JPS6316337B2 - - Google Patents

Info

Publication number
JPS6316337B2
JPS6316337B2 JP10553984A JP10553984A JPS6316337B2 JP S6316337 B2 JPS6316337 B2 JP S6316337B2 JP 10553984 A JP10553984 A JP 10553984A JP 10553984 A JP10553984 A JP 10553984A JP S6316337 B2 JPS6316337 B2 JP S6316337B2
Authority
JP
Japan
Prior art keywords
indium
sulfuric acid
acid
mol
extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10553984A
Other languages
Japanese (ja)
Other versions
JPS60251128A (en
Inventor
Shoji Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10553984A priority Critical patent/JPS60251128A/en
Publication of JPS60251128A publication Critical patent/JPS60251128A/en
Publication of JPS6316337B2 publication Critical patent/JPS6316337B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はインジウムを含む硫酸溶液中からイン
ジウムを回収する方法に関するものである。 亜鉛製錬残渣を原料としてインジウムを製造す
る場合、不純物として亜鉛や鉄を含むインジウム
の硫酸溶液が得られるが、高純度のインジウムを
製造するには、インジウムを亜鉛や鉄などの不純
物から分離することが必要である。また電子材料
工業において、インジウムを含む廃液からインジ
ウムを回収することも必要である。本発明の方法
は、インジウムを含む硫酸溶液中からインジウム
を回収するにあたり抽出剤としてジアルキルジチ
オリン酸を含む溶液を用いて抽出処理し、溶液中
に含まれるインジウムを抽出剤中に移行させる方
法である。 本発明者の研究によれば、ジアルキルジチオリ
ン酸は硫酸溶液からインジウムの抽出にはすぐれ
た抽出効果を示すことが見出された。 本発明で用いる抽出剤はジアルキルジチオリン
酸を適当な溶媒に希釈することにより調製され
る。この場合ジアルキルジチオリン酸におけるア
ルキル基としては通常、炭素数6以上、好ましく
は8〜12の高級アルキル基殊に、2−エチルヘキ
シルが好適である。また溶媒としては硫酸に対し
て安定なものケロシン、ベンゼン、トルエンなど
の炭化水素溶媒が好適である。抽出剤中のジアル
キルジチオリン酸の濃度は0.01〜0.1モル/の
範囲で選定するのがよい。ジアルキルジチオリン
酸の濃度が0.01モル/以下になるとインジウム
の抽出する能力の低下を生じ好ましくなく一方、
0.1モル/を越えるようになるとインジウムの
抽出が増大すると同時に亜鉛の抽出も増大し、ジ
アルキルジチオリン酸の溶解性の限界に近い値と
なる等の弊害が生じるので好ましくない。 本発明の方法を実施するには対象溶液であるイ
ンジウム含有硫酸溶液を前記抽出剤を用いて処理
する。この場合、インジウム含有硫酸溶液中の硫
酸濃度は0.5〜4モル/の範囲にするのがよい。
この抽出処理により、硫酸溶液中に含まれるイン
ジウムは抽出剤中に移行するが、この抽出剤中の
インジウムは、次に塩酸により容易に逆抽出する
ことができる。 本発明の方法によれば、インジウムを含む各種
硫酸溶液からインジウムを効率よく分離回収する
ことが可能である。この場合、インジウム以外の
金属たとえば、亜鉛、鉄、マンガン等は抽出され
ない。本発明の方法は、インジウム含有溶液から
単にインジウムを回収する方法として使用し得る
ばかりでなく、それら金属とインジウムの混合物
からのインジウムの分離方法としても使用され
る。 次に本発明を実施例によつてさらに詳細に説明
する。 実施例 1 ジ−2−エチルヘキシルジチオリン酸をケロシ
ンに溶解して、ジ−2−エチルヘキシルジチオリ
ン酸18.6g/の抽出剤と調製した。 次に、インジウムと亜鉛、鉄を含む硫酸溶液
100mlと前記抽出剤100mlを混合したのち、有機層
と水層に分離し、有機層をさらに塩酸により逆抽
出処理した。第1表に逆抽出液中に抽出された金
属の回収率を示す。
The present invention relates to a method for recovering indium from a sulfuric acid solution containing indium. When producing indium using zinc smelting residue as a raw material, a sulfuric acid solution of indium containing zinc and iron as impurities is obtained, but in order to produce high-purity indium, indium must be separated from impurities such as zinc and iron. It is necessary. In the electronic material industry, it is also necessary to recover indium from waste liquids containing indium. The method of the present invention is a method in which indium is recovered from a sulfuric acid solution containing indium by performing an extraction treatment using a solution containing dialkyldithiophosphoric acid as an