極金属の半導体基
板中への拡散を著しく促進するために接合深さを通常0
.5μ以上(二しないと、いわゆるつきぬけ現象、即ち
、電極金属が基板表面の拡散層を通り抜は基板本来の導
電型の領域(二まで達する現象が発生して素子特性を著
しく悪化していた。しかし、その0.5μ゛以上の接合
とすると短波長の光に対する利用効率が少なく、変換効
率向上の一因子がこれ(二より、さまたげられていた。
First, regarding the improvement of performance, in the conventional process for forming solar cells at low cost, printing methods and conventional plating methods were used to form electrodes, both of which required firing at 450 to 800°C. Such high temperatures significantly promote the diffusion of electrode metal into the semiconductor substrate, typically reducing the junction depth to zero.
.. If the conductivity was not larger than 5 μm, a so-called penetration phenomenon would occur, in which the electrode metal passes through the diffusion layer on the substrate surface and reaches the region of the original conductivity type of the substrate (2 μm), significantly degrading the device characteristics. However, if the junction is 0.5 .mu.m or more, the utilization efficiency for short-wavelength light is low, and this has been one of the factors for improving conversion efficiency.

これに対し本発明では低温で密着性の良いめっき法を採
用すること(二より接合深さを0,3μ程Jgl iで
浅くでき、これにより、特性の向上が達成された。
In contrast, in the present invention, by employing a plating method with good adhesion at low temperatures (secondarily, the bonding depth can be made shallower by about 0.3 μm Jgli), thereby achieving improved characteristics.

また400°C以上の高温での焼成は印刷インク、めっ
き溶液などに含まれる不純物をも多く基板中にとりこみ
、これが従来の不艮の原因の大きな部分を占めていたが
、本発明(二より著しく軽減された。
In addition, baking at a high temperature of 400°C or higher introduces many impurities contained in printing ink, plating solution, etc. into the substrate, which was a major cause of failure in the past. significantly reduced.

次に工程の短縮化の効果(二ついて述べる。Next, we will discuss the effects of shortening the process (two points will be discussed).

即ち、本発明では従来、全面(二形成後パターン状にエ
ツチングしていためつき用のフォトレジストを低温でも
剥離可能な組成のめつきレジストにすることにより、最
初からパターン状に印刷できるようC二して工程を省略
した。これは、めっきの密着性が低温処理でも十分良く
力ったことに帰因し、前述の如く、高温処理時(二考慮
しなければならなかった不純物、とりわけ、めっきレジ
スト中の不純物を、それ程厳しく考える必要がなくなっ
たことC二関連する。つ韮り従来の高温処理をしなけれ
ば密着性が保てないような場合(二は、一般的な印刷法
(二よるめっきレジストは高温処理中の不純物の基板へ
の1受入があるので使用できなく、半導体工業に実績の
あるフォトレジストのみであった。実際、めっき用とし
て市販されているようなパターン印刷レジストを使用す
ると充分な特性のものが得られなかった。これに対し、
本発明では。
That is, in the present invention, conventionally, the photoresist for plating is etched into a pattern after formation, and the plating resist is made into a plating resist with a composition that can be peeled off even at low temperatures. This is because the adhesion of the plating was sufficiently strong even during low-temperature processing, and as mentioned above, during high-temperature processing (2) the plating It is no longer necessary to consider impurities in the resist so strictly.This is related to C2.In cases where adhesion cannot be maintained without conventional high-temperature processing (2) The conventional plating resist could not be used because impurities were introduced into the substrate during high-temperature processing, and only photoresists that had a proven track record in the semiconductor industry were used. When used, sufficient characteristics could not be obtained.On the other hand,
In the present invention.

このようなめっき用レジスト(プリント配線などに用い
る一般的なもの)でも充分良い特性が得られた。
Even with such a plating resist (generally used for printed wiring, etc.), sufficiently good characteristics were obtained.

