JPS6042501A - Nuclear reactor feed pump interlocking device - Google Patents

Nuclear reactor feed pump interlocking device

Info

Publication number
JPS6042501A
JPS6042501A JP58150196A JP15019683A JPS6042501A JP S6042501 A JPS6042501 A JP S6042501A JP 58150196 A JP58150196 A JP 58150196A JP 15019683 A JP15019683 A JP 15019683A JP S6042501 A JPS6042501 A JP S6042501A
Authority
JP
Japan
Prior art keywords
reactor feed
water pump
feed water
turbine
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58150196A
Other languages
Japanese (ja)
Inventor
田中 数馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP58150196A priority Critical patent/JPS6042501A/en
Publication of JPS6042501A publication Critical patent/JPS6042501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Reciprocating Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は沸騰水型原子力発電所(以下B W Rプラン
ト)の原子炉給水ポンプインタロック装置に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactor feed water pump interlock device for a boiling water nuclear power plant (hereinafter referred to as a BWR plant).

[発明の技術的背景] 第1図はBWRプラントの一般的な構成を示す。すなわ
ち、原子炉1の上部にある気相部は、主蒸気管2によっ
て発電機3を駆動するタービン4に連通されている。タ
ービン4の復水器5の液相部並列に設置した復水ポンプ
6a〜6Cの吸込側に連通され、復水ポンプ6a〜6C
の吐出側は一括して後、2つに分岐されている。
[Technical Background of the Invention] FIG. 1 shows a general configuration of a BWR plant. That is, a gas phase section in the upper part of the nuclear reactor 1 is communicated with a turbine 4 that drives a generator 3 through a main steam pipe 2 . The liquid phase part of the condenser 5 of the turbine 4 is connected to the suction side of the condensate pumps 6a to 6C installed in parallel, and the condensate pumps 6a to 6C
The discharge side is branched into two after being all at once.

而して、一方の分岐はタービン7a、7bににつで駆動
されるタービン駆動原子炉給水ポンプ(以下TDRFP
)8a 、8b O)吸込側に連通されている。図中9
′は従来の原子炉給水ポンプインタロック装置を示づ“
。また、他方の分岐は、モータ10a、10bによって
駆動されるモータ駆動原子炉給水ポンプ(以下MDRF
P)11a、11bの吸込側に連通されている。
One branch is connected to a turbine-driven reactor feed pump (hereinafter TDRFP) which is driven by the turbines 7a and 7b.
) 8a, 8b O) Communicated with the suction side. 9 in the diagram
′ indicates a conventional reactor feed water pump interlock device.
. In addition, the other branch is a motor-driven reactor feed water pump (hereinafter referred to as MDRF) driven by motors 10a and 10b.
P) It is connected to the suction side of 11a and 11b.

T’DRFP8a 、8bの吐出側ニハ、吐出弁12a
、12bが設けられ、MDRFPI la 。
T'DRFP8a, 8b discharge side, discharge valve 12a
, 12b are provided and MDRFPI la.

1111の吐出側には流量調整弁13a、13bおよび
吐出弁14a、14bがポンプ側″/JX−ら順に設り
られている。吐出弁12a、12b、14a、14bの
下流側は、給水ヘッダ15に一括されている。給水ヘッ
ダ15は給水配管16によって原子炉1の液相部に連通
されている。
On the discharge side of 1111, flow rate adjustment valves 13a, 13b and discharge valves 14a, 14b are provided in order from the pump side''/JX-.On the downstream side of the discharge valves 12a, 12b, 14a, 14b, a water supply header 15 is installed. The water supply header 15 is connected to the liquid phase portion of the reactor 1 through a water supply pipe 16.

ま Iこ 、TDRFP8a 、 8b 、 MDRF
Pl 1a、llbの吐出側には、吐出圧力検出器17
a、1711.18a、18bが設けてあり、給水ヘッ
ダ15には給水ヘッダ圧力検出器19が設けである。
Maiko, TDRFP8a, 8b, MDRF
A discharge pressure detector 17 is installed on the discharge side of Pl 1a and llb.
a, 1711.18a, and 18b are provided, and the water supply header 15 is provided with a water supply header pressure detector 19.

