JPS6041980B2 - A method for dispersing fine particles of metal compounds in organic solvents at high concentrations - Google Patents

A method for dispersing fine particles of metal compounds in organic solvents at high concentrations

Info

Publication number
JPS6041980B2
JPS6041980B2 JP52106934A JP10693477A JPS6041980B2 JP S6041980 B2 JPS6041980 B2 JP S6041980B2 JP 52106934 A JP52106934 A JP 52106934A JP 10693477 A JP10693477 A JP 10693477A JP S6041980 B2 JPS6041980 B2 JP S6041980B2
Authority
JP
Japan
Prior art keywords
acid
mol
metal
nickel
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52106934A
Other languages
Japanese (ja)
Other versions
JPS5440286A (en
Inventor
英松 大西
直秀 小竹
敏雄 鈴木
芳仁 安斉
正男 井沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Organic Chemicals Co Ltd
Original Assignee
Sankyo Organic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Organic Chemicals Co Ltd filed Critical Sankyo Organic Chemicals Co Ltd
Priority to JP52106934A priority Critical patent/JPS6041980B2/en
Publication of JPS5440286A publication Critical patent/JPS5440286A/en
Publication of JPS6041980B2 publication Critical patent/JPS6041980B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、微粒子の金属化合物を有機溶剤中に高濃度
に分散させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dispersing finely divided metal compounds in an organic solvent at a high concentration.

更に詳しくは、微粒子の鉄、マンガン、ニッケル、コバ
ルトの酸化物及び/又は水酸化物を有機溶剤中に高濃度
に分散させる方法に関するものである。 周知のように
、油溶性の鉄、マンガン、ニッケル、コバルト化合物は
、潤滑油添加物、燃料油添加剤、合成樹脂添加剤、塗料
添加剤、防錆油添加剤、合成用触媒等として使用され有
用なものである。
More specifically, the present invention relates to a method of dispersing fine particles of iron, manganese, nickel, and cobalt oxides and/or hydroxides in an organic solvent at a high concentration. As is well known, oil-soluble iron, manganese, nickel, and cobalt compounds are used as lubricating oil additives, fuel oil additives, synthetic resin additives, paint additives, antirust oil additives, synthesis catalysts, etc. It is useful.

これら油溶性金属化合物としては、ナフテン酸、2−エ
チルヘキシル酸、リシノレイン酸、ネオデカン酸等の有
機酸の金属塩が広く知られているが、金属含有率も数%
と低く、またいずれも固体ないしは高粘度のもので、通
常は有機溶剤で稀釈されて使用されている。この場合に
は、金属含有率は更に低下し、所望の効果を得るために
は、使用量を増加させねばならず、またこれに伴ない稀
釈に用いた有機溶剤が目的とする性能に悪影響を及ぼす
面が多かつた。 このような状況からこれまでにも金属
化合物を高濃度に含有する添加剤が望まれている。
As these oil-soluble metal compounds, metal salts of organic acids such as naphthenic acid, 2-ethylhexylic acid, ricinoleic acid, and neodecanoic acid are widely known, but the metal content is also several percent.
All of them are solid or highly viscous, and are usually diluted with an organic solvent before use. In this case, the metal content will further decrease, and the amount used will have to be increased to achieve the desired effect, and the organic solvent used for dilution will have an adverse effect on the desired performance. There were many aspects to it. Under these circumstances, additives containing metal compounds in high concentrations have been desired.

そして、このような添加剤を得る方法として、従来より
、有機溶剤中に金属酸化物等を微粒子状に分散させる方
法が提案されており、その方法として、・金属酸化物等
をボールミル等で機械的に粉砕する方法、超音波照射に
よる方法、又はこれらを併用する方法等がとられていた
が、工業的規模で多量生産するには能率が悪く、その上
、生成した微粒子の大きさが不揃いであつたため、時間
がたつとともに粒子が沈降してしまい均一に微粒子を分
散させることが困難であつた。本発明者等は、これらの
問題点を解決すべく研究を重ねた結果、有機溶剤中で、
ナフテン酸及び/又は有機スルホン酸とアルケニルカル
ボン酸の各ナトリウム、バリウム、カルシウム、マグネ
シウム、鉄、マンガン、ニッケル、コバルト等の金属中
性塩を分散剤として、鉄、マンガン、ニッケル若しくは
コバルトの無機酸塩と水酸化アルカリとを反応させ、こ
れに酸素及び/又は過酸化水素を反応させることにより
、微粒子の金属酸化物等を有機溶剤中に高濃度に安定し
て分散させ得ることを見出し、本発明を完成した。
As a method for obtaining such additives, a method of dispersing metal oxides etc. in the form of fine particles in an organic solvent has conventionally been proposed. Methods such as mechanical pulverization, ultrasonic irradiation, or a combination of these have been used, but these methods are inefficient for mass production on an industrial scale, and in addition, the sizes of the fine particles produced are uneven. As a result, the particles settled over time, making it difficult to uniformly disperse the particles. As a result of repeated research to solve these problems, the present inventors found that
An inorganic acid of iron, manganese, nickel or cobalt is used as a dispersant using a neutral salt of a naphthenic acid and/or an organic sulfonic acid and an alkenylcarboxylic acid such as sodium, barium, calcium, magnesium, iron, manganese, nickel or cobalt. We have discovered that fine particles of metal oxides, etc. can be stably dispersed at high concentrations in organic solvents by reacting salts with alkali hydroxide and then reacting them with oxygen and/or hydrogen peroxide. Completed the invention.