しかも本発明では残渣として残り、初期特性(二は影響
しないが、長期的な素子劣化をもたらす、密着性を増す
シリカ、アエロジル等のフィラー成分や顔料、色紫分を
除いた、めっきレジストを用いている。このフィラー成
分はレジストの密着性を上げるため(二条用されている
が、ここでは、めっきと同様レジストの密″/1′Y性
も下地の基板の状態の最適化により充分良好なものとな
っておりフィラーはいらないことがわかった結果である
Moreover, in the present invention, a plating resist is used that excludes filler components such as silica and Aerosil, which increase adhesion, pigments, and purple components, which remain as a residue and do not affect the initial characteristics (2), but cause long-term element deterioration. This filler component is used in order to improve the adhesion of the resist (two strips are used, but here, as with plating, the density/1'Y properties of the resist are also sufficiently good by optimizing the condition of the underlying substrate. This is the result of finding out that the filler is not needed.

色素や顔料は下地基板との色の対比によりパターンを見
易くするため(二添加されるものであるが、本発明では
表面の凹凸とレジストの光反射状態の差(二より、特別
にこのようなものを添加しなくても充分コントラストが
つきパターンが認識できることがわかり、これを除くこ
とが可能となった。
Dyes and pigments are added in order to make the pattern easier to see by contrasting the color with the underlying substrate (2), but in the present invention, the differences between the surface irregularities and the light reflection state of the resist (2) are added to make the pattern easier to see. It was found that the contrast was sufficient and the pattern could be recognized without adding anything, and it became possible to eliminate this.

以上のようにして工程の短縮化が達成された。As described above, the process was shortened.

次に本発明(−到る重要実験結果、特(二温度範囲や工
程の選択等、本発明のポイント(二ついてωで1明する
Next, we will explain the main points of the present invention, including the important experimental results, especially the two temperature ranges and selection of processes.

先ず従来技術では、めっきの密着性が悪く、これを良好
にするために高温処理(450″C〜60(1’0)を
していたが、本発明では下Jdt、の状態を制〈fして
高温処理無しでも充分密着性が上った結果を説明する。
First, in the conventional technology, the adhesion of plating was poor, and high temperature treatment (450''C to 60 (1'0)) was used to improve this, but in the present invention, the condition of the lower Jdt is controlled <f We will explain the result of sufficient adhesion even without high-temperature treatment.

即ち、基板の表面のエツチングはF(i” ; CH3
CO0H;HNO,を16 : 15 : lで混合し
たものがコ゛:送も平滑な表面になることがわかったが
、その後、20襲NaOH水溶液を110℃に加熱して
1分間エツチングすると密着性の点で好しいことがわか
った。即ち、952図に示すように20%N a OH
;yJC溶液を使用して0分間乃至5分間とエツチング
を行なった場合付着力は曲線0に示すようになり、1分
mj程度が最も好しいことが4)が6゜これは結晶粒界
(二11ジも好しい4d度の段差がでさ帝ンメ1性を上
げているものと考えられる。
That is, the etching of the surface of the substrate is F(i”; CH3
It was found that a 16:15:l mixture of COOH;HNO produced a smooth surface, but after that, when a 20-layer NaOH aqueous solution was heated to 110°C and etched for 1 minute, the adhesion was improved. I found some good things. That is, as shown in Figure 952, 20% NaOH
; When etching is carried out for 0 to 5 minutes using a yJC solution, the adhesion force becomes as shown in the curve 0, and it is said that about 1 minute mj is most preferable (4). This is due to the grain boundary ( It is thought that the 211-ji also has a preferable 4d degree step that increases its performance.

この付・、′j力のテストは、jIL京大学出版会発行
「物JV工学冥1・7・Q j) 、 7fゲj良の基
本技術」7125に記載の引張り法で行なった。
This test for force was carried out using the tensile method described in 7125, ``Mono JV Engineering Mei 1, 7, Qj), 7f Gejyo's Basic Techniques,'' published by Kyoto University Press.

