JPS60135899A - Method of controlling feedwater to nuclear reactor - Google Patents

Method of controlling feedwater to nuclear reactor

Info

Publication number
JPS60135899A
JPS60135899A JP58243761A JP24376183A JPS60135899A JP S60135899 A JPS60135899 A JP S60135899A JP 58243761 A JP58243761 A JP 58243761A JP 24376183 A JP24376183 A JP 24376183A JP S60135899 A JPS60135899 A JP S60135899A
Authority
JP
Japan
Prior art keywords
water supply
water
flow rate
water level
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58243761A
Other languages
Japanese (ja)
Inventor
前 良典
内田 光司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58243761A priority Critical patent/JPS60135899A/en
Publication of JPS60135899A publication Critical patent/JPS60135899A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複数の給水ループを有してなる原子力発電プ
ラントにおける原子炉給水制御方法に係シ、特に合計給
水流量は給水ポンプ吐出圧力によって、ループ別給水流
量はドラムおるいは蒸気発生器の水位によってそれぞれ
制御されるようにした原子炉給水制御方法に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a reactor feed water control method in a nuclear power plant having a plurality of water supply loops, and in particular, the total feed water flow rate is determined by the feed water pump discharge pressure. The present invention relates to a reactor feed water control method in which the loop-specific feed water flow rate is controlled by the water level of a drum or a steam generator, respectively.

〔発明の背景〕[Background of the invention]

第1図はATR原子力発電所におけるプラント制御系の
一例を1ル一プ分について示すが、発電出力を制御する
ために各種の制御系が設けられるものとなっている。
FIG. 1 shows an example of a plant control system for one loop in an ATR nuclear power plant, and various control systems are provided to control the power generation output.

即ち、ATR原子力発電所の主幹系統は原子炉1、ドラ
ム3、再循環ポンプ4、給水ポンプ5、蒸気タービン8
、復水器9および発電機10よりなるが、このようにし
てなる主幹系統に対し発電出力を制御すべく各種の制御
系が設けられるようになっているものである。これら制
御系は負荷要求作成制御装置21、原子炉出力制御装置
22、ドラム水位制御装置23、給水差圧制御装置24
およびタービン制御装置25t−中心として構成され、
このうち負荷要求作成制御装置21は発電機10、主蒸
気へラダ12、中央給電所2Oからの発電機出力信号(
MW)、主蒸気圧力信号(P)、給電所指令信号にもと
づき負荷要求信号Ql、 Q2を作成するものとなって
いる。また、原子炉出力制御装置22は負荷要求信号Q
x&原子炉1からの中性子束信号(n)とにもとづき制
御棒駆動装置2を駆動するものとなっておシ、これによ
シ原子炉出力が制御されるようになっている。ドラム水
位制御装置23はまたドラム水位信号(L)、主蒸気流
量信号(F)、給水流量信号(F)にもとづき給水制御
弁7の開度を調整することによってドラム3の水位を制
御するものとなっている。
In other words, the main system of the ATR nuclear power plant is the reactor 1, drum 3, recirculation pump 4, feed water pump 5, and steam turbine 8.
, a condenser 9, and a generator 10, and various control systems are provided to control the power generation output for the main system thus constructed. These control systems include a load request generation control device 21, a reactor power control device 22, a drum water level control device 23, and a feed water differential pressure control device 24.
and turbine controller 25t - centrally configured;
Of these, the load request creation control device 21 receives generator output signals (
MW), the main steam pressure signal (P), and the power supply station command signal to create load request signals Ql and Q2. In addition, the reactor power control device 22 also outputs a load request signal Q.
The control rod driving device 2 is driven based on the neutron flux signal (n) from the nuclear reactor 1, and the reactor output is thereby controlled. The drum water level control device 23 also controls the water level of the drum 3 by adjusting the opening degree of the water supply control valve 7 based on the drum water level signal (L), the main steam flow rate signal (F), and the water supply flow rate signal (F). It becomes.