本発明の方法を更に詳しく述べると、有機溶剤中でナフ
テン酸及び/又は有機スルホン酸とアルケニルカルボン
酸の各ナトリウム、バリウム、マグネシウム、鉄、マン
ガン、ニッケル、コバルト等の金属中性塩を分散剤とし
て、2価の、鉄、マンガン、ニッケル若しくはコバルト
の無機酸塩と水酸化アルカリを反応させ、一旦2価の鉄
、マンガン、ニッケル、コバルトの水酸化物及び/又は
金属酸化物にした後、これら2価の金属水酸化物、金属
酸化物を酸素及び/又は過酸化水素によつて酸化し、酸
化により高次の原子価に変換されて、生成した微粒子の
金属酸化物、水酸化物は有機溶剤中に高濃度に安定して
分散せしめることができる。
To describe the method of the present invention in more detail, a neutral salt of a metal such as sodium, barium, magnesium, iron, manganese, nickel, cobalt, etc. of naphthenic acid and/or organic sulfonic acid and alkenylcarboxylic acid is used as a dispersant in an organic solvent. After reacting a divalent inorganic acid salt of iron, manganese, nickel or cobalt with an alkali hydroxide to form a hydroxide and/or metal oxide of divalent iron, manganese, nickel or cobalt, These divalent metal hydroxides and metal oxides are oxidized with oxygen and/or hydrogen peroxide, and the resulting fine particles of metal oxides and hydroxides are converted to higher valence by oxidation. It can be stably dispersed at high concentrations in organic solvents.

又本方法に用いるナフテン酸、有機スルホン酸、アルケ
ニルカルボン酸の金属中性塩は、これを予め作つて使用
してもよいが、マンガン、ニッケル、コバルトの有機酸
の金属中性塩を用いる場合は予め作ることなく、この有
機酸と該有機酸を金属中性塩にするに必要な量の2価の
、鉄、マンガン、ニッケル若しくはコバルトの無機酸塩
と水酸化アルカリ及び更に金属濃度を高めるための材料
としての前記2価金属の無機酸塩と水酸化アルカリを同
一系内で同時に反応し、これを酸素及び/又は過酸化水
素によつて酸化して行く工程をとることも出来る。なお
分散剤として、鉄、マンガン、ニッケル、コバルトの有
機酸金属中性塩を用いる場合には、この中性塩を一旦酸
化し、これに2価の、鉄、マンガン、ニッケル、若しく
はコバルトの無機酸塩と水酸化アルカリを加えて反応さ
せ、再度酸素及び/又は過酸化水素により酸化していく
工程をとることにより、金属化合物を一層安定して分散
せしめることが出来る。
The metal neutral salts of naphthenic acid, organic sulfonic acid, and alkenyl carboxylic acid used in this method may be prepared in advance, but when using the metal neutral salts of organic acids such as manganese, nickel, and cobalt, is not prepared in advance, but the organic acid is combined with a divalent inorganic acid salt of iron, manganese, nickel or cobalt in an amount necessary to convert the organic acid into a neutral metal salt, an alkali hydroxide, and further increases the metal concentration. It is also possible to take a step in which the inorganic acid salt of the divalent metal and the alkali hydroxide as materials for the reaction are simultaneously reacted in the same system, and this is oxidized with oxygen and/or hydrogen peroxide. When using a neutral salt of an organic acid metal of iron, manganese, nickel, or cobalt as a dispersant, this neutral salt is once oxidized, and then a divalent inorganic salt of iron, manganese, nickel, or cobalt is added to the neutral salt. The metal compound can be dispersed more stably by adding and reacting the acid salt and alkali hydroxide, and then oxidizing it again with oxygen and/or hydrogen peroxide.

鉄金属を例にとれば、鉄は2価、3価の塩を作るが、2
価の鉄化合物を後工程の酸化により3価の鉄化合物等に
変換させるものである。本発明で用いられる有機スルホ
ン酸としては石油スルホン酸、炭素数15〜3C@.を
有するモノアルキル若しくはジアルキルのベンゼンスル
ホン酸が好適で、特にモノノニルベンゼンスルホン酸、
モノデシルベンゼンスルホン酸、モノドデシルベンゼン
スルホン酸、モノヘキシルモノドデシルベンゼンスルホ
ン酸、ジノニルベンゼンスルホン酸、ジデシルベンゼン
スルホン酸、ジドデシルベンゼンスルホン酸等を挙げる
ことができ、最も好ましい例としては、モノドデシルベ
ンゼンスルホン酸、分子量350〜520の石油スルホ
ン酸を挙げることができる。
Taking ferrous metals as an example, iron produces divalent and trivalent salts, but
In this method, a valent iron compound is converted into a trivalent iron compound through oxidation in a subsequent step. The organic sulfonic acids used in the present invention include petroleum sulfonic acids, carbon atoms of 15 to 3C@. Preferred are monoalkyl or dialkyl benzenesulfonic acids having
Examples include monodecylbenzenesulfonic acid, monododecylbenzenesulfonic acid, monohexylmonododecylbenzenesulfonic acid, dinonylbenzenesulfonic acid, didecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, and the most preferred examples include: Mention may be made of monododecylbenzenesulfonic acid and petroleum sulfonic acid having a molecular weight of 350 to 520.

本発明で用いられるアルケニルカルボン酸の例として、
炭素数11〜n個を有するアルケニルカルボン酸が好適
で、特に、ウンデシレン酸、オレイン酸、リシノレイン
酸、エルカ酸等を挙げることが出来、最も好ましい例と
しては、オレイン酸を挙げることが出来る。
Examples of alkenylcarboxylic acids used in the present invention include:
Alkenylcarboxylic acids having 11 to n carbon atoms are suitable, and in particular undecylenic acid, oleic acid, ricinoleic acid, erucic acid, etc. can be mentioned, and oleic acid can be mentioned as the most preferable example.

炭素数がこの範囲以外では、金属化合物の微粒子分散性
が悪く、安定しない。ナフテン酸及び/又は有機スルホ
ン酸とアルケニルカルボン酸の使用割合は、目的に応じ
適宜決定すべきであるが、ナフテン酸及び/又は有機ス
ルホン酸1モルに対してて、アルケニルカルボン酸0.
1〜1モルの範囲が好ましい。
When the carbon number is outside this range, the metal compound has poor particle dispersibility and is not stable. The ratio of naphthenic acid and/or organic sulfonic acid to alkenylcarboxylic acid should be determined appropriately depending on the purpose, but 0.0.
The range of 1 to 1 mol is preferred.

