JPS6042171B2 - Selective separation method for arsenic - Google Patents

Selective separation method for arsenic

Info

Publication number
JPS6042171B2
JPS6042171B2 JP10920880A JP10920880A JPS6042171B2 JP S6042171 B2 JPS6042171 B2 JP S6042171B2 JP 10920880 A JP10920880 A JP 10920880A JP 10920880 A JP10920880 A JP 10920880A JP S6042171 B2 JPS6042171 B2 JP S6042171B2
Authority
JP
Japan
Prior art keywords
arsenic
leaching
alcohol
solvent
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10920880A
Other languages
Japanese (ja)
Other versions
JPS5738324A (en
Inventor
和博 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP10920880A priority Critical patent/JPS6042171B2/en
Publication of JPS5738324A publication Critical patent/JPS5738324A/en
Publication of JPS6042171B2 publication Critical patent/JPS6042171B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、砒素及ひその他の金属成分を含む物質から
の砒素の選択的分離方法に関するものであり、特には炭
素数4〜5のアルコール類と硫酸とから成る溶媒を使用
しての浸出法によつて砒素を選択的分離する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively separating arsenic from substances containing arsenic and other metal components. The present invention relates to a method for selectively separating arsenic by a leaching method using.

非鉄金属製錬における各種煙灰や残査等には砒素がそ
の他の金属成分と共に含まれている。
Arsenic is contained in various smoke ash and residues from non-ferrous metal smelting along with other metal components.

例えば、スクラップ等を処理するリサイクル炉操業によ
り発生するコットレル煙灰中には装入物中の砒素が濃縮
され、高濃度時には10%を越えることもある。砒素の
外、銅、鉄、亜鉛、ニッケル、カドミウム等が含まれて
いる。近時、公害対策上また副産物として亜砒酸を回収
する目的のために、これら砒素含有物質から砒素を分離
する試みが為されている。 従来からの砒素回収法とし
ては、硫化法により砒素を硫化砒素とした後それを戸別
分離して回収し、脱水後の塊体を貯蔵したり、或は上記
硫化砒素を酸化浸出しそして浸出液を還元後濃縮及び高
山を行う方法が提唱されていたが、大きな貯蔵スペース
の必要性、複雑で長い工程操作の必要性、砒素の選択分
離性の悪さ等の理由で満足すべきものでない。
For example, arsenic in the charge is concentrated in Cottrell smoke generated during the operation of a recycling furnace that processes scrap, etc., and the arsenic content may exceed 10% at high concentrations. In addition to arsenic, it contains copper, iron, zinc, nickel, cadmium, etc. Recently, attempts have been made to separate arsenic from these arsenic-containing substances for the purpose of preventing pollution and recovering arsenous acid as a by-product. Conventional arsenic recovery methods include converting arsenic into arsenic sulfide using a sulfurization method, separating it into individual households, and storing the dehydrated lumps, or oxidizing and leaching the arsenic sulfide and collecting the leachate. A method of performing concentration and high concentration after reduction has been proposed, but it is not satisfactory due to the need for large storage space, the need for complicated and long process operations, and poor selective separation of arsenic.

もつと簡便な砒素回収法として硫酸水溶液によ浸出法
がある。
One of the simplest arsenic recovery methods is the leaching method using an aqueous sulfuric acid solution.