更に給水差圧制御回路24は主蒸気圧力信号(P)、給
水へラダ6からの給水ヘッダ圧力信号(P)によって給
水ポンプ50回転数を調整することによって給水差圧(
給水ヘッダ圧力ー主蒸気圧力)を制御し、タービン制御
装置25はまた主蒸気圧力信号(P)、負荷要求信号Q
2、タービン回転数信号(8)によって主蒸気加減弁1
3、バイパス弁14の開度を調整するものとなっている
。なお、復水ポンプ11と給水ポンプ5との間、給水ポ
ンプ5と給水へラダ6との間にそれぞれ設けられている
ものは給水加熱器である。
Furthermore, the feed water differential pressure control circuit 24 controls the feed water differential pressure (
The turbine controller 25 also controls the main steam pressure signal (P), the load request signal Q
2. The main steam control valve 1 is activated by the turbine rotation speed signal (8).
3. The opening degree of the bypass valve 14 is adjusted. Note that feed water heaters are provided between the condensate pump 11 and the water feed pump 5, and between the water feed pump 5 and the water feed ladder 6, respectively.

第2図は上記構成における給水制御系、即ち、ドラム水
位制御系、給水差圧制御系の構成を具体的に示したもの
でおる。これによると蒸気ドラムの水位は負荷に拘わら
ず許容限界内に保つ必要があり、ループ対応のドラム水
位はループ給水制御弁を操作することによって制御され
、また、各ループに供給される合計給水流量は給水ポン
プの回転数を調整することによって制御されるものとな
っている。
FIG. 2 specifically shows the configuration of the water supply control system in the above configuration, that is, the drum water level control system and the water supply differential pressure control system. According to this, the water level in the steam drum must be kept within permissible limits regardless of the load, the drum water level corresponding to the loop is controlled by operating the loop water supply control valve, and the total water supply flow rate supplied to each loop is controlled by operating the loop water supply control valve. is controlled by adjusting the rotation speed of the water supply pump.

即ち、ドラム3の水位を制御するには、水位検出器41
からのドラム水位信号がドラム水位信号・・圧力補正回
路31を介し加算器35aで設定回路34aからの水位
設定値と比較され、その偏差は水位コントローラ36a
1手動/自動切換ステーション37aを介し加算器35
bに入力されるものとなっている。この加算器35bK
ldまた蒸気流量検出器43からの主蒸気流量信号が蒸
気流量信号密度補正回路32を介して、更に給水流量検
出器42からの給水流量信号が給水流量信号密度補正回
路33を介し図示の如くに入力されるようになっている
。この加算器35bでの3入力加算結果が水位コントロ
ーラ36b1手動/自動切換ステーション37C1電空
変換器38aを介しループ給水制御弁7aの開度を調整
することによってドラム3の水位が制御されるようにな
っているものである。また、各ループへの合計給水量を
制御するには、圧力検出器44.45からの給水ヘッダ
圧力信号、主蒸気圧力信号の偏差が加算器35Cでめら
れたうえその偏差と設定回路34bからの給水差圧設定
値との偏差が加算器35dでめられるようになっている
。加算器35dの出力によって差圧コントローラ36d
1手動/自動切換ステーヘヨン37d、37e、回転数
制御装置39a、39bを介しタービン駆動給水ポンプ
5b、5Cの回転数を制御するものである。なお、起動
時にあってはドラム3の水位は水位コントロー936 
aが手動/自動切換ステーション37b1電空変換器3
8bを介しループ給水制御小弁7bの開度を調整するこ
とによって制御される。また、設定回路34C1加算器
35eXfl=圧コントロ一ラ36C1手動/自動切換
ステーション37fおよび電を変換器38cによって給
水ヘッダ圧力が所定の圧力となるべくモータ駆動給水ポ
ンプ5aの出口に設けた起動用給水制御弁15の開度が
調整されるようになっている。
That is, in order to control the water level of the drum 3, the water level detector 41
The drum water level signal from the drum water level signal... is compared with the water level set value from the setting circuit 34a by the adder 35a via the pressure correction circuit 31, and the deviation is determined by the water level controller 36a.
Adder 35 via 1 manual/automatic switching station 37a
b. This adder 35bK
In addition, the main steam flow rate signal from the steam flow rate detector 43 is passed through the steam flow rate signal density correction circuit 32, and the feed water flow rate signal from the feed water flow rate detector 42 is further passed through the feed water flow rate signal density correction circuit 33 as shown in the figure. It is now entered. The water level of the drum 3 is controlled by the addition result of the three inputs in the adder 35b by adjusting the opening degree of the loop water supply control valve 7a via the water level controller 36b1 manual/automatic switching station 37C1 electro-pneumatic converter 38a. This is what has become. In addition, in order to control the total amount of water supplied to each loop, the deviation of the water supply header pressure signal and the main steam pressure signal from the pressure detectors 44 and 45 is determined by the adder 35C, and the deviation and the setting circuit 34b are calculated. The deviation from the set value of the water supply differential pressure is calculated by an adder 35d. The differential pressure controller 36d is controlled by the output of the adder 35d.
1. The rotational speed of the turbine-driven water supply pumps 5b, 5C is controlled via manual/automatic switching stations 37d, 37e and rotational speed control devices 39a, 39b. In addition, at the time of startup, the water level of the drum 3 is controlled by the water level controller 936.
a is manual/automatic switching station 37b1 electro-pneumatic converter 3
It is controlled by adjusting the opening degree of the loop water supply control small valve 7b via the loop water supply control valve 7b. In addition, a starting water supply control is provided at the outlet of the motor-driven water supply pump 5a so that the water supply header pressure becomes a predetermined pressure using the setting circuit 34C1 adder 35eXfl = pressure controller 36C1 manual/automatic switching station 37f and power converter 38c. The opening degree of the valve 15 is adjusted.