アルケニルカルボン酸が1モルを超えた時は、後に述べ
る分液及び脱水工程において分液が悪く、また脱水の際
非常に起泡が激しく反応が困難であり、又、アルケニル
カルボン酸が0.1モル未満の時は、金属化合物の微粒
子を高濃度に安定して分散させることが出来なくなる。
When the amount of alkenylcarboxylic acid exceeds 1 mol, liquid separation will be poor in the separation and dehydration steps described later, and during dehydration, foaming will be very strong and reaction will be difficult. When the amount is less than mol, fine particles of the metal compound cannot be stably dispersed at a high concentration.

本発明で分散剤として用いられるナフテン酸、有機スル
ホン酸、アルケニルカルボン酸の金属中性塩を構成する
金属としては、ナトリウム、バリウム、カルシウム、マ
グネシウム、鉄、マンガン、ニッケル、コバルトを挙げ
ることが出来、好ましい例としては、鉄、マンガン、ニ
ッケル、コバルトを挙げることが出来る。本発明で用い
られる2価の金属の無機酸塩としては、塩化第一鉄、塩
化第一マンガン、塩化第一ニッケル、塩化第一コバルト
、硫酸第一鉄、硫酸第一マンガン、硫酸第一ニッケル、
硫酸第一コバルト、亜硫酸第一鉄、亜硫酸第一マンガン
、硝酸第一鉄、、硝酸第一マンガン、硝酸第一ニッケル
、硝酸第一コバルト、亜硝酸ニッケル、燐酸第一鉄、燐
酸第一マンガン、燐酸第一コバルト、亜燐酸第一鉄、亜
燐酸第一マンガン、臭化第一鉄、臭化第一マンガン、ヨ
ウ化第一鉄、ヨウ化第一マンガン等を挙げることができ
、好ましい例としては、塩化第一鉄、塩化第一マンガン
、塩化第一ニッケル、塩化第一コバルト、硫酸第一鉄、
硫酸第一マンガン、硫酸第一ニッケル、硝酸第一鉄、硝
酸第一マンガン、硝酸第一コバルトを挙げることができ
る。
Examples of the metals constituting the metal neutral salts of naphthenic acids, organic sulfonic acids, and alkenylcarboxylic acids used as dispersants in the present invention include sodium, barium, calcium, magnesium, iron, manganese, nickel, and cobalt. Preferred examples include iron, manganese, nickel, and cobalt. The inorganic acid salts of divalent metals used in the present invention include ferrous chloride, manganous chloride, nickel chloride, cobaltous chloride, ferrous sulfate, manganous sulfate, and nickel sulfate. ,
Cobaltous sulfate, ferrous sulfite, manganese sulfite, ferrous nitrate, manganese nitrate, nickel nitrate, cobaltous nitrate, nickel nitrite, ferrous phosphate, manganous phosphate, Examples include cobaltous phosphate, ferrous phosphite, manganous phosphite, ferrous bromide, manganous bromide, ferrous iodide, manganese iodide, etc., and preferred examples include are ferrous chloride, manganese chloride, nickel chloride, cobaltous chloride, ferrous sulfate,
Mention may be made of manganous sulfate, nickel sulfate, ferrous nitrate, manganous nitrate, and cobaltous nitrate.

この無機酸の金属塩は、水溶液の状態ても使用すること
ができ、その金属は、分散剤として用いるナフテン酸、
有機スルホン酸及びアルケニルカルボン酸の金属中性塩
の金属と異なることもできるが、同種の金属の方が作り
易い。また無機酸の金属塩の使用量は、目的に応じ適宜
決定すべきであるが、これら有機酸の金属中性塩1モル
に対して1〜15モルが好ましく、特に好ましくは2〜
10モルである。無機酸の金属塩の使用量が、有機酸の
金属中性塩1モルに対して、1モル未満の時は、、金属
含有率が有機酸の金属中性塩の金属含有率に比してあま
り高くならず、又、15モルを超えて使用される時は、
有機溶剤中への微粒子の金属化合物の分散か安定せす好
ましくない。本発明て用いられる水酸化アルカリの例と
しては、水酸化ナトリウム、水酸化カリウム、水酸化ア
ンモニウム等をげることができ、水溶液の状態で反応系
に加えることが好ましいが、すでに反応系に水が存在す
る場合は、水に溶解することなく用いることができる。
This metal salt of an inorganic acid can also be used in the form of an aqueous solution;
Although the metal of the metal neutral salt of organic sulfonic acid and alkenyl carboxylic acid can be different from that of the metal, it is easier to prepare the metal of the same type. The amount of the metal salt of an inorganic acid to be used should be determined appropriately depending on the purpose, but it is preferably 1 to 15 mol, particularly preferably 2 to 15 mol, per 1 mol of the metal neutral salt of these organic acids.
It is 10 moles. When the amount of the metal salt of the inorganic acid used is less than 1 mole per 1 mole of the metal neutral salt of the organic acid, the metal content is less than the metal content of the metal neutral salt of the organic acid. When it is not very expensive and is used in excess of 15 mol,
It is undesirable to stabilize the dispersion of finely divided metal compounds in organic solvents. Examples of the alkali hydroxide used in the present invention include sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc., and it is preferable to add it to the reaction system in the form of an aqueous solution; If present, it can be used without being dissolved in water.

通常アルカリの濃度は20〜50%が好ましく、使用す
るアルカリの量は、2価の鉄、マンガン、ニッケル若し
くはコバルトの無機酸塩を2価の酸化物または水酸化物
に変換するに必要な量またはや)過剰量が用いられる。
本発明に用いられる有機溶剤の例としては、ベンゼン、
トルエン、キシレン、灯油、ノルマルヘプタン、ノルマ
ルオクタン、四塩化炭素等の無極性溶剤を挙げることが
でき、必要に応じては、アルコール等の極性溶剤を併用
することができる。本発明において、前記2価金属の無
機酸塩と水酸化アルカリとの反応温度は、使用した有機
溶剤によつて異なり特に制限はないが、好ましくは50
〜110℃である。本発明において、酸化反応は酸素及
び/又は過酸化水素で行なうが、酸素源としては空気も
使用出来る。
Usually, the concentration of alkali is preferably 20 to 50%, and the amount of alkali used is the amount necessary to convert inorganic acid salts of divalent iron, manganese, nickel, or cobalt into divalent oxides or hydroxides. or) an excess amount is used.
Examples of organic solvents used in the present invention include benzene,
Examples include nonpolar solvents such as toluene, xylene, kerosene, normal heptane, normal octane, and carbon tetrachloride, and if necessary, polar solvents such as alcohol can be used in combination. In the present invention, the reaction temperature between the inorganic acid salt of the divalent metal and the alkali hydroxide is not particularly limited depending on the organic solvent used, but is preferably 50%
~110°C. In the present invention, the oxidation reaction is carried out using oxygen and/or hydrogen peroxide, but air can also be used as the oxygen source.

