JPS621570B2 - - Google Patents

Info

Publication number
JPS621570B2
JPS621570B2 JP1722982A JP1722982A JPS621570B2 JP S621570 B2 JPS621570 B2 JP S621570B2 JP 1722982 A JP1722982 A JP 1722982A JP 1722982 A JP1722982 A JP 1722982A JP S621570 B2 JPS621570 B2 JP S621570B2
Authority
JP
Japan
Prior art keywords
tin
indium
sulfuric acid
ions
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1722982A
Other languages
Japanese (ja)
Other versions
JPS58135128A (en
Inventor
Nobuo Kikumoto
Mineo Hayashi
Hideaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1722982A priority Critical patent/JPS58135128A/en
Publication of JPS58135128A publication Critical patent/JPS58135128A/en
Publication of JPS621570B2 publication Critical patent/JPS621570B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はインジウム及び錫を含む硫酸酸性水溶
液あるいは珪弗酸水溶液から溶媒抽出によつてイ
ンジウムを濃縮し回収する方法に関する。 インジウムは亜鉛、鉛、銅、錫など各種製錬の
原料鉱石中に極く微量存在し、インジウム単独の
鉱石としては存在しない。従つて、これらの微量
にインジウムを含む製錬中間品を処理してインジ
ウムを回収することは、ともに含まれる銅、亜
鉛、錫、カドミウム、砒素等その他の多くの金属
との分離操作を必要とするため、多くの工程を組
み合わせなければならず、工業的、経済的にあま
り有利とは言えなかつた。 しかし、近年溶媒抽出の技術が発達し、インジ
ウムを含有する水溶液からインジウムを抽出、濃
縮する方法が多く発表されている。 本発明は、前述したように、インジウムイオン
と錫イオンが共存する場合、たとえば、錫の電解
精製における環流液あるいは錫電解、鉛錫合金電
解液などにおけるように、インジウムが蓄積さ
れ、錫イオンと共存するような場合のインジウと
錫の効果的な分離及びインジウムの濃縮法に関す
るものである。 本来、インジウムと錫は電気化学的性質も類似
しており、かつ上記電解液中の錫は2価が主体で
あるものの、一部は酸化され、4価となつてお
り、その共存状態は単純ではない。インジウムイ
オン及び錫イオンの溶媒抽出はジアルキルリン酸
を含む有機溶媒によつて可能であり、さらに、抽
出されたインジウムイオン、錫イオンを含む上記
有機溶媒から500g/以下の遊離硫酸を含む水
溶液又は塩酸を含む水溶液でインジウム、錫を逆
抽出する方法はUSP3462352号明細書および特開
昭55−148735号公報で開示されている。 しかしながら、これ等公知の方法ではそれぞれ
の逆抽出液の濃度、O/A比、あるいは逆抽出に
おける接触時間を種々変化させても、インジウム
及び錫イオンの両方が同時に逆抽出され、充分な
分離効果をあげることができなかつた。また、上
記インジウム及び錫を抽出したジアルキルリン酸
を含む有機溶媒を硫酸で逆抽出する際に、500
g/以上の遊離硫酸を含む水溶液との混合接触
では抽出液との間に第3相が生成し、分相が悪く
なるとともに、前述したように、インジウムと錫
の分離性も悪いので、実質的に500g/を越え
る硫酸濃度の水溶液はこの溶媒の逆抽出には用い
ることができないとされてきた。 さらに、インジウムと錫の分離方法として、亜
鉛末の使用により最初に錫イオンを置換分離した
後、前述の溶媒抽出を行い、塩酸で逆抽出する方
法が提案されているが、この方法では最初の亜鉛
末置換工程で逆に亜鉛を溶解することになり、電
解液そのものが再使用できなくなるため、新規に
電解液を作成、調整することが必要となる。その
上、回収した錫スポンジ中には多量の未溶解亜鉛
を含むため、錫の回収にはさらに別の工程が必要
である。 本発明者らは上記の従来技術の欠点を解決し、
インジウム及び錫を含む硫酸酸性水溶液あるいは
珪弗酸水溶液からインジウムを高収率にて抽出回
収し、かつインジウムを抽出した該水溶液を再び
電解に使用し得るインジウムの回収方法を提供す
べく、検討を重ねた結果、アルキルリン酸を含む
有機溶媒による抽出に組み合わされる逆抽出用硫
酸溶液の遊離硫酸濃度を増すことによつて目的を
達成しうるを見出し、本発明に到達した。 すなわち、本発明の要旨とするところは、イン
ジウムイオン及び錫イオンを含む硫酸酸性水溶液
あるいは珪弗酸水溶液をアルキルリン酸を含む有
機溶媒溶液に接触させて該インジウムイオン及び
錫イオンを該有機溶媒溶液中に抽出し、次いで該
抽出されたインジウムイオン及び錫イオンを含む
有機溶媒溶液に550g/〜1000g/の範囲の
遊離硫酸を含む硫酸酸性水溶液を接触させて該錫
イオンを硫酸錫の結晶として該硫酸酸性水溶液に
逆抽出する選択的脱錫工程を含むことを特徴とす
るインジウムの回収方法、にある。 このように、本発明によれば、従来インジウム
及び錫を抽出したジアルキルリン酸を含む有機溶
媒を硫酸で逆抽出する際に500g/以上の遊離
硫酸を含む硫酸水溶液は使用ができないとされて
きたのに対し、インジウム及び錫を抽出したアル
キルリン酸を含む有機溶媒の逆抽出に550g/
〜1000g/の範囲の遊離硫酸を含む硫酸水溶液
を使用することによつて、上記抽出溶媒中の錫イ
オンのみが選択的に該硫酸逆抽出液中に硫酸錫の
結晶として析出し、過またはデカンテーシヨン
等の周知技術で固液分離した後、次いで液相分離
を行えば、第3相は消滅して分相は容易に行わ
れ、In/Snの存在比を高めた溶媒相が得られ
る。このIn/Snの存在比を高めた溶媒相は公知
の塩酸による逆抽出を行うことにより、インジウ
ムの濃厚な水溶液として簡単に取り出すことがで
きる。 本発明においてインジウム及び錫イオンの抽出
に使用するアルキルリン酸としてはリン酸、亜リ
ン酸または次亜リン酸のジまたはモノアルキルエ
ステルを含み、アルキル基はオクチル基程度のも
のが水溶液相へのロスが小さく好ましい。具体的
には、ジ2エチルヘキシルリン酸、2エチルヘキ
シルリン酸、2エチルエキシルホンホン酸等およ
びそれらの混合物である。 これらのアルキルリン酸を溶解する有機溶媒は
水と混合せず、該アルキルリン酸を自在に溶解す
る安定な化合物であればよく、パラフイン系のケ
ロシン、シエルゾール70、ナフテン系のデイスパ
ゾール、芳香族系のシエルゾールAなどは使用可
能であるが、ケロシンが安価で好ましい。 次に、逆抽出に用いる硫酸酸性水溶液の遊離硫
酸濃度は550g/〜1000g/の範囲、好まし
くは600g/〜850g/の範囲である。遊離硫
酸濃度が550g/未満であると、逆抽出による
脱錫率が低下し、有機相に残る錫が増加する。ま
た、遊離硫酸濃度が1000g/を越えると、錫と
ともに逆抽出されるインジウムの量が増加して好
ましくなく、かつ場合によつては有機相に用いた
化合物の劣化が見られるため、1000g/程度が
上限である。 本発明の効果は次の通りである。 (1) 硫酸逆抽出工程での脱錫率が高いので、塩酸
逆抽出工程で得られるインジウム濃厚水溶液中
の錫含有量が低く、この溶液からの脱錫(イン
ジウムによるセメンテーシヨン)が容易であ
り、インジウムの高収率での回収が可能であ
る。 (2) 従来、錫電解、鉛電解、鉛錫合金電解などの
解溶液中に蓄積したインジウムを溶媒抽出によ
り回収する場合、該溶媒抽出に先立つ脱錫工程
(亜鉛末による置換分離)を必要とする結果、
