JPH01294646A - Production of cyclohexanol and cyclohexanone - Google Patents

Production of cyclohexanol and cyclohexanone

Info

Publication number
JPH01294646A
JPH01294646A JP62299515A JP29951587A JPH01294646A JP H01294646 A JPH01294646 A JP H01294646A JP 62299515 A JP62299515 A JP 62299515A JP 29951587 A JP29951587 A JP 29951587A JP H01294646 A JPH01294646 A JP H01294646A
Authority
JP
Japan
Prior art keywords
magnesium
catalyst
cobalt
cyclohexane
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299515A
Other languages
Japanese (ja)
Inventor
Keiji Hashimoto
圭司 橋本
Yoshio Asahi
佳男 朝日
Takao Maki
真木 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62299515A priority Critical patent/JPH01294646A/en
Publication of JPH01294646A publication Critical patent/JPH01294646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To readily obtain the subject cyclohexanone and cyclohexanol which are intermediate important for chemical industry in high selectivity by oxidizing cyclohexane with molecular oxygen in the presence of a specific catalyst. CONSTITUTION:Cyclohexane is oxidized with molecular oxygen normally in the liquid phase at a temperature within the range of 70-250 deg.C, preferably 110-180 deg.C under a reaction pressure of >= vapor pressure of the cyclohexane-<=100kg/cm2 using cobalt contained in magnesium oxide or a compound oxide of magnesium as a catalyst to afford the aimed compound. A gas with a low oxygen concentration is preferably used as the oxidizing gas. Furthermore, a catalyst in the form of the cobalt carried by the magnesium oxide or compound oxide of magnesium (e.g., magnesia-alumina) as a carrier, etc., is used as the form of the above-mentioned catalyst. The amount of the cobalt used is 0.01-30 wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化学工業上重要な中間体であるシクロヘキサ
ノール及びシクロヘキサノンの製造方法に関するもので
あり、より詳しくは、シクロヘキサンを出発原料とし、
分子状酸素による酸化反応で簡便かつ、高選択的にシク
ロヘキサノール及びシクロヘキサノンを製造する方法に
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing cyclohexanol and cyclohexanone, which are important intermediates in the chemical industry, and more specifically, using cyclohexane as a starting material,
The present invention relates to a method for easily and highly selectively producing cyclohexanol and cyclohexanone through an oxidation reaction using molecular oxygen.

〔従来の技術〕[Conventional technology]

シクロヘキサンを分子状酸素により酸化してシクロヘキ
サノール及びシクロヘキサノンを製造する際に用いられ
る触媒としては、従来、微量の可溶性コバルト化合物も
しくは比較的多量のホウ素系化合物が一般的であり、可
溶性コバルト化合物としては、例えばナフテン酸コバル
ト等が、またホウ素系化合物としては、例えばメタホウ
酸等が用いられていた。
Conventionally, the catalyst used to produce cyclohexanol and cyclohexanone by oxidizing cyclohexane with molecular oxygen has generally been a trace amount of soluble cobalt compound or a relatively large amount of boron-based compound. For example, cobalt naphthenate has been used, and as a boron-based compound, for example, metaboric acid has been used.

しかしながら、可溶性コバルト化合物を触媒とする場合
には、一般に収率が低く、かつ得られた生成物の二次反
応により選択率が低下するので、酸化反応の転化率を極
めて低いレベルに抑える必要があり、更には触媒が反応
途中で不溶性物質となって析出し易くなるために、反応
装置の運転上にも問題があった。
However, when a soluble cobalt compound is used as a catalyst, the yield is generally low and the selectivity decreases due to secondary reactions of the obtained product, so it is necessary to suppress the conversion rate of the oxidation reaction to an extremely low level. Moreover, the catalyst becomes an insoluble substance during the reaction and tends to precipitate, which causes problems in the operation of the reactor.

また、ホウ酸系化合物を触媒として用いる場合には、収
率は比較的高いものの、多量のホウ酸系化合物を用いる
ために循環再使用する際の工程において種々の問題点を
有していた。
In addition, when a boric acid compound is used as a catalyst, although the yield is relatively high, there are various problems in the process of recycling and reusing because a large amount of the boric acid compound is used.

これらの問題を解決する方法として、シクロヘキサノー
ル化して、シクロヘキシルヒドロペルオキシドを高選択
的に生成させ、次いで分解反応によりシクロヘキサノー
ル及びシクロヘキサノンを得る方法が提案されている。
As a method to solve these problems, a method has been proposed in which cyclohexanolization is performed to generate cyclohexyl hydroperoxide with high selectivity, and then cyclohexanol and cyclohexanone are obtained by a decomposition reaction.