酸化反応に必要な酸素の量は、本発明に用いられる有機
酸の金属中性塩及び無機酸の金属塩の原子価を2価から
より高次の原子価に変換させる量が最低必要でありニ通
常、大過剰に使用するが、過酸化水素の場合は、や)過
剰でよい。この酸化反応の反応温度は、20〜150℃
て、好ましくは50〜110℃であり、酸化の方法は酸
素又は空気を反応系に吹き込むか、または過酸化水素を
滴下する方法にて行うことができる。この酸化反応が終
了したら、副生する塩化ナトリウム又は硫酸ナトリウム
等のアルカリ塩を溶解した水層を分液により、その大部
分を分離し、油層に残存する少量の水を蒸留により除去
することによつて、微粒子の金属化合物を有機溶剤中に
高濃度に分散させた液体が得られる。この液体は有機溶
剤を含んでおり、通常このま)でも添加剤として使用し
得るが、更に有機溶剤を追加したり、有機溶剤の一部又
は全量を他の有機溶剤と置換して濃度調製、有機溶剤組
成の調製等を行なうことも出来る。次に、本発明方法を
実施例で具体的に示す。実施例中の金属比は次式で求め
た。実施例1 100e反反応後にトルエン28.0k9、スプレー灯
油6.5kg、ナフテン酸7.8kg(25.2モル)
、オレイン酸1.2k9(4.3モル)、30%水酸化
ナトリウム水溶液4.2k9(31.5モル)を攪拌し
ながら仕込み、液温70〜80′Cで2吟反応させ、こ
れに硫酸第一鉄、七水塩4.2k9(15.1モル)を
加え70〜80′Cて複分解反応を4紛間行つた。
The amount of oxygen required for the oxidation reaction is the minimum amount required to convert the valence of the metal neutral salt of an organic acid and the metal salt of an inorganic acid used in the present invention from divalent to a higher valence. Usually, it is used in large excess, but in the case of hydrogen peroxide, it may be used in excess. The reaction temperature of this oxidation reaction is 20-150℃
The temperature is preferably 50 to 110°C, and the oxidation can be carried out by blowing oxygen or air into the reaction system, or dropping hydrogen peroxide. Once this oxidation reaction is complete, most of the aqueous layer containing dissolved alkali salts such as by-product sodium chloride or sodium sulfate is separated by liquid separation, and the small amount of water remaining in the oil layer is removed by distillation. Therefore, a liquid in which fine particles of a metal compound are dispersed in an organic solvent at a high concentration is obtained. This liquid contains an organic solvent, and can be used as an additive (usually as is), but the concentration can be adjusted by adding more organic solvent or replacing part or all of the organic solvent with another organic solvent. It is also possible to prepare the organic solvent composition. Next, the method of the present invention will be specifically illustrated with examples. The metal ratio in the examples was determined by the following formula. Example 1 After 100e reaction, toluene 28.0k9, spray kerosene 6.5kg, naphthenic acid 7.8kg (25.2 mol)
, 1.2k9 (4.3 mol) of oleic acid, and 4.2k9 (31.5 mol) of a 30% aqueous sodium hydroxide solution were charged with stirring, and reacted for 2 min at a liquid temperature of 70 to 80'C. 4.2k9 (15.1 mol) of ferrous heptahydrate was added and a double decomposition reaction was carried out at 70-80'C.

次に、反応液温を60〜70゜Cに保ちながら、35%
過酸化水素0.8k9を添加し酸化反応を行なつた後、
硫酸第一鉄・七水塩17.5kg(62.9モル)、3
0%水酸化ナトリウム水溶液17.3k9(129.8
モル)を攪拌しながら仕込み、液温70〜80′Cで3
紛反応させ、反応液温を60〜70℃に保ちながら8.
8%過酸化水素8.5k9を添加し酸化反応を行なつた
。次に攪拌を停止し、水層と油層に分液した後、油層中
に残存する少量の水と使用したトルエンを全量蒸溜によ
つて溜去すると、鉄含有量19.7%、金属比4.9の
分散液が20.0k9得られた。収率は99.5%であ
つた。この液体は3ケ月経過後も安定して金属化合物を
分散していた。実施例2100e反応機に、キシレン2
8.0k9、スプレー灯油6.5k9、ナフテン酸7.
8kg(25.2モル)、オレイン酸1.2k9(4.
3モル)、30%水酸化ナトリウム水溶液21.5k9
(161.3モル)、硫酸第一鉄・七水塩21.5k9
(77.4モル)を攪拌しながら仕込み、液温70〜8
0゜Cて6吟反応させる。
Next, while keeping the reaction temperature at 60-70°C, 35%
After adding 0.8k9 hydrogen peroxide and carrying out the oxidation reaction,
Ferrous sulfate heptahydrate 17.5 kg (62.9 mol), 3
0% sodium hydroxide aqueous solution 17.3k9 (129.8
mol) with stirring, and at a liquid temperature of 70 to 80'C.
8. Perform a powder reaction while maintaining the reaction solution temperature at 60 to 70°C.
An oxidation reaction was carried out by adding 8.5k9 of 8% hydrogen peroxide. Next, after stopping the stirring and separating the liquid into a water layer and an oil layer, the small amount of water remaining in the oil layer and the used toluene were completely distilled off, and the iron content was 19.7% and the metal ratio was 4. 20.0k9 of a dispersion of .9 was obtained. The yield was 99.5%. This liquid stably dispersed the metal compound even after three months had passed. Example 2 In a 100e reactor, xylene 2
8.0k9, spray kerosene 6.5k9, naphthenic acid 7.
8 kg (25.2 mol), oleic acid 1.2 k9 (4.
3 mol), 30% aqueous sodium hydroxide solution 21.5k9
(161.3 mol), ferrous sulfate heptahydrate 21.5k9
(77.4 mol) was added while stirring, and the liquid temperature was 70 to 8.
React at 0°C for 6 minutes.