extractant, and indium contained in the solution is transferred into the extractant. . According to research conducted by the present inventors, it has been found that dialkyldithiophosphoric acid exhibits an excellent extraction effect in extracting indium from a sulfuric acid solution. The extractant used in the present invention is prepared by diluting dialkyldithiophosphoric acid in a suitable solvent. In this case, the alkyl group in the dialkyldithiophosphoric acid is usually a higher alkyl group having 6 or more carbon atoms, preferably 8 to 12 carbon atoms, particularly 2-ethylhexyl. In addition, suitable solvents include hydrocarbon solvents that are stable against sulfuric acid, such as kerosene, benzene, and toluene. The concentration of dialkyldithiophosphoric acid in the extractant is preferably selected within the range of 0.01 to 0.1 mol/mol. If the concentration of dialkyldithiophosphoric acid is less than 0.01 mol/mol, the ability to extract indium will decrease, which is undesirable.
If the amount exceeds 0.1 mol/mol, the extraction of indium increases and at the same time the extraction of zinc also increases, resulting in problems such as a value close to the solubility limit of dialkyldithiophosphoric acid, which is not preferable. To carry out the method of the present invention, an indium-containing sulfuric acid solution, which is a target solution, is treated with the extractant. In this case, the sulfuric acid concentration in the indium-containing sulfuric acid solution is preferably in the range of 0.5 to 4 mol/mol.
Through this extraction process, the indium contained in the sulfuric acid solution is transferred into the extractant, but the indium in this extractant can then be easily back-extracted with hydrochloric acid. According to the method of the present invention, it is possible to efficiently separate and recover indium from various sulfuric acid solutions containing indium. In this case, metals other than indium, such as zinc, iron, manganese, etc., are not extracted. The method of the present invention can be used not only as a method for recovering indium from indium-containing solutions, but also as a method for separating indium from mixtures of these metals and indium. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Di-2-ethylhexyldithiophosphoric acid was dissolved in kerosene to prepare an extractant of 18.6 g/di-2-ethylhexyldithiophosphoric acid. Next, a sulfuric acid solution containing indium, zinc and iron
After mixing 100 ml and 100 ml of the above extractant, the mixture was separated into an organic layer and an aqueous layer, and the organic layer was further subjected to back extraction treatment using hydrochloric acid. Table 1 shows the recovery rate of metals extracted into the back extraction solution.