例えば、特開昭≠♂−11j11.号には、シクロヘキ
サンをマグネシウム、亜鉛、カドミウム等の有機金属化
合物又は、有機錯化合物を触媒として、分子状酸素と反
応させシクロヘキシルヒドロペルオキシドを製造する方
法が記載されている。
For example, JP-A-Sho≠♂-11j11. No. 2, No. 2003, describes a method for producing cyclohexyl hydroperoxide by reacting cyclohexane with molecular oxygen using an organometallic compound such as magnesium, zinc, or cadmium or an organic complex compound as a catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この方法では、高濃度で爆発性含有t−
るシクロヘキシルヒドロベルオキシトを取り扱うので工
業化に際しては、安全性に関し種々の配慮を要する。ま
た、シクロヘキシルヒドロペルオキシドの実用的な分解
反応は、必らずしも高収率ではない等の問題点を有して
おり、更に改善された方法が望まれていた。
However, in this method, high concentration and explosive content of t-
Since the process involves handling cyclohexyl hydroperoxyte, various considerations regarding safety are required during industrialization. Further, practical decomposition reactions of cyclohexyl hydroperoxide have problems such as not necessarily high yields, and a further improved method has been desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題点を解決すべく鋭意検討した結
果、シクロヘキサンを分子状酸素により酸化してシクロ
ヘキサノール及びシクロヘキサンを製造する方法におい
て、触媒として酸化マグネシウム又はマグネシウムの複
合酸化物にコバルトを含有させたものを使用することに
より、シクロヘキシルペルオキシドの蓄積を過大ならし
めず、且つ高収率でシクロヘキサノール及びシクロヘキ
サノンを得ることができることを見い出し、本発明を完
成させた。
As a result of intensive studies to solve the above problems, the present inventors discovered that cobalt is added to magnesium oxide or a composite oxide of magnesium as a catalyst in a method for producing cyclohexanol and cyclohexane by oxidizing cyclohexane with molecular oxygen. The present invention was completed based on the discovery that cyclohexanol and cyclohexanone can be obtained in high yields without excessive accumulation of cyclohexyl peroxide by using cyclohexyl peroxide.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

マグネシウムの複合酸化物とは、マグネシウムを含有す
る2種以上の金属から構成される酸化物であり、例えば
マグネシア−アルミナ、マグネシア−チタニア、マグネ
シウムで置換されたゼオライト(フォージャサイト)等
が挙げられる。該ゼオライトは、ゼオライト中の金属イ
オン(通常、アルカリ金属或はアルカリ土類金属)がマ
グネシウムで30%以上、好ましくは、30%以上置換
されたものである。該複合酸化物は水化物(水酸化物)
の形で用いることもできる。具体的には、(1)式で示
されるマグネシウム−アルミニウム−ヒドロタルサイト
が挙げられる。
Magnesium composite oxide is an oxide composed of two or more metals containing magnesium, such as magnesia-alumina, magnesia-titania, magnesium-substituted zeolite (faujasite), etc. . The zeolite has 30% or more, preferably 30% or more of the metal ions (usually alkali metal or alkaline earth metal) in the zeolite replaced with magnesium. The complex oxide is a hydrate (hydroxide)
It can also be used in the form of Specifically, magnesium-aluminum-hydrotalcite shown by formula (1) can be mentioned.

Mfa At2 (OH)ts (CO3)・1GHz
o   ・・・・・・・・・(1)(1)式においてM
?原子とAt原子との比(My/At)は、0./ −
/ 0の範囲内で変化させることができる。更に、該ヒ
ドロタルサイトのM、の一部が、コ価イオンを形成する
Co、Zn%Sr等の金属で置換されていてもよく、例
えば前足式(1)においてMt6原子中そのλ原子をC
oで置換したタコバイトは(2)式の形で示される。
Mfa At2 (OH)ts (CO3)・1GHz
o ・・・・・・・・・(1) In formula (1), M
? The ratio of atoms to At atoms (My/At) is 0. / −
/ It can be changed within the range of 0. Furthermore, a part of M of the hydrotalcite may be substituted with a metal such as Co, Zn%Sr, etc. that forms a covalent ion, for example, in the front foot formula (1), the λ atom in the Mt6 atom C
Tacobyte substituted with o is shown in the form of equation (2).