次に反応液温を60〜70゜Cに保ちながら、8.8%
過酸化水素10.5kgを添加し酸化反応を行なつた。
次に攪拌を停止し、水層と油層に分液し、油層中に残存
する少量の水と使用したキシレンを全量蒸溜によつて溜
去させると、鉄含有量19.7%、金属比4.9の分散
液が19.9k9得られた。収率は99.4%てあつた
。この液体は3ケ月経過後も安定して金属化合物を分散
していた。実施例3100f反応機に、トルエン28.
0kg、スプレー灯油6.5k9、ナフテン酸6.6k
9(21.3モル)、オレイン酸1.2kg(4.3モ
ル)、水酸化ナトリウム1.0k9(25.0モル)、
水2.3k9を攪拌しながら仕込み、援温70〜800
Cで4吟反応させ、これに硫酸第一鉄・七水塩3.4k
9(12.2モル)を加え70〜80℃て複分解反応を
4紛行なつた。
Next, while keeping the reaction temperature at 60-70°C, 8.8%
10.5 kg of hydrogen peroxide was added to carry out an oxidation reaction.
Next, stirring was stopped, the liquid was separated into a water layer and an oil layer, and the small amount of water remaining in the oil layer and the xylene used were completely distilled off.The iron content was 19.7%, and the metal ratio was 4. A dispersion of 19.9k9 was obtained. The yield was 99.4%. This liquid stably dispersed the metal compound even after three months had passed. Example 3 A 100f reactor was charged with toluene 28.
0kg, spray kerosene 6.5k9, naphthenic acid 6.6k
9 (21.3 mol), oleic acid 1.2 kg (4.3 mol), sodium hydroxide 1.0k9 (25.0 mol),
Add 2.3k9 of water while stirring and bring to a boiling temperature of 70-800.
4 Gin reaction with C, to which ferrous sulfate heptahydrate 3.4k
9 (12.2 mol) was added, and a double decomposition reaction was carried out at 70-80°C.

次に反応液温を60〜70℃に保ちながら35%過酸化
水素0.8k9を添加し酸化反応を行なつた後、硫酸第
一鉄・七水塩20.3k9(73.0モル)、水酸化ナ
トリウム5.9kg(147.5モル)、水12.2k
9を攪拌しながら仕込み、液温70〜80′Cで3扮反
応させた後、反応液温を60〜70℃に保ちながら、8
.8%過酸化水素9.9k9を60〜70℃て添加し酸
化反応を行なつた。次に攪拌を停止し水層と油層に分液
し、油層中に残存する少量の水と使用したトルエンを全
量蒸溜によつて溜去させると、鉄含有量21.9%、金
属比6.2の分散液が、20.2k9得られた。収率は
99.5%であつた。この液体は3ケ月経過後も安定し
て金属化合物を分散していた。実施例4 1001反応機に、トルエン30.0k9、スプレー灯
油6.5k9、ドデシルベンゼンスルホン酸鉄3.9k
9(5.5モル)、ナフテン酸鉄3.3k9(5.2モ
ル)、オレイン酸鉄1.3k9(2.1モル)、硫酸第
一鉄・七水塩20.0k9(71.9モル)、水酸化ナ
トリウム5.8kg(145.0モル)、水12.2k
9を攪拌しながら仕込み、液温70〜80′Cで3紛反
応させた後、反応液温を60〜70′Cに保ちながら9
.4%過酸化水素10.5k9を添加し酸化反応を行な
つた。
Next, while maintaining the reaction temperature at 60 to 70°C, 0.8k9 of 35% hydrogen peroxide was added to carry out an oxidation reaction, and then 20.3k9 (73.0 mol) of ferrous sulfate heptahydrate, Sodium hydroxide 5.9kg (147.5 mol), water 12.2k
9 was prepared with stirring, and after three reactions were carried out at a liquid temperature of 70 to 80'C, 8 was added while maintaining the reaction liquid temperature at 60 to 70'C.
.. An oxidation reaction was carried out by adding 9.9k9 of 8% hydrogen peroxide at 60 to 70°C. Next, stirring was stopped, the liquid was separated into a water layer and an oil layer, and the small amount of water remaining in the oil layer and the used toluene were completely distilled off, resulting in an iron content of 21.9% and a metal ratio of 6. A dispersion of 20.2k9 of No. 2 was obtained. The yield was 99.5%. This liquid stably dispersed the metal compound even after three months had passed. Example 4 To a 1001 reactor, toluene 30.0k9, spray kerosene 6.5k9, and iron dodecylbenzenesulfonate 3.9k
9 (5.5 mol), iron naphthenate 3.3k9 (5.2 mol), iron oleate 1.3k9 (2.1 mol), ferrous sulfate heptahydrate 20.0k9 (71.9 mol) ), sodium hydroxide 5.8 kg (145.0 mol), water 12.2 k
Add 9 while stirring, react with 3 powders at a liquid temperature of 70 to 80'C, and then add 9 while keeping the reaction liquid temperature at 60 to 70'C.
.. An oxidation reaction was carried out by adding 10.5k9 of 4% hydrogen peroxide.