この浸出法によれば、90%以上の砒素浸出率を得るこ
とが可能であるが、同時に共存する亜鉛や銅も90%以
上の浸出率て溶出するため砒素の濃縮時に硫酸亜鉛等の
結晶が析出し、砒素を亜砒酸として回収する場合問題て
あつた。 また別の砒素分離法として溶媒抽出法かある
。溶媒抽出法は、特定の物質を選択的に抽出しうる抽出
剤を含む有機溶媒を使用して、その物質を含む水溶液か
らそれを分離するものてある。上記コットレル煙灰等の
砒素含有物質に溶媒抽出法を適用する場合、先す砒素含
有物質の酸浸出液例えは硫酸水溶液を調製し、次いでこ
の浸出液を抽出槽に移しそこに適当な抽出剤を含む有機
溶媒が加えられる。適正な抽出剤を見出すことにより砒
素の選択抽出が可能であらり、様々の試行が行われつつ
ある。この溶媒抽出法に関連しての問題の一つは、コッ
トレル煙灰のような固形砒素含有物質に応用する場合、
上述のようにいつたん酸浸出液を調製せねばならないこ
とである。非鉄製錬業果においては、主産物、副産物及
ひ廃棄物それぞれのプロセスが多数に及び、それを一つ
でも省略しうるよう努力が続けられているが、この砒素
分離プロセスにおいても、砒素含有物質への直接的な適
用が可能なら、酸浸出液の調製の手間が省けて好都合で
ある。結局、前記した浸出法におけるように砒素含有物
質に直接的に接触することにより砒素を浸出し、しかも
溶媒抽出法におけるように砒素のみを選択に抽出しうる
方法が確立されるなら、砒素分離法として工業的にきわ
めて有益である。
According to this leaching method, it is possible to obtain an arsenic leaching rate of 90% or more, but since zinc and copper that coexist are also leached out at a leaching rate of 90% or more, crystals such as zinc sulfate are formed when arsenic is concentrated. There were problems when recovering arsenic as arsenous acid. Another method for separating arsenic is the solvent extraction method. Solvent extraction uses an organic solvent containing an extractant capable of selectively extracting a particular substance to separate it from an aqueous solution containing the substance. When applying the solvent extraction method to an arsenic-containing substance such as the above-mentioned Cottrell smoke ash, an acid leaching solution of the arsenic-containing substance, for example, an aqueous sulfuric acid solution, is prepared first, and then this leaching solution is transferred to an extraction tank and an organic solvent containing an appropriate extractant is added thereto. Solvent is added. Selective extraction of arsenic is possible by finding a suitable extractant, and various trials are being carried out. One of the problems associated with this solvent extraction method is that when applied to solid arsenic-containing materials such as Cottrell smoke,
As mentioned above, the acid leaching solution must be prepared. In the nonferrous smelting industry, there are many processes for main products, by-products, and waste, and efforts are being made to eliminate even one of them. It would be advantageous if it could be applied directly to the substance, since it would save the preparation of an acid leachate. In the end, if a method can be established that allows arsenic to be leached by direct contact with arsenic-containing substances as in the leaching method described above, and selectively extracts only arsenic as in the solvent extraction method, the arsenic separation method It is extremely useful industrially.

このような観点の下で、本発明者は多くの実験を重ねた
結果、砒素及びその他の金属成分を含有する物質に炭素
数4〜5のアルコール類と硫酸とからなる溶媒を接触さ
せることによつて砒素の直接的選択的分離が可能である
ことを見出した。
From this point of view, as a result of numerous experiments, the present inventors decided to bring a solvent consisting of an alcohol having 4 to 5 carbon atoms and sulfuric acid into contact with a substance containing arsenic and other metal components. We have thus found that direct selective separation of arsenic is possible.

本方法は、従来からの浸出法と溶媒抽出法の利点を併せ
もつたものセあり、酸一有機溶媒浸出法とでも呼ぶべき
新規な方法である。本方法においては、浸出法及び溶媒
抽出法それぞれにおいて通常考慮されるべき事項は当然
のこと、酸と有機溶媒との間ての適合性も考慮されねば
ならない。溶媒中に移行した砒素は一般的な溶媒抽出法
における逆抽出操作に準じて回収されそして逆抽出後の
溶媒は再使用しうることも必要である。このような総合
的な検討の結果として、前記アルコール類と硫酸との組
合せが最適であることが見出された。更に、水による逆
抽出が可能であることも見出された。逆抽出時の分相を
よくするために一般に有機質希釈剤が用いられる。斯く
して、本発明は、砒素及びその他の金属成ノ分を含有す
る物質を炭素数4〜5のアルコール類と硫酸とを含む溶
媒と接触して砒素を選択的に分離浸出し、そして浸出後
液を回収することを特徴とする砒素の選択的分離方法を
提供する。
This method combines the advantages of conventional leaching methods and solvent extraction methods, and is a novel method that can also be called an acid-organic solvent leaching method. In this method, not only the usual considerations for leaching and solvent extraction methods, but also the compatibility between the acid and the organic solvent must be taken into account. It is also necessary that the arsenic transferred into the solvent be recovered according to a back extraction operation in a general solvent extraction method, and that the solvent after back extraction can be reused. As a result of such comprehensive studies, it has been found that the combination of the alcohol and sulfuric acid is optimal. Furthermore, it has been found that back extraction with water is possible. An organic diluent is generally used to improve phase separation during back extraction. Thus, the present invention selectively separates and leaches out arsenic by contacting a substance containing arsenic and other metal components with a solvent containing an alcohol having 4 to 5 carbon atoms and sulfuric acid, and then leaching out arsenic. Provided is a method for selectively separating arsenic, which is characterized by recovering an after-liquid.