MP4CozALz(OH)+5(CO3)4HzO−
−(2)これらの複合酸化物は、常法により製造される
MP4CozALz(OH)+5(CO3)4HzO-
-(2) These composite oxides are manufactured by conventional methods.

本発明の触媒は、上記の酸化マグネシウム又はマグネシ
ウムの複合酸化物にコバルトを含有させたものである。
The catalyst of the present invention contains cobalt in the above-mentioned magnesium oxide or magnesium composite oxide.

その形態としては、(1)酸化マグネシウム又はマグネ
シウムの複合酸化物を担体としコバルトを担持させた形
態、(11)マグネシウムの複合酸化物が金属の一成分
としてコバルトを有する形態、(iii)  (ii)
の形態のマグネシウムの複合酸化物に更にコバルトを担
持させた形態等が挙げられる。(11)の例としては、
前足式(2)のコバルト置換タコバイト、前記マグネシ
ウム置換ゼオライトの一部をコバルトで置換したゼオラ
イト等が挙げられる。
Its forms include (1) a form in which cobalt is supported using magnesium oxide or a composite oxide of magnesium as a carrier; (11) a form in which a composite oxide of magnesium has cobalt as a metal component; (iii) a form in which cobalt is supported as a metal component; )
Examples include a form in which cobalt is further supported on a magnesium complex oxide in the form of . As an example of (11),
Examples include cobalt-substituted tacovite of the foreleg formula (2), zeolite in which a part of the above-mentioned magnesium-substituted zeolite is replaced with cobalt, and the like.

これら触媒の調製は、常法により行われ特に限定されな
い。例えば上記(1)、(iii)のコバルトを担持さ
せる方法としては、コバルトの可溶性化合物例えば酢酸
コバル) (II)、酢酸コバルト(■)等の溶液に酸
化マグネシウム又はマグネシウムの複合酸化物を添加し
、蒸発乾固する強制相持方法、不溶性化合物例えば酸化
コバルト等を酸化マグネシウム又はマグネシウムの複合
酸化物に添加混合する混練法等が挙げられる。
These catalysts are prepared by conventional methods and are not particularly limited. For example, as a method for supporting cobalt in (1) and (iii) above, magnesium oxide or a composite oxide of magnesium is added to a solution of a soluble cobalt compound such as cobalt acetate (II), cobalt acetate (■), etc. , a forced coagulation method of evaporating to dryness, and a kneading method of adding and mixing an insoluble compound such as cobalt oxide to magnesium oxide or a composite oxide of magnesium.

また、上記(11)のようにコバルトを一成分として含
むマグネシウムの複合酸化物は、各成分による合成法或
は前述した置換法(イオン交換法)例えばマグネシウム
の複合酸化物をコバルトの水溶性化合物の水溶液に浸漬
する方法等により得ることができる。
Further, as described in (11) above, a magnesium composite oxide containing cobalt as one component can be produced by a synthesis method using each component or by the above-mentioned substitution method (ion exchange method). It can be obtained by a method such as immersion in an aqueous solution of.

本発明の触媒に含有されるコバルトの量は特に制約され
ないが、通常0,07〜30重量%、好ましくはo、i
−20重量%の範囲とされる。
The amount of cobalt contained in the catalyst of the present invention is not particularly limited, but is usually 0.07 to 30% by weight, preferably o,i
-20% by weight.

シクロヘキサンの酸化反応は、回分式でも連続式でも実
施することが可能であり、通常、液相において、70−
210℃、好ましくは/10〜iro℃程度の温度にて
打なわれる。また反応圧力は、シクロヘキサンの蒸気圧
以上、io。
The oxidation reaction of cyclohexane can be carried out either batchwise or continuously, and is usually carried out in the liquid phase at 70-
It is struck at a temperature of 210°C, preferably about /10°C to iro°C. Further, the reaction pressure is higher than the vapor pressure of cyclohexane, i.o.

147−以下の範囲から選択される。酸化ガスとしては
、空気を用いることもできるが、爆発組成混合物の生成
を避け、かつ反応速度を制御するために酸素濃度の低い
ガスを用いるのが好ましい。触媒の使用量は、反応様式
、触媒中のコバルト含量等によって異なるが、例えば、
懸濁床で用いる場合、シクロヘキサンに対しO0l〜1
0%程度用いられる。なお、シクロヘキサンの転化率は
、高すぎると副生物の生成量が著しくなるので、30%
以下に抑えるのが好ましく、より好ましいのは20%以
下である。
147 - selected from the following ranges: Although air can be used as the oxidizing gas, it is preferable to use a gas with a low oxygen concentration in order to avoid the formation of an explosive composition mixture and to control the reaction rate. The amount of catalyst used varies depending on the reaction mode, cobalt content in the catalyst, etc., but for example,
When used in a suspended bed, O0l~1 for cyclohexane
It is used at about 0%. Note that if the conversion rate of cyclohexane is too high, the amount of by-products produced will be significant, so the conversion rate should be set at 30%.
It is preferable to keep it below, more preferably 20% or below.