次に攪拌を停止し水層と油層を分液した後、油層中に残
存する少量の水と使用したトルエンを蒸溜によつて全量
溜去させると、鉄含有量22.6%、金属比5.7の分
散液が21.3kg得られた。収率は99.6%であつ
た。この液体は3ケ月経過後も安定して金属化合物を分
散していた。実施例5 100f反応機に、キシレン29.0k9、スプレー灯
油5.4kg、ナフテン酸6.4k9(23.2モル)
、オレイン酸0.9k9(3.2モル)、水酸化ナトリ
ウム6.2k9(155.0モル)、水23.1kg、
硫酸第一マンガン・一水水塩12.4k9(73.4モ
ル)を攪拌しながら、仕込み、液温70〜80℃で8吟
反応した後、反応液温を60〜70℃に保ちながら7.
5%過酸化水素17.6kgを゛添加し酸化反応を行な
つた。
Next, after stopping the stirring and separating the water layer and the oil layer, the small amount of water remaining in the oil layer and the used toluene were completely distilled off, and the iron content was 22.6% and the metal ratio was 5. 21.3 kg of a dispersion of .7 was obtained. The yield was 99.6%. This liquid stably dispersed the metal compound even after three months had passed. Example 5 In a 100f reactor, xylene 29.0k9, spray kerosene 5.4kg, naphthenic acid 6.4k9 (23.2 mol)
, 0.9k9 (3.2 mol) of oleic acid, 6.2k9 (155.0 mol) of sodium hydroxide, 23.1 kg of water,
12.4k9 (73.4 mol) of manganous sulfate monohydrate was charged while stirring, and reacted for 8 minutes at a liquid temperature of 70 to 80°C. ..
17.6 kg of 5% hydrogen peroxide was added to carry out an oxidation reaction.

次に攪拌を停止し、水層と油層に分液した後、油層中に
残存する少量の水と使用したキシレンを全量蒸溜によつ
て溜去すると、マンガン含有量19.9%、金属比4.
5の分散液が16.3kg得られた。収率は95.0%
であつた。この液体は、3ケ月経過後も安定して金属化
合物を分散していた。実施例6 100e反応機に、トルエン33.0kgナフテン酸マ
ンガン16.5k9(26.1モル)、オレイン酸マン
ガン2。
Next, after stopping the stirring and separating the liquid into a water layer and an oil layer, the small amount of water remaining in the oil layer and the xylene used were completely distilled off, resulting in a manganese content of 19.9% and a metal ratio of 4. ..
16.3 kg of a dispersion of No. 5 was obtained. Yield is 95.0%
It was hot. This liquid stably dispersed the metal compound even after three months had passed. Example 6 To a 100e reactor, 33.0 kg of toluene, 16.5 k9 (26.1 mol) of manganese naphthenate, and 2 manganese oleate were added.

2kg(3.6モル)、塩化第一マンガン・四水塩11
.9k9(60.1モル)、20%水酸化ナトリウム水
溶液26.4k9(132.0モル)を攪拌しながら仕
込み、液温70〜80℃で8〜90e/]FOF!の割
合て空気を3時間吹込み酸化反応を行なつた。
2 kg (3.6 mol), manganous chloride tetrahydrate 11
.. 9k9 (60.1 mol) and 20% aqueous sodium hydroxide solution 26.4k9 (132.0 mol) were added with stirring, and the liquid temperature was 70 to 80°C and the mixture was heated to 8 to 90 e/] FOF! The oxidation reaction was carried out by blowing air at a rate of 3 hours.

次に攪拌を停止し、水層と油層に分液した後、油層に残
存する少量の水と使用したトルエンを全量蒸溜によつて
溜去し、スプレー灯油を11.3k9加えると、マンガ
ン含有量13.6%、金属比3.0の分散液が35.9
k9得られた収率は95.0%であつた。この液体は、
3ケ月経過後も安定して金属化合物を分散していた。実
施例7 100e反応機に、白灯油40.0k9、ナフテン酸ニ
ッケル20.0kg(31.3モル)、オレイン酸ニッ
ケル2.7k9(4.4モル)、硫酸第一ニッケル・六
水塩11.0Kg(41.3モル)、20%水酸化ナト
リウム水溶液18.4k9(92.0モル)を攪拌しな
がら仕込み、液温70〜80℃で4吟反応した後、反応
液温を60〜7σCに保ちながら、17.0%過酸化水
素8.7kgを添加して酸化反応を行なつた。
Next, after stopping the stirring and separating the liquid into a water layer and an oil layer, the small amount of water remaining in the oil layer and the used toluene are completely distilled off, and 11.3k9 of spray kerosene is added. 13.6%, metal ratio 3.0 dispersion is 35.9
The yield of k9 was 95.0%. This liquid is
The metal compound was stably dispersed even after 3 months had passed. Example 7 In a 100e reactor, 40.0 kg of white kerosene, 20.0 kg (31.3 mol) of nickel naphthenate, 2.7 kg (4.4 mol) of nickel oleate, and 11.0 kg of nickel sulfate hexahydrate were added. 0 kg (41.3 mol) and 20% sodium hydroxide aqueous solution 18.4 k9 (92.0 mol) were charged with stirring, and after reacting for 4 minutes at a liquid temperature of 70 to 80°C, the reaction liquid temperature was raised to 60 to 7σC. While maintaining the temperature, 8.7 kg of 17.0% hydrogen peroxide was added to carry out an oxidation reaction.

次に攪拌を停止し、水層と油層を分液した後、油層中に
残存する少量の水と白灯油18.3k9を蒸溜によつて
溜去するとニッケル含有量10.0%、金属比1.8の
分散液が43.0kg得られた。収率は94.0%であ
つた。この液体は、3ケ月経過後も安定して金属化合物
を分散していた。実施例8100e反応機に、トルエン
27.0kg、白灯油15.0k9、ナフテン酸コバル
ト21.3k9(33.7モル)、オレイン酸コバルト
0.9k9(1.5モル)、硝酸第一コバルト・六水塩
18.7kg(64.3モル)、40%水酸化ナトリウ
ム水溶液13.4k9(134.0モル)を攪拌しなが
ら仕込み、液温を70〜80℃にし77〜83e/Wm
の割合で35寺間空気を吹き込み酸化反応を行なつた。
Next, after stopping the stirring and separating the water layer and the oil layer, a small amount of water and white kerosene 18.3k9 remaining in the oil layer were distilled off, resulting in a nickel content of 10.0% and a metal ratio of 1. 43.0 kg of a dispersion of .8 was obtained. The yield was 94.0%. This liquid stably dispersed the metal compound even after three months had passed. Example 8 In a 100e reactor, 27.0 kg of toluene, 15.0 k9 of white kerosene, 21.3 k9 (33.7 mol) of cobalt naphthenate, 0.9 k9 (1.5 mol) of cobalt oleate, and 6 cobaltous nitrate were added. 18.7 kg (64.3 mol) of hydrated salt and 13.4 k9 (134.0 mol) of 40% aqueous sodium hydroxide solution were charged with stirring, and the liquid temperature was adjusted to 70-80°C to 77-83 e/Wm.
The oxidation reaction was carried out by blowing air at a rate of 35%.