上記の構成において、原子炉1で発生した蒸気は、主蒸
気管2を経由してタービン4に至り、これを駆動し発電
機3に発電させる。タービン4でエネルギを消費した蒸
気は、復水器5で冷1.0復水され、この水は復水ポン
プ6a、〜6CとTDRFP8a 、8bとによって昇
圧されて、給水ヘッダ15、給水配管16を経由して原
子炉]の液相部に戻される。
In the above configuration, steam generated in the nuclear reactor 1 reaches the turbine 4 via the main steam pipe 2, drives the turbine 4, and causes the generator 3 to generate electricity. The steam that has consumed energy in the turbine 4 is condensed into cold 1.0% water in the condenser 5, and this water is boosted in pressure by condensate pumps 6a to 6C and TDRFPs 8a and 8b, and then sent to the water supply header 15 and the water supply piping 16. is returned to the liquid phase of the nuclear reactor.

なお、この時TDRFP8a 、8b (1)吐出Vは
原子炉水位を一定に保ら得る間となるよう、タービン7
a、7bの速度を調整することにより制御される。
At this time, TDRFP8a, 8b (1) The turbine 7 is adjusted so that the discharge V can maintain the reactor water level constant.
It is controlled by adjusting the speeds of a and 7b.

以上は定格運転時の状態であるが、この状態でTDRF
P8a 、8bの1台でも故障すれば、従来の原子炉給
水ポンプインタロック装置9の作用により、モータ10
a、10bが直ちに駆動され、MDRFPI 1a 、
1 lbがトリップしたTDRFP8a 、8bのバッ
クアップとして給水を開始する。なお、この時流量調整
弁13a、13bの開度を調整して原子炉水位を一定に
保つ。
The above is the state during rated operation, and in this state TDRF
If even one of P8a and 8b fails, the conventional reactor feed water pump interlock device 9 will shut down the motor 10.
a, 10b are immediately driven, MDRFPI 1a,
Start water supply as backup for TDRFP8a and 8b whose 1 lb tripped. At this time, the opening degrees of the flow rate regulating valves 13a and 13b are adjusted to keep the reactor water level constant.

また、TDRFP8a 、8bの吐出弁12a112b
は通常手動弁でありTDRFP8a、8bが停止してい
るBWRプラン1〜運転状態では手動で閉鎖されている
In addition, the discharge valves 12a112b of TDRFP8a and 8b
is normally a manual valve and is manually closed in the BWR plan 1 to operating state when the TDRFPs 8a and 8b are stopped.

その開放は次の手順に従って行われる。まず、タービン
7a 、7bを起動してTDRFP8a 。
Its opening is done according to the following procedure. First, the turbines 7a and 7b are started and the TDRFP 8a is activated.

8bを回転さけ、吐出圧力検出器17a、171)の指
示値と給水ヘッダ圧力検出器19の指示値がほぼ等しく
なるよう TDRFP8a 。
8b so that the indicated value of the discharge pressure detectors 17a, 171) and the indicated value of the water supply header pressure detector 19 are approximately equal.

8bの回転数を調整する。ここで、吐出弁12a、12
bを手動により開放すれば、原子炉水位に殆/υど影響
をおよばずことはない。
Adjust the rotation speed of 8b. Here, the discharge valves 12a, 12
If b is opened manually, it will have almost no effect on the reactor water level.

第2図は従来の原子炉給水ポンプインタロツタ装置9の
主要な機能を承り。TDRFPは、8aと8bとがある
が、この図においてはTDRf−P8aについて示しで
ある。原子炉への過給水を防止J′るため原子炉水位が
ある設定値より高くなった場合(図示A)、またはポン
プ保護のためTDRFP8aの吸込圧力がある設定fl
?f J−り低くなったか(B) 、TDRFP8aの
ポンプ軸受油圧がある設定値より低くなった場合(C)
、あるいはタービン7aのタービン軸受油圧がある設定
値より低くなった場合(D)、あるいは給水流量制御が
可能な範囲内でTDRFP8aを動作させるためTDR
FP8aが内向運転中(E)で且つその吸込流量がある
設定(111より低く(F)なった場合にはタービン7
aを急速に停止させ、TDRFP8aをトリップさせる
(G)。第2図中ANDはアントゲ−1へ、ORはオア
ゲートを示ず。なお、TDRFP8a負荷運転中とは、
TDRFP8aににり給水がなされており、TDRFP
8aの逆止弁(図示略)の前後に差圧があり(E+)、
吐出弁12aが全開(E2)であることで判断している
。上記のTDRFP8aの1〜リツプと同様にしてTD
RFP8bのトリップも行われる。
Figure 2 shows the main functions of a conventional reactor feed water pump interrotter device 9. There are two types of TDRFP, 8a and 8b, and this figure shows TDRf-P8a. In order to prevent supercharging water to the reactor, if the reactor water level becomes higher than a certain set value (as shown in figure A), or to protect the pump, the setting fl is set at the suction pressure of TDRFP8a.
? If the TDRFP8a pump bearing oil pressure becomes lower than a certain set value (C)
, or when the turbine bearing oil pressure of the turbine 7a becomes lower than a certain set value (D), or in order to operate the TDRFP 8a within the range where water supply flow rate control is possible.
If the FP8a is inward operation (E) and its suction flow rate is lower than a certain setting (111 (F)), the turbine 7
A is rapidly stopped and TDRFP8a is tripped (G). In FIG. 2, AND does not indicate ant game 1, and OR does not indicate an OR gate. In addition, TDRFP8a is under load operation.
Water is supplied to TDRFP8a, and TDRFP
There is a pressure difference (E+) before and after the check valve 8a (not shown),
The determination is made based on the fact that the discharge valve 12a is fully open (E2). TD in the same way as 1 to lip of TDRFP8a above.
RFP8b is also tripped.