この引張り法は薄膜の面に垂直の方向にカを加えて;−
q 、ljAを引剥がす方法であり、具体的にはステン
レス1浬の平らな底面をもつ円板を1場の表面に強力な
(妾着71すで貼りつけて円板を面に垂直の方向(二引
張り、jJJjがれLi’l 1i4JのカをJjiJ
定し/こ。
This tensile method applies force in a direction perpendicular to the plane of the thin film;
q, ljA. Specifically, a stainless steel disc with a flat bottom is pasted on the surface of one place with a strong force (71), and the disc is pulled in a direction perpendicular to the surface. (Two pulls, jJJj Gare Li'l 1i4J's power JjiJ
Set/ko.

従来、密シが性の良くなかっ/こ−っの要因としては前
述の」:うなセ2作の適正化が人落していたものである
In the past, one of the reasons for the poor quality of secrets was the above-mentioned ``Unase'' adaptation of the two works.

次にj、4面に述いてC尻切rると、従来めっき工程を
用い九′電極の形1戎にあ−ってけ、J、3Si−を入
れることはあまり行われ−((へなかった。それは、こ
のだめのアルミニウム層や゛rルミニウムペース) J
i カ躾面に形成され、)」81”を形成するために焼
成されると、必ず面に凹凸が生じ、めっきの密着性を悪
くする原因になっていたからである。これに対し、本発
明では従来のアルミニウムペーストを使用しながら、′
その焼成方法を変更することにより、平滑な焼成後の面
を有するBSfI″の入った基板をつくる条件を発見し
条件化している。
Next, J, 4th side is described and C end cut r is applied to the shape of the 9' electrode using the conventional plating process. (It is this useless aluminum layer or aluminum paste) J
This is because when the surface is formed on the surface and fired to form 81", unevenness always occurs on the surface, which causes poor adhesion of the plating. In contrast, in the present invention, While using traditional aluminum paste,
By changing the firing method, we have discovered and established conditions for producing a substrate containing BSfI'' that has a smooth surface after firing.

即ち、第3図は焼成温度と付着性の関係を示す図であり
曲線a湯かられかるように従来の雰囲気加熱(炉焼成)
法では800〜850°Cの高温にしなければBSF効
果即ちSiとA/の合金化層の効果が得られなかったが
、近赤外線ランプによる焼成では650〜800℃で充
分、この効果がイカられることがわかった。しかも、と
の温度範囲では面の平滑性が保たれ曲線Q壜のように密
着性が良いものになっている。焼成時間は最高温度を1
0〜30秒程度とし、立ち上り5分以内、立ち下り10
分程度のスケジュールで行えば良い。
That is, Fig. 3 is a diagram showing the relationship between firing temperature and adhesion, and curve A shows the relationship between conventional atmosphere heating (furnace firing) and
In the method, the BSF effect, that is, the effect of the alloyed layer of Si and A/, could not be obtained unless the temperature was raised to a high temperature of 800 to 850°C, but when firing with a near-infrared lamp, a temperature of 650 to 800°C is sufficient to achieve this effect. I understand. Moreover, in the temperature range of , the surface smoothness is maintained and the adhesion is good like that of the curved Q bottle. Baking time is maximum temperature 1
0 to 30 seconds, rise within 5 minutes, fall 10 minutes
It can be done on a schedule of about minutes.

次にめっきレジストの溝巾であるが、これは。Next is the groove width of the plating resist.