次に攪拌を停止し、水層と油層を分液した後、油層中に
残存する少量の水と使用したトルエンを蒸溜によつて溜
去すると、コバルト含有量12.5%、金属比2.3の
分散液が45.2k9得られた。収率は85.0%てあ
つた。この液体は、3月経過後も安定して金属化合物を
分散していた。実施例9 100f反応機に、白灯油33.3kg、石油スルホン
酸カルシウム(分子量840)15.0k9(18.0
モル)、オレイゾ酸鉄3.0k9(4.9モル)、硫酸
第一鉄27.0k9(97.2モル)、20%水酸化ナ
トリウム水溶液41.9k9(209.5モル)を攪拌
しながら仕込み、液温80〜90゜Cで83.3〜90
.0′/WLの割合て3時間空気を吹き込み酸化反応を
行つた。
Next, stirring was stopped, the water layer and the oil layer were separated, and the small amount of water remaining in the oil layer and the used toluene were distilled off, resulting in a cobalt content of 12.5% and a metal ratio of 2. 45.2k9 of a dispersion of No. 3 was obtained. The yield was 85.0%. This liquid stably dispersed the metal compound even after three months had passed. Example 9 Into a 100f reactor, 33.3 kg of white kerosene and calcium petroleum sulfonate (molecular weight 840) 15.0k9 (18.0
mol), iron oleizate 3.0k9 (4.9 mol), ferrous sulfate 27.0k9 (97.2 mol), and 20% aqueous sodium hydroxide solution 41.9k9 (209.5 mol) were prepared while stirring. , 83.3-90 at a liquid temperature of 80-90°C
.. An oxidation reaction was carried out by blowing air at a ratio of 0'/WL for 3 hours.

次に攪拌を停止し、水層と油層に分液した後、油層中に
残存する少量の水と白灯油13.3kgを蒸溜によつて
溜去させると、カルシウム含有量1.9%、鉄含有量1
1.9%の分散液が44.4k9得られた。収率は92
.0%であつた。この液体は、3ケ月経過後も安定して
金属化合物を分散していた。実施例10 100f反応機に、キシレン26.0kg、スプレー灯
油7.0k9、ジノニルベンゼンスルホン酸8.9k9
(23.5モル)、リシノレイン酸1.2k9(4.0
モル)、30%水酸化ナトリウム水溶液3.67kg(
27.5モル)を攪拌しながら仕込み、液温70〜80
℃で3紛間反応する。
Next, stirring was stopped and the liquid was separated into a water layer and an oil layer, and a small amount of water remaining in the oil layer and 13.3 kg of white kerosene were distilled off. Content 1
A 1.9% dispersion of 44.4k9 was obtained. Yield is 92
.. It was 0%. This liquid stably dispersed the metal compound even after three months had passed. Example 10 In a 100f reactor, xylene 26.0kg, spray kerosene 7.0k9, dinonylbenzenesulfonic acid 8.9k9
(23.5 mol), ricinoleic acid 1.2k9 (4.0
mol), 3.67 kg of 30% aqueous sodium hydroxide solution (
27.5 mol) was added while stirring, and the liquid temperature was 70-80 mol.
React at 3°C.

更に硫酸第一鉄・七水塩17.0k9(61.2モル)
、30%水酸ナトリウム水溶液16.8k9(126.
2モル)を加え液温70〜80℃て3紛間反応した。次
に反応液温を60〜70℃に保ちながら9%過酸化水素
10.0kgを添加して酸化反応を行つた。次に攪拌を
停止し水層と油層とに分液した後、油層中に残存する少
量の水と使用したキシレンを全量蒸溜によつて溜去させ
ると、ナトリウム含有量2.7%、鉄含有量14.6%
の分散液22.8k9が得られた。収率は98.5%で
あつた。この液体は3ケ月経過後も安定して金属化合物
を分散していた。実施例11 100e反応機に、トルエン2.7k9、スプレー灯油
8.3k9、ナフテン酸5.9k9(19.9モル)、
エルカ酸1.0k9(2.9モル)、ジノエルベンゼン
スルホン酸1.1kg(2.9モル)、水酸化バリウム
・八水塩4.1kg(12.9モル)を攪拌しながら仕
込み、液温70〜80℃で4紛間反応させた。
Furthermore, ferrous sulfate heptahydrate 17.0k9 (61.2 mol)
, 30% aqueous sodium hydroxide solution 16.8k9 (126.
2 mol) was added thereto, and three powders were reacted at a liquid temperature of 70 to 80°C. Next, 10.0 kg of 9% hydrogen peroxide was added to carry out an oxidation reaction while maintaining the temperature of the reaction solution at 60 to 70°C. Next, after stopping the stirring and separating the liquid into a water layer and an oil layer, a small amount of water remaining in the oil layer and the xylene used were completely distilled off, and the sodium content was 2.7%, iron content was Amount 14.6%
A dispersion of 22.8k9 was obtained. The yield was 98.5%. This liquid stably dispersed the metal compound even after three months had passed. Example 11 In a 100e reactor, toluene 2.7k9, spray kerosene 8.3k9, naphthenic acid 5.9k9 (19.9 mol),
1.0k9 (2.9 mol) of erucic acid, 1.1 kg (2.9 mol) of dinoylbenzenesulfonic acid, and 4.1 kg (12.9 mol) of barium hydroxide octahydrate were charged with stirring, and the liquid was prepared. The four powders were reacted at a temperature of 70 to 80°C.