従来にあっては以上のようにして給水制御が行なわれて
いたものでめるが、給水制御系が徒らに複雑であって多
くの構成要素からなること〃・ら、信頼性の向上が図れ
ないばかりか、経済的にも不利であるというものである
。また、起動時と定常運転時とでは制御力法が異なるこ
とから、制御系が更に複雑となるばかシか、誤操作の危
険が潜在することになる。更に、ドラム水位の変動に・
よりループ給水制御弁が操作された場合には給水差圧が
変化し、したがってタービン駆動給水ポンプの回転数が
制御されるところとなるが、この影響がドラム水位に再
度フィードバックされることによってループ給水制御弁
が再操作されるといった具合に、ループ給水流量制御系
であるドラム水位制御系と合計給水流量制御系である給
水差圧制御系とが強く干渉するものとなっている。
Conventionally, water supply control has been performed as described above, but the water supply control system is unnecessarily complex and consists of many components, so it is difficult to improve reliability. Not only is this impossible, but it is also economically disadvantageous. Furthermore, since the control force method is different between startup and steady operation, the control system becomes even more complicated, or there is a potential risk of erroneous operation. Furthermore, due to fluctuations in the drum water level,
When the loop water supply control valve is operated, the water supply differential pressure changes, and the rotation speed of the turbine-driven water pump is therefore controlled. However, this effect is fed back to the drum water level, so that the loop water supply When the control valve is operated again, the drum water level control system, which is a loop water supply flow rate control system, and the water supply differential pressure control system, which is a total water supply flow rate control system, strongly interfere with each other.

〔発明の目的〕[Purpose of the invention]

よって本発明の目的は、ループ給水流量制御系および合
計給水流量制御系が誤操作の危険が小さなものとして経
済的に構成され得、しかもそれら制御系間での干渉を小
さくし得る原子炉給水制御方法を供するにある。
Therefore, an object of the present invention is to provide a reactor feed water control method in which a loop feed water flow rate control system and a total feed water flow rate control system can be economically configured with a low risk of erroneous operation, and in which interference between these control systems can be reduced. It is to provide.

〔発明の概要〕[Summary of the invention]

この目的のため本発明は、合計給水流量は給水ポンプ吐
出圧力が負荷に応じたものとなるべく先行的に制御され
るようにする一方、ループ給水流量はドラム水位あるい
は蒸気発生器水位が規定水位となるべく制御されるよう
にしたものでおる。
For this purpose, the present invention is designed so that the total water supply flow rate is controlled in advance so that the water supply pump discharge pressure is in accordance with the load, while the loop water supply flow rate is controlled when the drum water level or the steam generator water level is at a specified water level. It is designed to be controlled as much as possible.

より具体的には合計給水流量は負荷要求指令にもとづき
起動時にはモータ駆動給水ポンプの起動用給水制御弁の
開度を制御することによって、非起動時にはタービン駆
動給水ポンプの回転数を先行的に制御することによって
、また、ル プ給水流量はドラム水位あるいは蒸気発生
器水位が規定水位となるべく水位変化にもとづきループ
給水制御弁の開度を制御することによって、それぞれ安
定に制御されるようにしたものである。
More specifically, the total water supply flow rate is determined based on the load demand command by controlling the opening of the water supply control valve for starting the motor-driven water supply pump at startup, and by proactively controlling the rotation speed of the turbine-driven water supply pump at non-startup. In addition, the loop water supply flow rate is stably controlled by controlling the opening degree of the loop water supply control valve based on changes in the water level so that the drum water level or the steam generator water level reaches the specified water level. It is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第3図、第4図により説明する。 The present invention will be explained below with reference to FIGS. 3 and 4.