さらに、TDRFP8aか同8bがトリップした場合(
H1■)、王DRFP8a 、同8bが負荷運転中(J
、K)であるにもかかわらず給水流量がある設定値より
低く (L ) <’につた場合でかつ原子炉水位が異
常に高くない(M)場合には、2台のTDRFPの中受
なくとも1台が運転停止か不能であると判断して、M 
D F< FPllalllbを自動起動させる。なお
、I重子炉水位が高くないことを判断基準の一つとして
いるので、過給水のおそれはない。
Furthermore, if TDRFP8a or TDRFP8b trips (
H1■), DRFP8a and 8b are under load (J
, K), if the water supply flow rate is lower than a certain set value (L) <', and if the reactor water level is not abnormally high (M), the two TDRFPs will not receive water. It was determined that one of the machines was either out of operation or inoperable, and the M
D F< FPllallb is automatically started. Note that one of the criteria for judgment is that the water level in the I-deuteron reactor is not high, so there is no risk of supercharging water.

[背題技術の問題点] 第1図において、原子炉定格出力運転中で、2台のTD
RFP8a 、8bが運転状態にあり、2台のMDRF
Pl 1a 、1 lbが待機状態にある時、例えばT
DRFP8aの吐出弁12aが故障または誤操作によっ
て全開になったとする。すると、TDRFP8aの給水
流量はOとなり、ぞの分だけ原子炉水位の低下を生じる
こととなる。この水位低下を防ぐため、給水流量制(a
ll系(図示略)の働きでTORFP8bの流量を増加
させるが、TDRFPI台の定格流量は原子炉定格出力
運転時の給水流量のほぼ50%であるため、TDRFP
8aによる流量減少分を完全に補うことはできない。ま
た、吐出弁12aの全開によりTDRFP8aの吸込流
量が急減りるが、吐出弁が全開でないため、第2図のE
lが成立しておらず、TDRFP8a負荷運転中(E)
とは判断されない。従って、吸込流量低低(F)が成立
してもTDRFP8aの1〜リツプはR1じない。
[Problems with the background technology] In Figure 1, during the reactor rated power operation, two TDs
RFP8a and 8b are in operation, and two MDRF
When Pl 1a, 1 lb is in standby state, for example, T
Assume that the discharge valve 12a of the DRFP 8a becomes fully open due to a failure or erroneous operation. Then, the water supply flow rate of the TDRFP 8a becomes O, and the reactor water level decreases by that amount. In order to prevent this water level drop, water supply flow rate control (a
ll system (not shown) increases the flow rate of TORFP8b, but since the rated flow rate of the TDRFPI unit is approximately 50% of the feed water flow rate during reactor rated power operation, the TDRFP
It is not possible to completely compensate for the decrease in flow rate caused by 8a. Furthermore, the suction flow rate of the TDRFP 8a suddenly decreases when the discharge valve 12a is fully opened, but since the discharge valve is not fully opened, E
l is not established and TDRFP8a is operating under load (E)
It is not determined that Therefore, even if the suction flow rate is low or low (F), the 1-rip of TDRFP8a is not the same as R1.

従って、原子炉1から出る蒸気量に見合った給水を行う
ことができなくなり、原子炉水位は低下し続は原子炉水
位が原子炉1〜リツプ設定値となると、原子炉がスーク
ラムしてしまう。このように吐出弁12aが何らかの原
因で閉鎖されると、TDRFPのバックアップであるM
DRFPが健全であるにもかかわらず、その自動起動が
行われず原子炉スクラムを生じる。
Therefore, it is no longer possible to supply water commensurate with the amount of steam coming out of the reactor 1, and the reactor water level continues to fall, and when the reactor water level reaches the reactor 1-rip set value, the reactor goes into soucram. If the discharge valve 12a is closed for some reason, the backup M
Even though the DRFP is healthy, its automatic startup does not occur and a reactor scram occurs.