電極の巾とほぼ等しい。印刷法での限界はlOoμであ
り、下限はこれにより決まる。上限については実験結果
から最小線巾を300μ以上にすると極端に変換効率の
低下をひきおこす。これは電/11!、(二より影にな
り、光があたらない部分が増加する7にめである。そこ
で電極の最小巾を100〜300μとするが、この時、
 150〜3(10μでは、まったく熱処理を行なイ)
なくでも長期にわたり、密着性がよかったがioo〜1
50μでは、数年間の耐環境試験に相当する熱と光、温
度サイクルの促進曝露試験を行ったところ密着性の不良
がわずがながら発生した。そこで線巾と一定密M性(3
00μ巾のめっき)vdの熱処理なしの密着性)を保つ
ための焼成温度を調べたのが、第4図の曲線0□□□で
ある。ν1」ち線1晶100μの限界値まで考えると筒
くとも300’Oの焼成があれば良いことがイっがる。
Almost equal to the width of the electrode. The limit in the printing method is lOoμ, and the lower limit is determined by this. Regarding the upper limit, experimental results show that if the minimum line width is set to 300 μm or more, the conversion efficiency will be extremely reduced. This is Den/11! , (7) The area that is shaded and not exposed to light increases from the second point. Therefore, the minimum width of the electrode is set to 100 to 300μ, but at this time,
150~3 (10μ requires no heat treatment at all)
Even without it, the adhesion was good for a long time, but ioo ~ 1
For 50μ, when an accelerated exposure test of heat, light, and temperature cycles was conducted, which corresponds to an environmental resistance test for several years, poor adhesion occurred. Therefore, line width and constant density M property (3
Curve 0□□□ in Fig. 4 was obtained by investigating the firing temperature for maintaining the adhesion of 00μ width plating)vd without heat treatment. If we consider the limit value of 100μ for one crystal of ν1, it would be sufficient to have a firing temperature of at least 300'O.

この焼成は(9)分間窒素中で行なった。なお量産には
不向きであるが実験的に作成した50 = 100μ巾
のめっき層も同時に示しである。
The calcination was carried out in nitrogen for (9) minutes. Also shown is a plating layer with a width of 50 = 100 μm, which was created experimentally, although it is not suitable for mass production.

以上のように工程の−Jri した検討と、条件の適正
化が総合され、この発明が完成した。工程はいろいろ変
化の余地があるが上述したポイントをおさえることが本
発明の主旨であり、まま発明の製造工程を規定するもの
である。
This invention was completed by comprehensively examining the process and optimizing the conditions as described above. Although there is room for various changes in the process, the gist of the present invention is to keep the above-mentioned points in mind, and the manufacturing process of the present invention is defined as such.

次(二本発明の具体的な実7A列を第5図により説明す
る。
Next, a concrete example of the 7A array of the present invention will be explained with reference to FIG.

即ち、第5図は方位(100) 、厚さ450 p、比
抵抗10Ω11の;トヤペラリ法(二より製造されたI
QcIIL角のP型シリコンリボン結晶基板シηを用い
た太陽電池の製造方法の説明図である。この場合キャス
ティング法による同一性状のシリコノ基板(二ついても
、まったく同一の工程で同(〕(の特1生が得られる。
That is, FIG. 5 shows an I
FIG. 2 is an explanatory diagram of a method for manufacturing a solar cell using a P-type silicon ribbon crystal substrate η with a QcIIL angle. In this case, the characteristics of silicone substrates with the same properties (even if there are two, the same process can be obtained by the casting method).

まず′dS 5 図(a) i: 示す、J: ウ[−
If’ : Cki3COOH: Hhl)3を3f3
 : 1.5 : lの割合で混合したエッチャントに
より、P型シリコンリボン結晶カリ板(以下率に基板と
云う) (21)を薄くする。エラチングレー)U基板
(2J)両面で5μm分でm分間のエツチノグにより、
基板(21)は最大凹凸3μを有する比較的平滑な面(
二仕上がり基板(21)の厚味は350 /lとなった
。このあと表面L:ステイニングされたノリが残るが、
これをNaOH−20%水溶液を110″CIに加熱し
た液中で1分間エツチングして除去する。
First, 'dS 5 Figure (a) i: Show, J: U[-
If': Cki3COOH: Hhl)3 to 3f3
A P-type silicon ribbon crystal potash plate (hereinafter referred to as the substrate) (21) is thinned using an etchant mixed at a ratio of 1.5:1. Etchinog for 5 μm and m minutes on both sides of the U substrate (2J)
The substrate (21) has a relatively smooth surface (with a maximum unevenness of 3μ).
The thickness of the second finished substrate (21) was 350/l. After this, surface L: stained glue remains,
This is removed by etching for 1 minute in a NaOH-20% aqueous solution heated to 110'' CI.