なお、本発明は複数ループに給水が行なわれる原子炉プ
ラント、例えば複数に分割された炉心に給水が行なわれ
るATR原子力発電所や、原子炉の熱が熱輸送される複
数の蒸気発生器水位に対して給水が行なわれる系統構成
を採るFBR原子力発電所、PW几原子力発電所などに
一般に適用可となっている。
The present invention is applicable to nuclear reactor plants where water is supplied to multiple loops, such as ATR nuclear power plants where water is supplied to a reactor core divided into multiple loops, and multiple steam generator water levels where reactor heat is transferred. It can generally be applied to FBR nuclear power plants, PW 几 nuclear power plants, etc., which have a system configuration in which water is supplied to people.

さて、本発明に係る制御系の一例での構成をATR原子
力発電所に例を採って第3図により説明すれば、制御系
は合計給水流量を制御する給水ヘッダ圧力制御系と、ル
ープ対応に設けられ、そのループへの給水流量を調整す
ることによってドラム水位を規定水位に維持するドラム
水位制御系とからなるものとなっている。
Now, the configuration of an example of the control system according to the present invention will be explained using FIG. 3 using an ATR nuclear power plant as an example. The control system includes a water supply header pressure control system that controls the total water supply flow rate, and a loop compatible system. The drum water level control system maintains the drum water level at a specified water level by adjusting the flow rate of water supplied to the loop.

先ず給水ヘッダ圧力制御系について説明すれば、負荷要
求作成制御装置51からの負荷要求指令にもとづいて関
数発生器40aからは給水ヘッダ圧力要求信号′カ作成
されるものとなっている。第4図はタービン駆動給水ポ
ンプのQ(流量)−H(ヘッダ圧力)特性を示すが、流
量が定められれば給水ヘッダ圧力要求曲線Aとの交点よ
シ給水ヘッダ圧力、更にはその交点を通る給水ポンプ回
転数曲線Cからは給水ポンプの回転数がめられるもので
ある。流量がその流量よシも小さくなれば、給水ポンプ
回転数曲線Cは給水ポンプ回転数曲線りへといった具合
に移行するものである。なお、第4図におけるB、Eは
それぞれ系統圧損曲線、主蒸気圧力を示す。
First, the water supply header pressure control system will be described. Based on the load request command from the load request generation control device 51, the water supply header pressure request signal' is generated from the function generator 40a. Figure 4 shows the Q (flow rate) - H (header pressure) characteristics of a turbine-driven water pump. Once the flow rate is determined, it passes through the intersection point with the water supply header pressure demand curve A, the water supply header pressure, and then the intersection point. The water supply pump rotation speed curve C indicates the rotation speed of the water supply pump. If the flow rate becomes smaller than the flow rate, the water supply pump rotation speed curve C shifts to the water supply pump rotation speed curve. In addition, B and E in FIG. 4 indicate the system pressure loss curve and the main steam pressure, respectively.

さて、関数発生器40aからの給水ヘッダ圧力要求信号
は圧力検出器44からの給水ヘッダ圧力信号との間で偏
差が加算器35fによってめられたうえ要求圧力となる
べく圧力コントローラ36e1手動/自動切換ステーシ
ョン37d〜37fを介し起動用給水制御弁15の開度
が起動時にあっては制御されるようになっている。非起
動時にあってはタービン駆動給水ポンプ5b。
Now, the deviation between the water supply header pressure request signal from the function generator 40a and the water supply header pressure signal from the pressure detector 44 is determined by the adder 35f, and the pressure controller 36e1 manual/automatic switching station The opening degree of the start-up water supply control valve 15 is controlled at the time of start-up via 37d to 37f. When not activated, the turbine-driven water supply pump 5b.

5Cの回転数が制御されるよ1うになっているものであ
る。具体的には負荷が約30チ程度以下である場合には
起動用給水制御弁15が、約30%以上の負荷運転状態
ではタービン駆動給水ポンプ5b、5Gが制御されるも
のである。この場合加算器35gには蒸気流量検出器5
2からの負荷相当の主蒸気流量信号が加えられているが
、これは応答を改善するためである。
The rotation speed of 5C is controlled in this way. Specifically, when the load is about 30% or less, the start-up water supply control valve 15 is controlled, and when the load is about 30% or more, the turbine-driven water supply pumps 5b and 5G are controlled. In this case, the adder 35g includes a steam flow rate detector 5.
A load-equivalent main steam flow signal from 2 is added to improve response.