更に、本発明は、浸出後液を水で逆抽出することをも含
む上記砒素の選択的分離方法も提供する。本発明におい
て処理の対象とする砒素含有物質は、非鉄製錬の各種工
程て得られる煙灰、残査、沈殿物等であり、その一例は
リサイクル炉操業により発生するコットレル煙灰である
Furthermore, the present invention also provides a method for selectively separating arsenic, which also includes back-extracting the post-leaching solution with water. The arsenic-containing substances to be treated in the present invention are smoke ash, residue, precipitates, etc. obtained in various steps of non-ferrous smelting, and one example is Cottrell smoke generated during recycling furnace operation.

これは操業条件により異なるがおおよそ次の組成範囲に
ある。浸出槽に置かれた砒素含有物質に対して炭素数4
〜5のアルコール類と硫酸の混合浸出液が添加される。
Although this varies depending on the operating conditions, it is approximately within the following composition range. Carbon number 4 for the arsenic-containing material placed in the leaching tank
A mixed leachate of alcohols and sulfuric acid of 5 to 5 is added.

この場合、爾後の逆抽出時の分層を良好にする為、浸出
液中に鉱油あるいは高級アルコール類等の有機希釈剤を
加えておくことが好ましい。硫酸濃度は希釈剤を加えな
い場合浸出液の約一1〜2喀量%とされるが、希釈剤を
加える場合もつと高い濃度の使用も可能である。硫酸濃
度が1%以下だと浸出率が落ち他方2喀量%を越えると
逆抽出時の水との分相性が悪くなる。アルコール類とし
ては炭素数4及び5のものなら任意のものが使用されう
る。炭素数4未満のものは水に溶けやすく分相性が非常
に悪い。他方5を越える炭素数のアルコールは水に溶解
せず分相性は良いが、浸出液の浸出能を著しく低下させ
る。脂肪族飽和アルコール、脂肪族不飽和アルコール、
脂環式アルコールを含め、更には一価及び多価のものを
含め各種のものが使用されうるが、その代表例は、n−
ブチルアルコール、イソブチルアルコール、Sec−ブ
チルアルコール、n−アミルアルコール、イソアミルア
ルコール、Sec−アミルアルコール、等である。希釈
剤は通常アルコール量に対して113〜1皓程度使用さ
れる。浸出槽に置かれた砒素含有物質と浸出液は攪拌を
受けつつ所要の浸出をもたらすに充分の時間放置されら
る。攪拌は、マグチネツクスターラ、攪拌翼、ガスバブ
リング等適宜の手段で行いうる。浸出温度は常温で充分
であるが、80゜C位まで昇温しても差支えない。砒素
含有物質と浸出液のスラリーの濃度は、適度の攪拌を行
いうる程度に、設備能力、浸出液の種類や組成、砒素含
有物質の組成、粒度等に応じて適宜定められるが、あま
りスラリー濃度が高すぎると浸出後のろ過性が悪くなる
ので、浸出液1′当り450y程度を上限のめやすとす
べきである。浸出後、ろ過あるいは遠心分離操作よつて
、浸出後液と残査とが分離される。
In this case, in order to improve layer separation during subsequent back extraction, it is preferable to add an organic diluent such as mineral oil or higher alcohol to the leachate. The concentration of sulfuric acid is approximately 11-2% by volume of the leachate when no diluent is added, but higher concentrations can be used when a diluent is added. If the sulfuric acid concentration is less than 1%, the leaching rate will decrease, while if it exceeds 2% by mass, the phase separation with water during back extraction will be poor. Any alcohol having 4 or 5 carbon atoms can be used. Those having less than 4 carbon atoms are easily soluble in water and have very poor phase separation properties. On the other hand, alcohols having more than 5 carbon atoms do not dissolve in water and have good phase separation properties, but they significantly reduce the leaching ability of the leachate. aliphatic saturated alcohol, aliphatic unsaturated alcohol,
A variety of alcohols can be used, including alicyclic alcohols, as well as monohydric and polyhydric alcohols; representative examples include n-
These include butyl alcohol, isobutyl alcohol, Sec-butyl alcohol, n-amyl alcohol, isoamyl alcohol, Sec-amyl alcohol, and the like. The diluent is usually used in an amount of about 113 to 1 mol based on the amount of alcohol. The arsenic-containing material and leachate placed in the leaching tank are left under agitation for a sufficient period of time to effect the desired leaching. Stirring may be performed by any appropriate means such as a magnetic stirrer, stirring blades, or gas bubbling. Although room temperature is sufficient for the leaching temperature, there is no problem in raising the temperature to about 80°C. The concentration of the slurry of the arsenic-containing substance and the leachate is appropriately determined depending on the equipment capacity, the type and composition of the leachate, the composition of the arsenic-containing substance, the particle size, etc., to the extent that appropriate stirring can be performed. However, if the slurry concentration is too high, If too much, the filterability after leaching will deteriorate, so the upper limit should be about 450y per 1' of leachate. After leaching, the leaching solution and residue are separated by filtration or centrifugation.