次に第5図(b)に示すように基板00表面にリンを添
加した反射防止用溶液を塗布、焼成し反射防止膜(社)
を形成する。この反射防止相溶W+二は、空気中で焼成
すると酸化チタン膜ができる飼料としてチタン・イソ・
プロコキシド(T i <QCs H7)4 〕を3.
5%と1.5wt%の五酸化リンを含むエタノール七酢
酸エチルの9=1の混合体に等量のブチラー樹脂を混ぜ
、スピン回転数を200Or 、p 0mとして塗布し
た。
Next, as shown in FIG. 5(b), an antireflection solution containing phosphorus is coated on the surface of the substrate 00 and baked.
form. This anti-reflection compatible W+2 is used as feed for titanium oxide, which forms a titanium oxide film when fired in air.
prokoxide (T i <QCs H7)4] to 3.
A 9=1 mixture of ethanol-ethyl heptaacetate containing 5% and 1.5 wt% of phosphorus pentoxide was mixed with an equal amount of butylar resin and applied at a spin speed of 200 Or and p of 0 m.

次(二人気中で150°C20分間乾燥させた後、N2
:0、=38:0.31(7)雰囲気中900℃テ30
分間加熱シ、第5図(C)(二示すように接合深さ0.
4μ、表面濃度2×1020cIrL−3にn層(ハ)
が形成され、同時(二酸化チタンの反射防止膜f22)
が形成される。
Next (after drying for 20 minutes at 150°C in two
: 0, = 38: 0.31 (7) 900℃ Te30 in atmosphere
Heating for 1 minute, the bonding depth was 0.
4μ, surface concentration 2×1020 cIrL-3 with n layer (c)
is formed at the same time (titanium dioxide anti-reflection film f22)
is formed.

次(−第5図(d)に示すよう(二裏面にアルミニウム
ペースト(商品名:エンゲルハー) A 4538) 
124)をスクリーン印刷性C二より全面に形成する。
Next (-as shown in Figure 5(d)) (Aluminum paste (product name: Engelher) A 4538 on the back side)
124) is formed on the entire surface using screen printing property C2.

次に、200℃、15分間の乾燥後、近赤外線ランプを
装’++ui したコンベア式の焼成炉により焼成を行
う。この焼成は最高温度750℃で10秒間、室温から
最高温度まで5分の急峻な立上がりとし、 10秒間最
高温度で保持したのち、10分間で室温(二もどすスケ
ジュール口よりAI!ペーストを焼成する。この場合の
雰囲気は空気でよい。この焼成により第5図(e)(二
示すように基板ψυ中にAI!原子が拡散され合金層で
あるp+層ωωが形成される。
Next, after drying at 200° C. for 15 minutes, firing is performed in a conveyor-type firing furnace equipped with a near-infrared lamp. This firing is performed at a maximum temperature of 750°C for 10 seconds, with a steep rise of 5 minutes from room temperature to the maximum temperature, held at the maximum temperature for 10 seconds, and then returned to room temperature for 10 minutes.The AI! paste is fired from the schedule port. The atmosphere in this case may be air. Through this firing, AI! atoms are diffused into the substrate ψυ to form a p+ layer ωω which is an alloy layer, as shown in FIG. 5(e) (2).

次に基板(2I)のシリコンまたは、アルミニウムの酸
化膜を10%の弗酸で15秒間軽くエツチング、除去し
、15分間の水洗を行い乾燥する。
Next, the silicon or aluminum oxide film on the substrate (2I) is removed by lightly etching it with 10% hydrofluoric acid for 15 seconds, followed by washing with water for 15 minutes and drying.

続いて、第5図(f)に示すよう(二通常のめっきレジ
ストであるアクリル樹脂、植物油誘導体増粘剤。
Subsequently, as shown in FIG. 5(f), (two conventional plating resists, acrylic resin and vegetable oil derivative thickener) were applied.

有機溶媒、フィラー、顔料からフィラーと顔料を除いた
組成よりなるめっきレジスト(2のをスクリーンプリン
ティングにより最小線巾200μに形成し。
A plating resist (2) consisting of an organic solvent, filler, and pigment with the filler and pigment removed was formed to a minimum line width of 200 μm by screen printing.