【表】 なお、前記ジ−2−エチルヘキシルジチオリン
酸は次の構造式で示される。
[Table] Note that the di-2-ethylhexyldithiophosphoric acid is represented by the following structural formula.

【式】(式中Rは2−エチルヘキシル 基である) 実施例 2 インジウムと亜鉛、鉄を含む1モル/硫酸溶
液100mlと18.6g/のジ−2−エチルヘキシルジ
チオリン酸のケロシン溶液100mlと混合したのち、
有機層と水層に分離した、塩酸を用いて有機層を
逆抽出した。その結果を第2表に示す。
[Formula] (In the formula, R is a 2-ethylhexyl group) Example 2 100 ml of a 1 mol/sulfuric acid solution containing indium, zinc, and iron was mixed with 100 ml of a kerosene solution of 18.6 g/di-2-ethylhexyldithiophosphoric acid. after,
The organic layer was separated into an organic layer and an aqueous layer, and the organic layer was back-extracted using hydrochloric acid. The results are shown in Table 2.

【表】 実施例 3 インジウムと亜鉛、鉄を含む0.5モル/硫酸
溶液100mlと18.6g/ジ−2−エチルヘキシルジ
チオリン酸のケロシン溶液100mlと混合したのち、
有機層と水層に分離した。塩酸を用いて有機層を
逆抽出処理した。その結果を第3表に示す。
[Table] Example 3 After mixing 100 ml of a 0.5 mol/sulfuric acid solution containing indium, zinc, and iron with 100 ml of a kerosene solution containing 18.6 g/di-2-ethylhexyldithiophosphoric acid,
Separated into organic and aqueous layers. The organic layer was back-extracted using hydrochloric acid. The results are shown in Table 3.

【表】 実施例 4 インジウムと亜鉛、鉄、マンガン、鉛を含む1
モル/硫酸溶液100mlと18.6g/のジ−2−エ
チルヘキシルジチオリン酸100mlと混合したのち、
有機層と水層に分離した。塩酸を用いて有機層を
逆抽出処理した。その結果を第4表に示す。
[Table] Example 4 1 containing indium, zinc, iron, manganese, and lead
After mixing 100 ml of mol/sulfuric acid solution with 100 ml of 18.6 g/di-2-ethylhexyldithiophosphoric acid,
Separated into organic and aqueous layers. The organic layer was back-extracted using hydrochloric acid. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 インジウムを含む硫酸溶液中からインジウム
を回収するにあたり、抽出剤としてジアルキルジ
チオリン酸を含む溶液を用いて抽出処理すること
を特徴とするインジウムの回収方法。
1. A method for recovering indium, which comprises performing an extraction process using a solution containing dialkyldithiophosphoric acid as an extractant when recovering indium from a sulfuric acid solution containing indium.
JP10553984A 1984-05-24 1984-05-24 Method for recovering indium Granted JPS60251128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10553984A JPS60251128A (en) 1984-05-24 1984-05-24 Method for recovering indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10553984A JPS60251128A (en) 1984-05-24 1984-05-24 Method for recovering indium

Publications (2)

Publication Number Publication Date
JPS60251128A JPS60251128A (en) 1985-12-11
JPS6316337B2 true JPS6316337B2 (en) 1988-04-08

Family

ID=14410390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10553984A Granted JPS60251128A (en) 1984-05-24 1984-05-24 Method for recovering indium

Country Status (1)

Country Link
JP (1) JPS60251128A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2077601A1 (en) * 1992-09-04 1994-03-05 William Andrew Rickelton Recovery of indium by solvent extraction using trialkyl-phosphine oxides

Also Published As

Publication number Publication date
JPS60251128A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JPS6152085B2 (en)
US3712939A (en) Method for recovering tantalum and/or columbium
JPH0776391B2 (en) Zinc recovery method
CA1111825A (en) Regeneration of organic extractants containing alpha hydroxyoximes
US3703573A (en) Process for extracting copper,cobalt and nickel values from aqueous solution
JPH06509845A (en) Copper recovery method
US4292284A (en) Solvent extraction recovery process for indium
JPS59136436A (en) Selective extraction of rhenium from aqueous sulfuric acid solution
US4434002A (en) Process for production of high-purity metallic iron
US3069232A (en) Recovery of hafnium values
JP2765740B2 (en) Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron
US4372923A (en) Purification of solutions of gallium values by liquid/liquid extraction
US4041138A (en) Process for the preparation of crystalline potassium tantalum fluoride
JPS6316337B2 (en)
US4369166A (en) Purification of solutions of gallium values by liquid/liquid extraction
EP0189831B1 (en) Cobalt recovery method
US4107266A (en) Production of pure alumina from iron contaminated sulfate liquors
Gotfryd et al. The selective recovery of cadmium (II) from sulfate solutions by a counter-current extraction–stripping process using a mixture of diisopropylsalicylic acid and Cyanex® 471X
US3402042A (en) Recovery of nickel and cobalt from an aqueous solution
US4125587A (en) Removing zinc from a nickel solution by extraction
EP0046973B1 (en) Process for the production of high-purity iron oxide
US3729541A (en) Recovery of beryllium
JPS6112010B2 (en)
KR102529742B1 (en) Method for solvent extraction of Mo(IV) and Re(VII)
JPS621570B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term