次にドラム水位制御系について説明すれば、水位検出器
41からのドラム水位信号は加算器35aで水位設定値
と比較され、その偏差をしてループ給水制御弁7の開度
が調整制御されるところとなるものである。
Next, to explain the drum water level control system, the drum water level signal from the water level detector 41 is compared with the water level set value in the adder 35a, and the opening degree of the loop water supply control valve 7 is adjusted and controlled based on the deviation. By the way, this is true.

しかして、これら制御系による場合は、負荷変更時にあ
っては給水ヘッダ圧力制御系が主蒸気流量と給水流量の
重畳バランスを保つべく先行的な制御を行なう一方、各
ループにおいては過渡的に系統の特性差等によって生じ
るドラム水位の変動をドラム水位制御系によシ微調制御
を行なうことによって相互の干渉を抑制した状態で抑え
得ることから安定した合計給水流量制御、ループ給水流
量制御が可能となるものである。また、起動時と定常出
力運転時とでは制御の態様が一元化されることから、運
転操作性が大幅に向上されるばかシか、系構成の簡単化
によって給水流量制御が経済的に行ない得るところとな
るものである。
However, when using these control systems, when the load changes, the water supply header pressure control system performs proactive control to maintain the superimposed balance between the main steam flow rate and the water supply flow rate, while in each loop, the system Fluctuations in the drum water level caused by differences in characteristics can be suppressed by fine-tuning the drum water level control system while minimizing mutual interference, making stable total water supply flow rate control and loop water supply flow rate control possible. It is what it is. In addition, since the control aspects are unified during startup and steady output operation, operational operability is greatly improved, and water supply flow rate control can be performed economically by simplifying the system configuration. This is the result.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、合計給水流量は起動時で
あると否とに拘わらず給水ポンプ吐出圧力が負荷に応じ
たものとなるべく先行的に制御されるようにし、また、
ループ給水流量はドラム水位あるいは蒸気発生器水位が
規定許容水位となるべくその水位変化にもとづき制御さ
れるようにしたものである。したがって、本発明による
場合は、給水流量制御系はその運転操作性が向上される
ばかシか、経済的に構成され得、しかも相互の干渉を抑
制した状態での給水流量制御が可能であるという効果が
得られる。
As explained above, the present invention allows the total water supply flow rate to be controlled in advance so that the water supply pump discharge pressure is in accordance with the load, regardless of whether it is at the time of startup or not, and
The loop water supply flow rate is controlled based on changes in the drum water level or the steam generator water level so as to maintain the specified allowable water level. Therefore, according to the present invention, the water supply flow rate control system not only has improved operability, but also can be configured economically, and furthermore, it is possible to control the water supply flow rate while suppressing mutual interference. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ATEt、原子力発電所におけるプラント制
御系の一例を1ル一プ分について示す図、第2図は、そ
の構成における給水制御系の構成を具体的に示す図、第
3図は、本発明に係る給水制御系の一例での構成を具体
的に示す図、第4図は、給水ポンプの流量一系統圧力特
性を示す図である。 1i゛・・原子炉、3・・・ドラム、5a・・・モータ
駆動給水ポンプ、5b、5C’−タービン駆動給水ポン
プ、6・・・給水ヘッダ、7(7a)・・・ループ給水
制御弁、15・・・起動用給水制御弁、34a・・・(
水位設定用)設定回路、35a・・・(水位偏差検出用
)加算器、35f・・・(要求圧力偏差検出用)加算器
、41・・・水位検出器、44・・・圧力検出器、51
・・・負荷要求作成制御装置。 代理人 弁理士 秋本正実 f]2図 嘱4日 −q7嶋何
Figure 1 is a diagram showing an example of a plant control system in an ATEt or nuclear power plant for one loop, Figure 2 is a diagram specifically showing the configuration of the water supply control system in that configuration, and Figure 3 is FIG. 4 is a diagram specifically showing the configuration of an example of the water supply control system according to the present invention, and FIG. 4 is a diagram showing the flow rate and pressure characteristics of the water supply pump system. 1i゛... Nuclear reactor, 3... Drum, 5a... Motor driven water supply pump, 5b, 5C'-Turbine driven water supply pump, 6... Water supply header, 7 (7a)... Loop water supply control valve , 15...Start-up water supply control valve, 34a...(
Setting circuit (for setting water level), 35a... Adder (for detecting water level deviation), 35f... Adder (for detecting required pressure deviation), 41... Water level detector, 44... Pressure detector, 51
...Load request creation control device. Agent Patent Attorney Masami Akimoto f] 2 Figures 4th - q7 He Shima