[発明の目的] 本発明は上記の事情に基きなされたもので、TDRFP
による給水中そめ吐出弁が全閉された場合にあっても、
MDRFPの自動起動がなされる原子炉給水ポンプイン
タロック装置を得ることを目的どしている。
[Object of the invention] The present invention has been made based on the above circumstances, and is based on the TDRFP.
Even if the supply water supply and discharge valve is fully closed,
The purpose of this invention is to obtain a reactor feed water pump interlock device that automatically starts the MDRFP.

[発明の概要〕 本発明においては、T D RF P 1〜リツプ条件
の一つとして、吐出弁全開で目つその前後の差圧大であ
ることを加えて前記目的を達成している。
[Summary of the Invention] In the present invention, the above object is achieved by adding, as one of the TDRF P1 to lip conditions, that the discharge valve is fully open and the pressure difference before and after the opening is large.

[発明の実施例] 第3図は本発明にお1ノる機能の要部を示しτいる。第
3図中、第2図と同一部分には同一符号が削されている
。本発明においては、’ T D RFPの吐出弁12
a全閉で且つその前後の差圧入なる場合を、従来のTD
RFPトリップ条件に加え−c段()ている。
[Embodiment of the Invention] FIG. 3 shows a main part of the functions of the present invention. In FIG. 3, the same reference numerals are omitted for the same parts as in FIG. 2. In the present invention, the discharge valve 12 of 'T D RFP
aThe conventional TD
In addition to the RFP trip condition, -c stage () is included.

すなわち、T D RF P 8 a 、’l”’ 8
 bの何れか一方の吐出弁12aまたは12bが全閉さ
れるど、給水流量が減少し原子炉水位が低下する。これ
ににす、タービン7a、7bの回転数が増大さ 1せら
れ、用出弁の全閉されてj)ない方のTDRF Pの用
出流吊が増加する。ところが、吐出弁の全閉された方の
TDRFPは吐出圧力が増加するにもかかわらず、吐出
弁が全閉であるため吐出弁前後の差圧は増加する。従っ
て、吐出弁全開とその前後差圧入とを入力どするアンド
ゲートの出力を従来のOR回路に加えれば、吐出弁の故
障または誤操作による全開時に、T D RF Pを1
〜リツプさせることができ、MDRFPを自動起動させ
ることができる。
That is, T D RF P 8 a , 'l''' 8
When either one of the discharge valves 12a or 12b is fully closed, the water supply flow rate decreases and the reactor water level drops. In addition, the rotation speeds of the turbines 7a and 7b are increased, and the output flow of the TDRF P whose output valve is not fully closed increases. However, although the discharge pressure of the TDRFP increases when the discharge valve is fully closed, the differential pressure across the discharge valve increases because the discharge valve is fully closed. Therefore, by adding the output of an AND gate that inputs the discharge valve fully open and the differential pressure in front and rear thereof to the conventional OR circuit, T D RF P can be reduced to 1 when the discharge valve is fully opened due to malfunction or erroneous operation.
- The MDRFP can be automatically activated.

し発明の効果] 上記から明らかなように、王DRFPの1117.11
弁が全開された場合であっても、TDRFPのトリップ
を行わせ、そのバックアップであるMDRFPの自動起
動を行わせることができるので、不必要な原子炉のスク
ラムを生じることはなく、BWRプラン1〜の稼働率を
良好に保’:’x 1!7る。また、電力系統への悪影
響を防止することができる。
[Effects of the invention] As is clear from the above, 1117.11 of Wang DRFP
Even if the valve is fully opened, the TDRFP can be tripped and the backup MDRFP can be automatically activated, so unnecessary reactor scrams do not occur and BWR Plan 1 Maintain good availability of ~:'x 1!7. Further, it is possible to prevent an adverse effect on the power system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はRWRプラントの概略系統図、第2図はその原
子炉給水ポンプ運転装置の機能を示ず図、第3図は本発
明一実施例要部の1jJt 1jliを示す図である。 8a 、 8b ・TDRF P 9・・・従来の原子炉給水ポンプインタロックSUM1
0a 、 10b−Ml)RF P 12a、12b−・・吐出弁 出願代理人 弁理士 菊 池 五 部 第2図 F7 第3図 t
FIG. 1 is a schematic system diagram of the RWR plant, FIG. 2 is a diagram that does not show the functions of the reactor feed water pump operating device, and FIG. 3 is a diagram showing the main part of an embodiment of the present invention. 8a, 8b ・TDRF P 9... Conventional reactor feed water pump interlock SUM1
0a, 10b-Ml) RF P 12a, 12b--Discharge valve application attorney Kikuchi 5 Part 2 Figure F7 Figure 3 t