〔実施例〕〔Example〕

次に本発明を実施例により更に具体的に説明するが、本
発明はその要旨を越えない限り以下の実施例に限定され
るものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

(触媒製造例1) 酢酸コバル) (II)・四本塩/fを水10.1と酢
酸0.j、lとの混合溶液に溶解し、オゾン濃度0.1
.7 f/lの空気を常温で30分吹き込んで酸化を行
い、コバルトを3価(Co) とした後、水7j、lを
添加混合しCo 溶液を得た。
(Catalyst production example 1) Kobal acetate) (II) Yotsubonshio/f was mixed with 10.1 parts of water and 0.1 parts of acetic acid. Dissolved in a mixed solution of j and l, ozone concentration 0.1
.. After oxidizing cobalt by blowing 7 f/l of air at room temperature for 30 minutes to convert cobalt to trivalent (Co), 7j, l of water was added and mixed to obtain a Co 2 solution.

水酸化マグネシウムを空気雰囲気下、200℃で3時間
焼成して得た酸化マグネシウム/ l、、2 tを上記
Co  溶液に添加、混合した後2O−jO℃で攪拌下
、溶媒を減圧留去してCoを7.≠≠重量%含有する触
媒Aを得た。
Magnesium oxide/l, 2 t obtained by calcining magnesium hydroxide at 200°C for 3 hours in an air atmosphere was added to the above Co solution, mixed, and then the solvent was distilled off under reduced pressure while stirring at 2O-jO°C. 7. Catalyst A containing ≠≠% by weight was obtained.

(触媒製造例2) 硝酸マグネシウム・を水塩2!6tと硝酸アルミニウム
・り水塩/ ff 7.t tとを水700ylに溶解
した。50%水酸化す) IJウム水溶液2109と炭
酸ナトリウム1009とを水io。
(Catalyst production example 2) 2!6t of magnesium nitrate hydrate and aluminum nitrate hydrate/ff 7. t t was dissolved in 700 yl of water. (50% hydroxide) IJum aqueous solution 2109 and sodium carbonate 1009 in water.

ゴに混合溶解した液を3J℃以下に維持しつつ、上記硝
酸マグネシウム−硝酸アルミニウム水溶液をV時間で滴
下した後、60〜70℃に昇温しit時間熟成した。得
られたスラリーを冷却後、濾過を行いNa含量がo、i
重量%以下になるまで結晶を水で洗浄した。洗浄した結
晶を123℃で11時間減圧乾燥してMf −At−ヒ
ドロタルサイト(MP6At2 (OH)16 (CO
3)・AH20)の結晶を得た。
The magnesium nitrate-aluminum nitrate aqueous solution was added dropwise to the solution mixed and dissolved in the green tea over a time period of V while maintaining the temperature below 3J°C, and then the temperature was raised to 60 to 70°C and ripened for an hour. After cooling the obtained slurry, it was filtered to reduce the Na content to
The crystals were washed with water until the concentration was below % by weight. The washed crystals were dried under reduced pressure at 123°C for 11 hours to obtain Mf-At-hydrotalcite (MP6At2(OH)16(CO
3)・AH20) crystals were obtained.

触媒製造例1と同様にして調製したCo  溶液に上記
My−Al−ヒドロタルサイト/ t、2 fを添加、
混合した後2θ〜30℃で攪拌下、溶媒を減圧留去して
Coを/、4’4’1iit%含有する触媒Bを得た。
Adding the above My-Al-hydrotalcite/t, 2f to a Co solution prepared in the same manner as in Catalyst Production Example 1,
After mixing, the solvent was distilled off under reduced pressure while stirring at 2θ to 30°C to obtain catalyst B containing 4'4'1iit% of Co.