電解液として再利用することができなかつた。
しかるに、本発明によれば、溶媒抽出後に分離
された有機相を対象に脱錫工程(濃硫酸逆抽出
工程)が設けられることになり、溶媒抽出後の
水相は原電解液に比べて錫とインジウムの含有
量が減少しただけで珪弗酸根の量には変化がな
いことから、該溶媒抽出後の水相に硫酸錫結晶
を溶解して原電解液の錫イオン濃度に戻して電
解液として再利用することができる。 (3) 液相分離された硫酸液は硫酸錫として消費さ
れた硫酸量を補給するだけで、繰返し脱錫用逆
抽出液として使用することができ、しかもイン
ジウムイオンはこの硫酸液中に一定少量以上濃
縮されないのでインジウムの回収には何ら影響
がない。 (4) 高濃度硫酸を使用するほど、O/A比を大き
く選ぶことができ、実操業上非常に有利であ
る。分離回収された硫酸錫は結晶として析出し
たものであり、硫酸錫としての純度も非常に高
く、従つて本発明は硫酸錫結晶の回収法をも提
供するものと言える。 次に、本発明を実施例によつてさらに具体的に
説明するが、本発明はその要旨を越えない限り以
下の実施例によつて限定されるものではない。 実施例 1 インジウムイオン約7g/、錫イオン約35
g/を含む硫酸酸性珪弗酸錫電解液10に対
し、D2EHPAとして大八化学社製のDP−8Rをケ
ロシンにて1mol/に希釈した溶媒8(O/
A=4:5)を使用し、常温で抽出操作を行い、
次いで遊離硫酸650g/の脱錫用逆抽出硫酸液
800ml(O/A=10:1)で硫酸錫の結晶を得た
後、分離分相し、7N塩酸1(O/A=8:
1)でインジウムを逆抽出する一連の工程を実施
した場合に得られた結果を第1表に示す。
The present invention relates to a method for concentrating and recovering indium from an aqueous sulfuric acid solution or an aqueous silicofluoric acid solution containing indium and tin by solvent extraction. Indium exists in extremely small amounts in various raw material ores for smelting, such as zinc, lead, copper, and tin, and does not exist as an ore of indium alone. Therefore, recovering indium by processing these smelting intermediate products containing trace amounts of indium requires separation operations from many other metals such as copper, zinc, tin, cadmium, arsenic, etc. Therefore, many processes had to be combined, which could not be said to be very advantageous from an industrial or economic point of view. However, in recent years, solvent extraction technology has developed, and many methods have been published for extracting and concentrating indium from an aqueous solution containing indium. As mentioned above, in the case where indium ions and tin ions coexist, for example, in the reflux solution of tin electrolytic refining, tin electrolysis, lead-tin alloy electrolyte, etc., indium is accumulated and tin ions and tin ions coexist. This invention relates to a method for effectively separating indium and tin and concentrating indium when they coexist. Originally, indium and tin have similar electrochemical properties, and although the tin in the electrolyte is mainly divalent, some of it is oxidized and becomes tetravalent, so their coexistence state is simple. isn't it. Solvent extraction of indium ions and tin ions is possible with an organic solvent containing dialkyl phosphoric acid, and an aqueous solution containing 500 g or less of free sulfuric acid or hydrochloric acid from the above organic solvent containing extracted indium ions and tin ions. A method for back-extracting indium and tin using an aqueous solution containing the above is disclosed in US Pat. However, in these known methods, both indium and tin ions are back-extracted at the same time even if the concentration of each back-extraction solution, O/A ratio, or contact time during back-extraction is varied, and sufficient separation effects are achieved. I couldn't give you anything. In addition, when back-extracting the organic solvent containing dialkyl phosphoric acid from which indium and tin were extracted with sulfuric acid, 500