Claims (1)

【特許請求の範囲】 1、複数の蒸気発生器の各々あるいは複数に分割された
炉心の各々に対して給水が行なわれる系統構成の原子炉
プラントにおける原子炉給水制御方法にして、合計給水
流量は給水ポンプ吐出圧力が負荷指令に応じたものとな
るべく起動用給水制御弁、給水ポンプを制御することに
よって先行的に流量制御される一方、ループ給水流量は
ドラム水位おるいは蒸気発生器水位が規定許容水位とな
るべく水位変化にもとづきループ給水制御弁の開度を制
御することによって流量制御されることを特徴とする原
子炉給水制御方法。 2、合計給水流量の制御においては、起動時にあっては
モータ駆動給水ポンプ出口側の起動用給水制御弁の開度
が、非起動時にあってはタービン駆動給水ポンプの回転
数がそれぞれ制御される特許請求の範囲第1項記載の原
子炉給水制御方法。
[Claims] 1. A reactor water supply control method in a nuclear reactor plant having a system configuration in which water is supplied to each of a plurality of steam generators or each of a reactor core divided into a plurality, in which the total water supply flow rate is The flow rate is controlled in advance by controlling the startup water supply control valve and the water pump so that the water supply pump discharge pressure is in accordance with the load command, while the loop water supply flow rate is determined by the drum water level or steam generator water level. 1. A reactor water supply control method, characterized in that the flow rate is controlled by controlling the opening degree of a loop water supply control valve based on changes in water level to maintain an allowable water level. 2. In controlling the total water supply flow rate, the opening degree of the startup water supply control valve on the outlet side of the motor-driven water supply pump is controlled during startup, and the rotation speed of the turbine-driven water supply pump is controlled during non-startup. A nuclear reactor feed water control method according to claim 1.
JP58243761A 1983-12-26 1983-12-26 Method of controlling feedwater to nuclear reactor Pending JPS60135899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243761A JPS60135899A (en) 1983-12-26 1983-12-26 Method of controlling feedwater to nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243761A JPS60135899A (en) 1983-12-26 1983-12-26 Method of controlling feedwater to nuclear reactor

Publications (1)

Publication Number Publication Date
JPS60135899A true JPS60135899A (en) 1985-07-19

Family

ID=17108588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243761A Pending JPS60135899A (en) 1983-12-26 1983-12-26 Method of controlling feedwater to nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60135899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator
US9208905B2 (en) 2011-10-26 2015-12-08 Mitsubishi Heavy Industries, Ltd. Auxiliary feedwater valve control apparatus of steam generator

Similar Documents

Publication Publication Date Title
US4818475A (en) Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
JPH06201891A (en) Device and method of controlling nuclear reactor
JPS6253797B2 (en)
JPS60135899A (en) Method of controlling feedwater to nuclear reactor
JP4506353B2 (en) Water supply control device for steam generator in power plant
JPS5828689A (en) Method and device for controlling reactor power at load loss
JPH0539901A (en) Method and device for automatically controlling boiler
JPH081122B2 (en) Water supply control device
JPS6273004A (en) Flow controller for feedwater of nuclear reactor
JPS61134699A (en) Load follow-up controller for boiling water type nuclear power plant
JP3119884B2 (en) Instrument interlock circuit for reactor water level
JPS6314001A (en) Steam-generator output controller
JPH05172991A (en) Suppression device of nuclear reactor water level
JPS61190202A (en) Controller for drum level
JPS58196485A (en) Reactor reactivity control device
JPS60174404A (en) Controller for feedwater to nuclear reactor
JPS6332203A (en) Method of controlling feed pump for nuclear reactor
JPS5974405A (en) Controller for recirculating flow rate of feed pump
JPH0335562B2 (en)
JPS61225696A (en) Turbine controller
JPS6042501A (en) Nuclear reactor feed pump interlocking device
JPH02244000A (en) Method and device for controlling nuclear power plant
JPS6026479B2 (en) Reactor water supply control device
JPS58214703A (en) Method of controlling feed pump
JPS61272506A (en) Steam turbine controller