浸出後液中には、砒素が80%以上移行するが他の成分
金属はほとんど移行しない。浸出後液は逆抽出工程に送
られそして残査は残留アルコールを回収した後適宜処分
される。逆抽出は、浸出後液に水を加えることによつて
容易に達成しうる。
More than 80% of arsenic migrates into the solution after leaching, but almost no other component metals migrate. The post-leaching liquid is sent to a back-extraction step and the residue is disposed of appropriately after recovering the residual alcohol. Back extraction can be easily accomplished by adding water to the post-leaching liquor.

AIO(水/浸出後液)比が1115〜5ハ程度となる
よう水が加えられ、攪拌後放置すると分相が生じる。必
要に応じ逆抽出操作は数回繰返してもよい。逆抽出後の
浸出液相は循環使用されそして砒素の濃縮した水相は砒
素回収工程に送られる。例えば、コットレル煙灰中に砒
素の約1ゐ倍含まれる亜鉛は逆抽出時には砒素の114
0〜11100の減少しそして銅、鉄等の量も僅かであ
る。従つて、亜砒酸製造目的に充分の砒素濃度が得られ
る。砒素濃度を高めることについては、出発スラリー濃
度を高めることにより浸出液中で約30〜50yI′を
実現しえそして逆抽出時のAIO比の選択により蒸発濃
縮せずに50yIe以上の砒素濃度の水相を得ることが
できる。上記浸出操作においてアルコール類の代わりに
リン酸トリブチルを使用した場合にもほぼ同様の効果を
得たが、価格面でアルコール類の使用の方が好ましい。
Water is added so that the AIO (water/liquid after leaching) ratio is about 1115 to 5, and phase separation occurs when the mixture is left to stand after stirring. The back-extraction operation may be repeated several times if necessary. The leachate phase after back extraction is recycled and the arsenic-enriched aqueous phase is sent to an arsenic recovery process. For example, zinc, which is contained in Cottrell smoke ash about 1 times as much as arsenic, is 114 times more than arsenic when back-extracted.
The amount of copper, iron, etc. decreases from 0 to 11,100, and the amount of copper, iron, etc. is also small. Therefore, a sufficient arsenic concentration can be obtained for the purpose of producing arsenous acid. Regarding increasing the arsenic concentration, approximately 30-50 yI' can be achieved in the leachate by increasing the starting slurry concentration, and by selecting the AIO ratio during back-extraction, an arsenic concentration of more than 50 yIe can be achieved in the aqueous phase without evaporative concentration. can be obtained. Although almost the same effect was obtained when tributyl phosphate was used instead of alcohol in the above leaching operation, the use of alcohol is preferable in terms of cost.