In mixed contact with an aqueous solution containing more than g/g of free sulfuric acid, a third phase is formed between the extract and the phase separation, and as mentioned above, the separability of indium and tin is also poor. It has been said that an aqueous solution with a sulfuric acid concentration exceeding 500 g/ml cannot be used for back extraction of this solvent. Furthermore, as a method for separating indium and tin, a method has been proposed in which tin ions are first separated by displacement using zinc powder, followed by the above-mentioned solvent extraction, and then back-extracted with hydrochloric acid. On the contrary, zinc is dissolved in the zinc dust replacement process, and the electrolyte itself cannot be reused, so it is necessary to create and adjust a new electrolyte. Furthermore, since the recovered tin sponge contains a large amount of undissolved zinc, an additional process is required to recover the tin. The present inventors solved the above-mentioned drawbacks of the prior art,
In order to provide a method for recovering indium by extracting and recovering indium in a high yield from a sulfuric acid aqueous solution or a silicofluoric acid aqueous solution containing indium and tin, and by which the aqueous solution from which indium has been extracted can be used again for electrolysis, we are conducting studies. As a result of repeated efforts, it was discovered that the object could be achieved by increasing the free sulfuric acid concentration of the sulfuric acid solution for back extraction combined with extraction with an organic solvent containing alkyl phosphoric acid, and the present invention was achieved. That is, the gist of the present invention is to bring a sulfuric acid acidic aqueous solution or a silicofluoric acid aqueous solution containing indium ions and tin ions into contact with an organic solvent solution containing an alkyl phosphoric acid to remove the indium ions and tin ions from the organic solvent solution. Then, the organic solvent solution containing the extracted indium ions and tin ions is brought into contact with a sulfuric acid acid aqueous solution containing free sulfuric acid in the range of 550 g/~1000 g/ to convert the tin ions into crystals of tin sulfate. A method for recovering indium, characterized by including a selective detinning step of back extraction into an acidic aqueous solution of sulfuric acid. As described above, according to the present invention, when back-extracting an organic solvent containing dialkyl phosphoric acid from which indium and tin was extracted with sulfuric acid, it has been said that an aqueous sulfuric acid solution containing 500 g/or more of free sulfuric acid cannot be used. On the other hand, for back extraction of organic solvent containing alkyl phosphate from which indium and tin were extracted, 550g/
By using an aqueous sulfuric acid solution containing free sulfuric acid in the range of ~1000 g/m, only the tin ions in the extraction solvent are selectively precipitated as crystals of tin sulfate in the sulfuric acid back extract, and If solid-liquid separation is performed using a well-known technique such as a technique, and then liquid phase separation is performed, the third phase disappears, phase separation is easily performed, and a solvent phase with a high abundance ratio of In/Sn is obtained. . This solvent phase with an increased abundance ratio of In/Sn can be easily extracted as a concentrated aqueous solution of indium by back-extraction using known hydrochloric acid. In the present invention, the alkyl phosphoric acid used for extraction of indium and tin ions includes di- or mono-alkyl esters of phosphoric acid, phosphorous acid, or hypophosphorous acid, and the alkyl group is about the size of an octyl group, which is added to the aqueous solution phase. It is preferable because the loss is small. Specifically, they include di-2-ethylhexyl phosphoric acid, 2-ethylhexyl phosphoric acid, 2-ethylexylphonic acid, and mixtures thereof. The organic solvent for