Claims (1)

【特許請求の範囲】[Claims] タービン駆動原子炉給水ポンプおよびモータ駆動原子炉
給水ポンプを運転する原子炉給水ポンプ運転装置内に設
けられるものであって、原子炉水位高、タービン駆動原
子炉給水ポンプ吸込圧力低低、タービン駆動原子炉給水
ポンプ吸込流最低低およびタービン駆動内勤運転中、タ
ービン軸受油圧低低、ポンプ軸受油圧低低の何れかによ
りタービン駆動原子炉給水ポンプをトリップさせ、トリ
ップした時モータ駆動原子炉給水ポンプを自動起動させ
るものに、トリップ条件の一つとして、タービン駆動原
子炉給水ポンプの吐出弁が仝閉で且つその前後の差圧が
大であることを付加したことを特徴とする原子炉給水ポ
ンプインタロック装置。
It is installed in the reactor feed water pump operation device that operates the turbine-driven reactor feed water pump and the motor-driven reactor feed water pump, and is configured to monitor the reactor water level, the suction pressure of the turbine-driven reactor feed water pump, and the turbine-driven reactor water pump. The turbine-driven reactor feed water pump is tripped by either the minimum suction flow of the reactor feed water pump and the turbine drive during office operation, the turbine bearing oil pressure is low or the pump bearing oil pressure is low or low, and when tripping occurs, the motor-driven reactor feed water pump is automatically activated. A reactor feed water pump interlock characterized in that, as one of the trip conditions, the discharge valve of the turbine-driven reactor feed water pump is closed and the differential pressure before and after the discharge valve is large. Device.
JP58150196A 1983-08-19 1983-08-19 Nuclear reactor feed pump interlocking device Pending JPS6042501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150196A JPS6042501A (en) 1983-08-19 1983-08-19 Nuclear reactor feed pump interlocking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150196A JPS6042501A (en) 1983-08-19 1983-08-19 Nuclear reactor feed pump interlocking device

Publications (1)

Publication Number Publication Date
JPS6042501A true JPS6042501A (en) 1985-03-06

Family

ID=15491612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150196A Pending JPS6042501A (en) 1983-08-19 1983-08-19 Nuclear reactor feed pump interlocking device

Country Status (1)

Country Link
JP (1) JPS6042501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311897A (en) * 1986-07-03 1988-01-19 株式会社東芝 Boiling water type nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311897A (en) * 1986-07-03 1988-01-19 株式会社東芝 Boiling water type nuclear power plant

Similar Documents

Publication Publication Date Title
US4818475A (en) Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
JP2809977B2 (en) Control device
JPS6396405A (en) Feedwater flow control method to steam generator
US4440715A (en) Method of controlling nuclear power plant
JPS6042501A (en) Nuclear reactor feed pump interlocking device
JPH044481B2 (en)
JPS6232393A (en) Turbine controller for nuclear reactor plant
JPS63192905A (en) Main steam pressure control method for power generating plant
JPH0241720B2 (en)
JPH0135244B2 (en)
JPH0539901A (en) Method and device for automatically controlling boiler
JPS6314001A (en) Steam-generator output controller
JPS6217121B2 (en)
JPS6284204A (en) Controller for feed water to steam generating plant
JPS6061695A (en) Core rapid stoppage preventive device in boiling-water type nuclear power plant
JPS5912395A (en) Method of controlling recirculation flow rate in bwr type reactor
JPS59142498A (en) Device of operating feedwater pump of motor drive
JPS5819606A (en) Controller for liquid level of drain tank of moisture separator for steam generating plant
JPS5930239B2 (en) Reactor water supply control system
JPH11248106A (en) Power plant and its restarting method
JPS60263896A (en) Nuclear power plant
JPS60135899A (en) Method of controlling feedwater to nuclear reactor
JPS6390797A (en) Nuclear reactor protection system logic circuit
JPS58154697A (en) Cavitation protecting device for atomic power plant
JPS6256702A (en) Flow controller for feedwater and condensate