80°Cで10分間加熱して密着固化させると最小線巾
は150μと々る。
If it is heated at 80°C for 10 minutes to solidify it, the minimum line width will be 150μ.

次(二第5図(g)に示すよう(二めっきレジストシυ
をマスクとして10チの弗酸処理(二より反射防止膜(
2りを基板CDのn層層(23)i二連するまでエツチ
ング除去する。
Next (2) As shown in Figure 5 (g) (2 plating resist sheet υ
10% hydrofluoric acid treatment (two-layer anti-reflective film) as a mask.
2 is removed by etching until two n-layer layers (23)i of the substrate CD are formed.

次(二第5図(h)(二示すように通常知られたNi無
電屏めつきをp h 6.6で65°020分間の条件
で行いNi層07)をf4Q !両面(−形成し、電極
下地とする。
Next (Fig. 5 (h) (2) As shown in Fig. 5 (h), the commonly known Ni electroless plating was carried out at pH 6.6 for 65°020 minutes to form Ni layer 07) on both sides (-). , as the electrode base.

次に第5図(1)に示ずようにCH2Cl!2 に浸漬
して、めつきレジス) (2ii1を除去後、200℃
、30分間加熱し密着性を強化する。このあとサンドグ
ラインダーなどにより唱面を研唐して整形したのちたん
だ用のフラツクス(二基板をディップ後、150’OT
−て10分間加熱し、溶融したAgの2%入つだpb、
snの6−3はんだ中(=約3秒間浸漬し、引き上げる
と両面のN1層上(−たんだMr (28)が形成され
る。次(二表面に残っている、はんだ用のフラツクスな
トリフレ/の超音波洗浄(二より除去し、鏑ζ二半田め
っきしたリード、ii!il(ハ)を結線し、太陽電池
を完成する。
Next, as shown in FIG. 5 (1), CH2Cl! 2 (after removing 2ii1, plating resist) at 200℃
, heat for 30 minutes to strengthen adhesion. After this, the singing surface was sharpened and shaped using a sand grinder, etc., and then the flux (after dipping the two substrates, 150'OT
- Pb containing 2% of molten Ag by heating for 10 minutes,
sn in the 6-3 solder (= immersed for about 3 seconds, and when pulled up, a - soldered Mr (28) is formed on the N1 layer on both sides. The solar cell is completed by ultrasonic cleaning (remove from 2 and connect the 2 solder-plated leads, ii!il (c)).

次(二上述の太陽′i池をAM (A、irMass 
) 1.5 、へ射パワー10o mw/m、 28°
Cの条件でソーラーシュミレータ−により特性を測定し
た結果、変換効率12.5%を得ることができた。これ
は従来の低コストプロセスで作成したものの性能(二比
べ高い値となっている。即ち、同一の基板を用い、印刷
法による銀ペーストの「E極を用いた太16電池は接合
深さが0.6μと深く、効率はl 011%、従来の4
50°Cの熱処理を行った、めつき′電極を冶する太陽
電池では効率11.0%と、いずれも本発明(二劣るも
のであった。
AM (A, irMass
) 1.5, radiation power 10o mw/m, 28°
As a result of measuring the characteristics with a solar simulator under the conditions of C, a conversion efficiency of 12.5% could be obtained. This is a higher value than the performance of the conventional low-cost process (2).In other words, a thick 16 battery using the same substrate and printed silver paste "E" electrode has a bonding depth of Deep as 0.6 μ, efficiency is l 011%, compared to conventional 4
In a solar cell with a plated electrode that was heat-treated at 50°C, the efficiency was 11.0%, which was inferior to the present invention.