dissolving these alkyl phosphoric acids may be any stable compound that does not mix with water and can freely dissolve the alkyl phosphoric acids, such as paraffinic kerosene, Schielzol 70, naphthenic dispazole, aromatic solvents, etc. Although it is possible to use Cierzol A, which is based on Cielsol A, kerosene is preferred because it is inexpensive. Next, the free sulfuric acid concentration of the sulfuric acid acidic aqueous solution used for back extraction is in the range of 550 g/ to 1000 g/, preferably in the range of 600 g/ to 850 g/. When the free sulfuric acid concentration is less than 550 g/min, the tin removal rate by back extraction decreases and the amount of tin remaining in the organic phase increases. Furthermore, if the concentration of free sulfuric acid exceeds 1000g/, the amount of indium that is back-extracted with tin increases, which is undesirable, and in some cases, deterioration of the compound used in the organic phase is observed. is the upper limit. The effects of the present invention are as follows. (1) Since the detinning rate in the sulfuric acid back extraction process is high, the tin content in the indium concentrated aqueous solution obtained in the hydrochloric acid back extraction process is low, making it easy to remove tin (cementation with indium) from this solution. It is possible to recover indium in high yield. (2) Conventionally, when recovering indium accumulated in the solution of tin electrolysis, lead electrolysis, lead-tin alloy electrolysis, etc. by solvent extraction, a detining process (replacement separation with zinc powder) is required prior to the solvent extraction. As a result,
It could not be reused as an electrolyte.
However, according to the present invention, a detining process (concentrated sulfuric acid back extraction process) is provided for the organic phase separated after solvent extraction, and the aqueous phase after solvent extraction contains less tin than the raw electrolyte. Since there was no change in the amount of silicofluoric acid radicals except that the content of indium and indium decreased, tin sulfate crystals were dissolved in the aqueous phase after the solvent extraction to return the tin ion concentration to the original electrolyte, and the electrolyte was prepared. It can be reused as (3) The sulfuric acid solution from which the liquid phase has been separated can be repeatedly used as a back extraction solution for detining by simply replenishing the amount of sulfuric acid consumed as tin sulfate. Moreover, indium ions are contained in a certain amount in this sulfuric acid solution. Since it is not further concentrated, there is no effect on the recovery of indium. (4) The higher the concentration of sulfuric acid used, the greater the O/A ratio can be selected, which is very advantageous in actual operation. The separated and recovered tin sulfate is precipitated as crystals and has very high purity as tin sulfate. Therefore, it can be said that the present invention also provides a method for recovering tin sulfate crystals. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 Approximately 7 g/indium ion, approx. 35 tin ion
Solvent 8 (O/
A=4:5), perform the extraction operation at room temperature,
Next, free sulfuric acid 650g/reverse extraction sulfuric acid solution for detining
After obtaining crystals of tin sulfate with 800 ml (O/A = 10:1), phase separation was performed, and 7N hydrochloric acid 1 (O/A = 8:
Table 1 shows the results obtained when performing the series of steps for back-extracting indium in 1).