Claims (1)

【特許請求の範囲】 1 有機溶剤中で、ナフテン酸及び/又は有機スルホン
酸とアルケニルカルボン酸の各金属中性塩の存在下、2
価の、鉄、マンガン、ニッケル若しくはコバルトの無機
酸塩と水酸化アルカリを反応させ、これに酸素及び/又
は過酸化水素を反応せしめることを特徴とする微粒子の
金属化合物を有機溶剤中に高濃度に分散させる方法。 2 有機スルホン酸が石油スルホン酸又は炭素数15〜
30個を有するモノアルキル若しくはジアルキルのベン
ゼンスルホン酸であり、アルケニルカルボン酸が炭素数
11〜22個を有するカルボン酸である特許請求の範囲
第1項記載の方法。 3 2価の、鉄、マンガン、ニッケル若しくはコバルト
の無機酸塩が、2価の、鉄、マンガン、ニッケル若しく
はコバルトの塩化物、硫酸塩、亜硫酸塩、硝酸塩、亜硝
酸塩、燐酸塩、亜燐酸塩、臭化物又はヨウ化物である特
許請求の範囲第1項記載の方法。
[Claims] 1. In an organic solvent, in the presence of each metal neutral salt of naphthenic acid and/or organic sulfonic acid and alkenyl carboxylic acid, 2.
A fine particle metal compound characterized by reacting an inorganic acid salt of iron, manganese, nickel, or cobalt with an alkali hydroxide and reacting this with oxygen and/or hydrogen peroxide at a high concentration in an organic solvent. How to disperse. 2 The organic sulfonic acid is petroleum sulfonic acid or has 15 or more carbon atoms.
The method according to claim 1, wherein the alkenyl carboxylic acid is a monoalkyl or dialkyl benzenesulfonic acid having 30 carbon atoms, and the alkenyl carboxylic acid is a carboxylic acid having 11 to 22 carbon atoms. 3. Divalent inorganic acid salts of iron, manganese, nickel, or cobalt are divalent iron, manganese, nickel, or cobalt chlorides, sulfates, sulfites, nitrates, nitrites, phosphates, and phosphites. , bromide or iodide.
JP52106934A 1977-09-06 1977-09-06 A method for dispersing fine particles of metal compounds in organic solvents at high concentrations Expired JPS6041980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52106934A JPS6041980B2 (en) 1977-09-06 1977-09-06 A method for dispersing fine particles of metal compounds in organic solvents at high concentrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52106934A JPS6041980B2 (en) 1977-09-06 1977-09-06 A method for dispersing fine particles of metal compounds in organic solvents at high concentrations

Publications (2)

Publication Number Publication Date
JPS5440286A JPS5440286A (en) 1979-03-29
JPS6041980B2 true JPS6041980B2 (en) 1985-09-19

Family

ID=14446218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52106934A Expired JPS6041980B2 (en) 1977-09-06 1977-09-06 A method for dispersing fine particles of metal compounds in organic solvents at high concentrations

Country Status (1)

Country Link
JP (1) JPS6041980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523311U (en) * 1991-09-06 1993-03-26 山武ハネウエル株式会社 LED illuminated lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523311U (en) * 1991-09-06 1993-03-26 山武ハネウエル株式会社 LED illuminated lamp

Also Published As

Publication number Publication date
JPS5440286A (en) 1979-03-29

Similar Documents

Publication Publication Date Title
US20090143595A1 (en) Use of grinding in chemical synthesis
US4162986A (en) Oil-soluble high metal content transitional metal organic oxy, hydroxy, complexes
CN105555399B (en) The method for preparing multicomponent O composite metallic oxide catalyst
EP0019989B1 (en) Method for producing a solution containing nitrates of iron and chromium and making a high temperature shift catalyst from it
Acharyya et al. Cetyl alcohol mediated synthesis of CuCr 2 O 4 spinel nanoparticles: a green catalyst for selective oxidation of aromatic C–H bonds with hydrogen peroxide
US2252662A (en) Metal salts of alkyl substituted hydroxyaromatic carboxylic acids
Pawar et al. Selective oxidation of styrene to benzaldehyde using soft BaFe2O4 synthesized by citrate gel combustion method
CN111018760A (en) Method for preparing crystal-form thioamino carboxylate by taking secondary amine as raw material
US3256266A (en) Process for making oil-soluble chromium carboxylates
JPS6041980B2 (en) A method for dispersing fine particles of metal compounds in organic solvents at high concentrations
KR20130046697A (en) Method for mn3o4 nanoparticles by solid-state decomposition of exfoliated mno2 nanosheet
Yasodhai et al. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine
JPS61246173A (en) Productionof gamma-butyrolactone
US2368560A (en) Method of preparing hydroxy heavy metal soap compositions
Premkumar et al. Transition metal complexes of pyrazinecarboxylic acids with neutral hydrazine as a ligand
US2865707A (en) Iron salts
JPWO2019182137A1 (en) Manufacturing method of metal-organic framework
JPS5920656B2 (en) Method for producing oil-dispersible metal salt-organic acid metal salt complex
US3293313A (en) Method of making organic lithium compounds
US2557968A (en) Decomposition of organic hydroperoxides
DE3028478A1 (en) HYDROGEN SOLUBLE DIORGANOMAGNESIUM COMPOUNDS, HYDROCARBON SOLUTIONS THAT INCLUDE IT AND METHOD FOR THE PRODUCTION THEREOF
Mohandes et al. Preparation of Mn 2 O 3 nanostructures with different shapes by a simple solid-state method
Abdelbaky et al. Crystal structure and characterization of a novel layered copper-lithium phosphonate with antiferromagnetic intrachain Cu (II)··· Cu (II) interactions
Liu et al. Synthesis, structure and catalytic study of a new sandwiched-type vanadoselenite
JPH01294646A (en) Production of cyclohexanol and cyclohexanone