また本発明の製造方法(二よれば光露光を用いた複雑々
めつきマスク形成工程や・5高温でのシンタ一工程を省
くことができ工程も短軸可能であり、また生産性も上げ
られるものである。更(二印刷電極を用いた太陽′4池
に比べ半田層が表面(二形成されていることから長期(
、mイクたる谷イ虫のイ誤碩住試験(二対しても安定で
あつノと。
In addition, the manufacturing method of the present invention (according to 2) the complicated plating mask forming process using light exposure and the sintering process at high temperature can be omitted, the process can be shortened, and productivity can be increased. Moreover, since the solder layer is formed on the surface (2) compared to the solar panel using two printed electrodes, it can last for a long time (2).
, Ikutaru Valley Insect's Incorrect Residence Test (It is stable even for two.

〔発明の効果〕〔Effect of the invention〕

上述のように不発明の太陽電池の製造方法によれば量雄
性9個頼性に優れた低1i1ii洛の太陽電池を得るこ
とが出来る。
As described above, according to the uninvented solar cell manufacturing method, it is possible to obtain a solar cell with low 1i1ii and excellent reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽電池の構造を示す槻略断面図、第2
図乃至第4図は本発明の太陽電池の製造方法の基礎実験
結果を示す図であり、第2図は基板表面のエツチング時
間とめっきの付着力との明! 巾と暁成況度との1刀保を示ずグフフ、第せ図は本発明
の太陽電油の製造カ法の−′A施例を裂造工婦J[+:
 示を説明用断面図−〇・ある。 21・・・シリコン基板 22川反J村防止族23・・
・n 層 24・・・アルミニウムペースト2!5・・
・p 層 z5川めっきレジスト27・・・ニッケル層
28・・半IB)り29 ・・・ リ − ド才ち。 代理人 弁理士 井 上 −男 第 1 図 第 2 図 エンー!I−ング時向 (Δト) − 第 3 図 め7さl/シスト課中(μ)−
Figure 1 is a schematic cross-sectional view showing the structure of a conventional solar cell;
Figures 4 to 4 are diagrams showing the results of basic experiments of the solar cell manufacturing method of the present invention, and Figure 2 shows the relationship between the etching time of the substrate surface and the adhesion force of plating. There is no guarantee between the width and the success rate of the dawn.
The figure is an explanatory cross-sectional view. 21... Silicon substrate 22 Kawabata J village prevention group 23...
・N layer 24...aluminum paste 2!5...
・P layer Z5 River plating resist 27...Nickel layer 28...Half IB) 29...Lead size. Agent Patent Attorney Inoue - Male Figure 1 Figure 2 En! I-ng time (Δt) - 3rd figure 7th l/cyst division middle (μ) -

Claims (1)

【特許請求の範囲】[Claims] 結晶粒界を有する半導体基板の表面(=この半導体基板
とは異なるタイプのドーパントを含み、かつ反射防止膜
を形成する溶液を塗布する工程と、焼成により反射防止
膜の形成とドーパントのドーピングを同時(二行ってp
n接合を形成する工程と、前記半導体基板の裏面lニア
ルミニウムペーストを印刷後近赤外ランプ(二よる焼成
(二よりA/−84合金層を形成する工程と、前記半導
体基板の表面C二所望の溝部を残したパターン状に顔料
やフィラー類を含まないめっきレジストを印刷法により
形成する工程と、前記所望の溝部を介して反射防止膜を
エツチングして前記半導体基板の表面を露出する工程と
、前記露出された半導体基板の表面及び前記半導体基板
の裏面の/V−8i合金属上にニッケル膜を無電解めっ
き法i二より形成後シンターを行うか、または行わず(
二前記ニッケル膜上に半田層を形成する工程とを含むこ
とを特徴とする太1陽1程池の製造方法。
The surface of a semiconductor substrate having crystal grain boundaries (= the step of applying a solution that contains a different type of dopant from that of the semiconductor substrate and forming an antireflection film, and the formation of an antireflection film and doping of the dopant at the same time by baking) (Two lines and p
A step of forming an n-junction, a step of forming an A/-84 alloy layer on the back surface of the semiconductor substrate, and a step of forming an A/-84 alloy layer with a near-infrared lamp (two steps) after printing an aluminum paste on the back surface of the semiconductor substrate. A step of forming a plating resist containing no pigment or filler in a pattern leaving desired grooves by a printing method, and a step of etching the antireflection film through the desired grooves to expose the surface of the semiconductor substrate. Then, a nickel film is formed on the /V-8i alloy metal on the exposed surface of the semiconductor substrate and the back surface of the semiconductor substrate by an electroless plating method, and then sintering is performed or not (
2. A method for manufacturing a tai 1 yang 1 yen pond, comprising the steps of: 2 forming a solder layer on the nickel film.
JP58110980A 1983-06-22 1983-06-22 Manufacture of solar battery Pending JPS604271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110980A JPS604271A (en) 1983-06-22 1983-06-22 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110980A JPS604271A (en) 1983-06-22 1983-06-22 Manufacture of solar battery