【表】【table】

【表】 第1表より硫酸脱錫工程における処理前後の有
機溶媒溶液中に存在するInとSnの含量および処
理後の逆抽出率を求めると第2表のとおりで、そ
の優れた選択的脱錫効果が明瞭である。
[Table] From Table 1, the contents of In and Sn present in the organic solvent solution before and after treatment in the sulfuric acid detinning process and the back extraction rate after treatment are as shown in Table 2. The tin effect is clear.

【表】 比較例 実施例1と同様、インジウムと錫を含む硫酸酸
性珪弗酸錫電解液10に対し、D2EHPAの1
mol/ケロシン溶液8を使用して抽出操作を
行い、次いで有機溶媒溶液に対して硫酸脱錫を行
わず、直接塩酸逆抽出を実施したところ、第3表
に示す結果が得られた。塩酸逆抽出は第3表に示
すように、 (イ) 6N塩酸および9N塩酸による2段逆抽出 (ロ) 8N塩酸による1段逆抽出
[Table] Comparative Example As in Example 1, 10% of the sulfuric acid acidic silicofluoric acid tin electrolyte containing indium and tin was mixed with 1% of D2EHPA.
An extraction operation was performed using 8 mol/kerosene solution, and then the organic solvent solution was directly subjected to hydrochloric acid back extraction without sulfuric acid detinning, and the results shown in Table 3 were obtained. As shown in Table 3, hydrochloric acid back extraction is as follows: (a) Two-stage back extraction with 6N hydrochloric acid and 9N hydrochloric acid (b) One-stage back extraction with 8N hydrochloric acid

【表】【table】

【表】 (ハ) 9N塩酸による1段逆抽出 の3つの条件でそれぞれ実施した。 第3表の塩酸逆抽液のInとSnの含量及び対元
液比を本発明の方法による第1表のデータと比較
すると、硫酸脱錫工程を設けた効果は一層明瞭と
なる。
[Table] (c) One-stage back extraction using 9N hydrochloric acid was performed under three conditions. Comparing the In and Sn contents of the hydrochloric acid back extraction solution and the ratio to the original liquid in Table 3 with the data in Table 1 according to the method of the present invention, the effect of providing the sulfuric acid detinning step becomes even clearer.