実施例1 リサイクル炉操業中発生した下記組成のコットレル煙灰
を使用して本発明に従う砒素浸出を行つた:浸出液21
0m1を以下の濃度で調製した:n−ブチルアルコール
・・140m1ケロシン
・・・60mt濃硫酸(95%)
・・・10m1この浸出液21
0mtに対して上記コットレル煙灰一を20y140y
160y加えることにより浸出率の変化を調べた。
Example 1 Arsenic leaching according to the present invention was carried out using Cottrell smoke ash having the following composition generated during recycling furnace operation: Leachate 21
0ml was prepared at the following concentration: n-butyl alcohol
...140m1 kerosene
...60mt concentrated sulfuric acid (95%)
...10m1 of this leachate 21
The above Cottrell smoke ash is 20y140y for 0mt.
Changes in leaching rate were investigated by adding 160y.

試験は、最初にコットレル煙灰20y.を加えマグネチ
ツクスターラで1吟間攪拌した後5分間静置し、上澄み
液5m1を分析のため採取した後更にコットレル煙灰2
0yを加え同様に攪拌し、上澄み液採取後更にコットレ
ルダスト20yを加えて同様の操作を行うとう手順をと
つた。ろ過後の浸出後液についてスラリー濃度毎の各成
分の浸出率を表1に示す。表1から砒素の浸出率は87
%以上の高率であり同時に他成分の浸出率は非常に低い
ことがわかる。
The test was first carried out using Cottrell smoke ash 20y. After stirring for 1 minute with a magnetic stirrer, it was left to stand for 5 minutes, and 5 ml of supernatant liquid was collected for analysis.
0y was added and stirred in the same manner, and after collecting the supernatant, 20y of Cottrell Dust was further added and the same operation was performed. Table 1 shows the leaching rate of each component for each slurry concentration for the leached liquid after filtration. From Table 1, the leaching rate of arsenic is 87
It can be seen that the leaching rate of other components is very low.

上記浸出後液に水を加えることにより逆抽出を行つた。Back extraction was performed by adding water to the above leached solution.

試験は砒素25.76ダ1f濃度の浸出後液を30m1
つつ3つの100m1分液ロードに採り、それぞれ純水
10m1(AlO:113)、20m1(AIO:2ノ
3)及び30m1(AIO:111)を加えそして手動
で約30秒一間振盪することにより行つた。逆抽出液に
ついて砒素、亜鉛、銅及ひ鉄濃度を分析した。結果を表
2に示す。A/O比を適正に選択することにより85%
の砒素逆抽出率が実現しうることがわかる。
The test was conducted using 30ml of the leached solution with arsenic concentration of 25.76 da 1f.
This was carried out by adding 10 ml (AlO: 113), 20 ml (AIO: 2-3) and 30 ml (AIO: 111) of pure water to each of the three 100 ml aliquots, and manually shaking for about 30 seconds. Ivy. The back extract was analyzed for arsenic, zinc, copper and iron concentrations. The results are shown in Table 2. 85% by selecting the A/O ratio appropriately
It can be seen that an arsenic back extraction rate of

実施例2 実施例1のn−ブチルアルコールに代えてイソアミルア
ルコールを使用した点以外は実施例1の方法に従つて試
験を行つた。
Example 2 A test was conducted according to the method of Example 1, except that isoamyl alcohol was used in place of n-butyl alcohol.

浸出試験結果を表3に示す。砒素18.26vIe濃度
の浸出後液について先き同様に逆抽出操作を行つた結果
を表4に示す。
The leaching test results are shown in Table 3. Table 4 shows the results of back-extraction performed on the leached solution with an arsenic concentration of 18.26 vIe in the same manner as before.