Publications (1)

Publication Number Publication Date
JPS604271A true JPS604271A (en) 1985-01-10

Family

ID=14549345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110980A Pending JPS604271A (en) 1983-06-22 1983-06-22 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPS604271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500397A (en) * 1987-07-07 1990-02-08 モービル・ソラー・エナージー・コーポレーション Method for manufacturing solar cells with antireflection coating
US8722196B2 (en) 2008-03-07 2014-05-13 Japan Science And Technology Agency Composite material, method of producing the same, and apparatus for producing the same
US8980420B2 (en) 2008-03-05 2015-03-17 Japan Science And Technology Agency Composite material comprising silicon matrix and method of producing the same
US9028982B2 (en) 2008-08-19 2015-05-12 Japan Science And Technology Agency Composite material, method for producing the same, and apparatus for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500397A (en) * 1987-07-07 1990-02-08 モービル・ソラー・エナージー・コーポレーション Method for manufacturing solar cells with antireflection coating
US8980420B2 (en) 2008-03-05 2015-03-17 Japan Science And Technology Agency Composite material comprising silicon matrix and method of producing the same
US8722196B2 (en) 2008-03-07 2014-05-13 Japan Science And Technology Agency Composite material, method of producing the same, and apparatus for producing the same
US9252020B2 (en) 2008-03-07 2016-02-02 Japan Science And Technology Agency Composite material, method of producing the same, and apparatus for producing the same
US9028982B2 (en) 2008-08-19 2015-05-12 Japan Science And Technology Agency Composite material, method for producing the same, and apparatus for producing the same

Similar Documents

Publication Publication Date Title
CN109888061B (en) Alkali polishing efficient PERC battery and preparation process thereof
EP4027395A1 (en) Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
TWI408816B (en) A solar cell manufacturing method, a solar cell, and a method of manufacturing a semiconductor device
CN107863419A (en) A kind of preparation method of two-sided PERC crystal silicon solar energy batteries
CN110416359B (en) Preparation method of TOPCon structure battery
WO2009157079A1 (en) Solar battery cell and process for producing the same
CN102623517B (en) Back contact type crystalline silicon solar cell and production method thereof
CN111640825B (en) Manufacturing method of N-type contact passivation solar cell and method for improving yield
TWI416751B (en) Surface treatment of silicon
JP2000183379A (en) Method for manufacturing solar cell
JP6282635B2 (en) Manufacturing method of solar cell
CN111129221A (en) Alkaline polishing preparation method of PERC solar cell
CN102569502A (en) Wet method etching process
CN103646994A (en) Preparation method of solar cell positive electrode
CN102983214B (en) Preparation method of selective emitter crystalline silicon solar cell
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JPS604271A (en) Manufacture of solar battery
CN107245761B (en) Diamond wire polycrystalline silicon slice texturing auxiliary agent and application thereof
CN110739366B (en) Method for repairing PERC solar cell back film laser grooving damage
CN110335919B (en) Method for improving laser damage of surface of laser phosphorosilicate glass doped battery
JPS6196772A (en) Surface treating method of semiconductor substrate for solar battery
JPH11284212A (en) Solar cell and manufacture of solar cell
CN107331714A (en) A kind of IBC battery process preparation method
CN107195704A (en) A kind of IBC battery preparation methods
CN204668316U (en) A kind of upside-down mounting high-efficiency soft gallium arsenide solar cell