Claims (1)

【特許請求の範囲】[Claims] 1 インジウムイオン及び錫イオンを含む硫酸酸
性水溶液あるいは珪弗酸水溶液をアルキルリン酸
を含む有機溶媒溶液に接触させて該インジウムイ
オン及び錫イオンを該有機溶媒溶液中に抽出し、
次いで該抽出されたインジウムイオン及び錫イオ
ンを含む有機溶媒溶液に550g/〜1000g/
の範囲の遊離硫酸を含む硫酸酸性水溶液を接触さ
せて該錫イオンを硫酸錫の結晶として該硫酸酸性
水溶液に逆抽出する選択的脱錫工程を含むことを
特徴とするインジウムの回収方法。
1. Extracting the indium ions and tin ions into the organic solvent solution by contacting a sulfuric acid acidic aqueous solution or a silicofluoric acid aqueous solution containing indium ions and tin ions with an organic solvent solution containing an alkylphosphoric acid,
Next, 550 g/~1000 g/
A method for recovering indium, the method comprising a selective detinning step of contacting with an aqueous sulfuric acid solution containing free sulfuric acid in the range of 1 to 1, and back-extracting the tin ions as crystals of tin sulfate into the aqueous sulfuric acid solution.
JP1722982A 1982-02-05 1982-02-05 Recovery of indium Granted JPS58135128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1722982A JPS58135128A (en) 1982-02-05 1982-02-05 Recovery of indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1722982A JPS58135128A (en) 1982-02-05 1982-02-05 Recovery of indium

Publications (2)

Publication Number Publication Date
JPS58135128A JPS58135128A (en) 1983-08-11
JPS621570B2 true JPS621570B2 (en) 1987-01-14

Family

ID=11938115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1722982A Granted JPS58135128A (en) 1982-02-05 1982-02-05 Recovery of indium

Country Status (1)

Country Link
JP (1) JPS58135128A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145913A (en) * 1984-01-05 1985-08-01 Sumitomo Chem Co Ltd Elution of indium absorbed to chelate resin
CA2077601A1 (en) * 1992-09-04 1994-03-05 William Andrew Rickelton Recovery of indium by solvent extraction using trialkyl-phosphine oxides
JPH1141057A (en) * 1997-07-17 1999-02-12 Murata Mfg Co Ltd Piezoelectric vibration component
KR101054840B1 (en) * 2009-09-29 2011-08-05 한양대학교 산학협력단 Method for preparing tin oxide powder recycled indium tin oxide waste scrap

Also Published As

Publication number Publication date
JPS58135128A (en) 1983-08-11

Similar Documents

Publication Publication Date Title
US3479378A (en) Liquid ion exchange process for metal recovery
JP5514844B2 (en) Method for separating valuable metals from waste secondary batteries and method for recovering valuable metals using the same
CN105112674A (en) All-wet recovery process for waste circuit boards
WO2013099551A1 (en) Method for producing cobalt sulfate
US4362607A (en) Recovery of copper and zinc from complex chloride solutions
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
CN106222454A (en) A kind of from the method containing indium flue dust recovery indium
US6869520B1 (en) Process for the continuous production of high purity electrolytic zinc or zinc compounds from zinc primary or secondary raw materials
US3709680A (en) Process for removal of arsenic from sulfo-ore
US3104971A (en) Copper recovery process
Bautista Processing to obtain high-purity gallium
EP0963451A4 (en)
EP0020826B1 (en) A hydrometallurgical process for recovering precious metals from anode slime
JPS621570B2 (en)
EP0090119B1 (en) Selectively stripping iron ions from an organic solvent
EP0189831B1 (en) Cobalt recovery method
CN106381398A (en) Method for recovering indium from indium-contained soot
CA1083830A (en) Ion exchange treatment of zinc values
JPH1150167A (en) Production of high purity cobalt solution
Gotfryd et al. The selective recovery of cadmium (II) from sulfate solutions by a counter-current extraction–stripping process using a mixture of diisopropylsalicylic acid and Cyanex® 471X
JP2004307270A (en) Method of refining nickel sulfate aqueous solution containing cobalt and calcium
CA1218237A (en) Process for the recovery of indium by solvent extraction
JPS6035415B2 (en) Separation method for copper and arsenic
CN111593202B (en) Method for selectively recovering rhenium from high-arsenic waste acid system
EP0059806B1 (en) Anode slime treatment process