Claims (1)

【特許請求の範囲】 1 砒素及びその他の金属成分を含有する物質を炭素数
4〜5のアルコール類と硫酸とを含む溶媒と接触して砒
素を選択的に分離浸出し、そして浸出後液を回収するこ
とを特徴とする砒素の選択的分離方法。 2 溶媒が有機希釈剤を含む特許請求の範囲第1項記載
の方法。 3 砒素及びその他の金属成分を含有する物質を炭素数
4〜5のアルコール類と硫酸とを含む溶媒と接触して砒
素を選択的に分離浸出し、浸出後液を水で逆抽出するこ
とを特徴とする砒素の選択的分離方法。
[Claims] 1. A substance containing arsenic and other metal components is brought into contact with a solvent containing an alcohol having 4 to 5 carbon atoms and sulfuric acid to selectively separate and extract arsenic, and the leached liquid is collected. A method for selectively separating arsenic, which comprises recovering arsenic. 2. The method according to claim 1, wherein the solvent contains an organic diluent. 3. A substance containing arsenic and other metal components is brought into contact with a solvent containing an alcohol having 4 to 5 carbon atoms and sulfuric acid to selectively separate and leached arsenic, and the leached liquid is back-extracted with water. Characteristic selective separation method for arsenic.
JP10920880A 1980-08-11 1980-08-11 Selective separation method for arsenic Expired JPS6042171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10920880A JPS6042171B2 (en) 1980-08-11 1980-08-11 Selective separation method for arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10920880A JPS6042171B2 (en) 1980-08-11 1980-08-11 Selective separation method for arsenic

Publications (2)

Publication Number Publication Date
JPS5738324A JPS5738324A (en) 1982-03-03
JPS6042171B2 true JPS6042171B2 (en) 1985-09-20

Family

ID=14504331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10920880A Expired JPS6042171B2 (en) 1980-08-11 1980-08-11 Selective separation method for arsenic

Country Status (1)

Country Link
JP (1) JPS6042171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1194304B (en) * 1983-07-07 1988-09-14 Samim Soc Azionaria Minero Met PROCEDURE FOR THE SEPARATION OF ARSENIC FROM ACID SOLUTIONS THAT CONTAIN IT
IT1187725B (en) * 1985-08-01 1987-12-23 Eniricerche Spa PROCEDURE FOR THE SEPARATION OF ARSENIC FROM ACID SOLUTIONS THAT CONTAIN IT

Also Published As

Publication number Publication date
JPS5738324A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
Gutiérrez et al. Recovery of gallium from coal fly ash by a dual reactive extraction process
AU676488B2 (en) Recovery of metal values from process residues
US5023059A (en) Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge
JPH0776391B2 (en) Zinc recovery method
JPH06509845A (en) Copper recovery method
US4317804A (en) Process for the selective removal of ferric ion from an aqueous solution containing ferric and other metal ions
US5260039A (en) Process for the two-phase extraction of metal ions from phases containing solid metal oxides, agents and the use thereof
Tsuboi et al. Recovery and purification of boron from coal fly ash
Bautista Processing to obtain high-purity gallium
JPS6042171B2 (en) Selective separation method for arsenic
KR19980076556A (en) Recovery of valuable metals from diamond tool scrap
US3832162A (en) Recovery of copper and zinc from automobile scrap
Gotfryd et al. The selective recovery of cadmium (II) from sulfate solutions by a counter-current extraction–stripping process using a mixture of diisopropylsalicylic acid and Cyanex® 471X
CN106381398A (en) Method for recovering indium from indium-contained soot
EP0113580B1 (en) Heavy metal separation from copper-bearing wastes
US4925488A (en) Removal of copper from ferrous scrap
JP2000128531A (en) Separation of indium
CA2331734C (en) A process for processing residual substances containing at least one nonferrous metal and/or compounds thereof
Neira et al. Solvent extraction reagent entrainment effects on zinc electrowinning from waste oxide leach solutions
JPS63227727A (en) Citric acid partial ester type iron extractant
JPS6112010B2 (en)
JPS621570B2 (en)
JPH09111360A (en) Method for recovering cobalt from waste secondary battery material
US3894866A (en) Process for recovering rhenium values from dilute solutions of same
JPS6316337B2 (en)