(触媒製造例3) ヘキサニトロコバルト(■)酸ナトリウム/、φItを
水/jO,lに溶解した液に、触媒製造例コと同様にし
て調製したMW −At−ヒドロタルサイ) 3J t
を添加し、65℃で2時間イオン交換反応を行った。得
られたスラリーを冷却、濾過し、結晶を水及びメタノー
ルで洗浄した後乾燥を行いCoを3.3v重量%含有す
る触媒Cを得た。
(Catalyst Production Example 3) MW -At-hydrotalcinia (MW-At-hydrotalcin) 3Jt prepared in the same manner as in Catalyst Production Example 3 was added to a solution of sodium hexanitrocobaltate/, φIt in water/jO,l.
was added, and an ion exchange reaction was carried out at 65°C for 2 hours. The obtained slurry was cooled and filtered, and the crystals were washed with water and methanol and then dried to obtain a catalyst C containing 3.3v% of Co by weight.

(触媒製造例ψ) 硝酸マグネシウム・を水塩/ 7./ f、硝酸コバル
ト・6水塩り、72及び硝酸アルミニウム・タ水塩/ 
2.!; ?を水70rrtlに溶解した溶液を、jO
q6水酸化ナトリウム水溶液、炭酸ナトリウム/ 0.
Ofとを水100m1に混合溶解した溶液に30℃以下
に保持しり時間で滴下した後、60〜70℃に昇温し/
r時間熟成した。得られたスラリーを冷却後濾過を行い
Na含量が0.7重量%以下になるまで結晶を水で洗浄
した。
(Catalyst production example ψ) Magnesium nitrate hydrate/7. / f, cobalt nitrate hexahydrate, 72 and aluminum nitrate hexahydrate /
2. ! ;? A solution of 70rrtl of water was added to jO
q6 Sodium hydroxide aqueous solution, sodium carbonate/0.
After dropping the mixture into a solution prepared by mixing and dissolving 100 ml of water at a temperature of 30°C or less, the temperature was raised to 60 to 70°C.
Aged for r hours. The resulting slurry was cooled and filtered, and the crystals were washed with water until the Na content became 0.7% by weight or less.

洗浄した結晶を723℃で11時間減圧乾燥して、コバ
ルト置換タコバイトの結晶であるCOをl・り、A 7
重量%含有する触媒りを得た。
The washed crystals were dried under reduced pressure at 723°C for 11 hours to remove 1·1 CO, which is cobalt-substituted tacobite crystals, and A7
A catalyst containing % by weight was obtained.

(実施例/) 誘導攪拌機付200rd  5US−Jet製オートク
レーブにシクロヘキサンj O,7t 、 M媒Ao、
3t (コバルトとしてr j ppm対シクロヘキサ
ン)を仕込み、室温で酸素を20容量多含有する窒素ガ
スをコ114/crAGになるまで圧入した。If 0
0 rpmの速度で攪拌を行いつつ12j℃に昇温しで
酸化反応を行いシクロヘキサンの転化率が5%に到達後
、冷却を行い反応生成物を分析した。反応生成物は、ワ
グナ−法によるヨード滴定、ガスクロマトグラフィー及
び中和滴定により分析した。そ、の結果を表1に示した
(Example/) In a 200rd 5US-Jet autoclave equipped with an induction stirrer, cyclohexane j O, 7t, M medium Ao,
3t (r j ppm as cobalt to cyclohexane) was charged, and nitrogen gas containing 20 volumes of oxygen was pressurized at room temperature until the ratio was co114/crAG. If 0
While stirring at a speed of 0 rpm, the temperature was raised to 12°C to perform an oxidation reaction, and after the conversion of cyclohexane reached 5%, it was cooled and the reaction product was analyzed. The reaction product was analyzed by iodometry using the Wagner method, gas chromatography, and neutralization titration. The results are shown in Table 1.

(実施例2) 触媒Aの代りに触媒Bを用いた以外は実施例1と同様に
して酸化反応を行った。その結果を表/に示した。
(Example 2) An oxidation reaction was carried out in the same manner as in Example 1 except that catalyst B was used instead of catalyst A. The results are shown in Table/.

(実施例3) 触媒A o、3tの代りに触媒(:、0./3?を用い
た以外は、実施例/と同様にして酸化反応を行った。そ
の結果を表1に示した。
(Example 3) An oxidation reaction was carried out in the same manner as in Example, except that catalyst (:, 0./3?) was used instead of catalyst A o, 3t. The results are shown in Table 1.

(実施例≠) 触媒A o、srの代りに触媒D 0.0229を用い
た以外は、実施例/と同様にして酸化反応を行りた。そ
の結果を表/に示した。
(Example≠) An oxidation reaction was carried out in the same manner as in Example, except that catalyst D 0.0229 was used instead of catalyst A o, sr. The results are shown in Table/.

(比較例1) 触媒A O,31の代りに6%ナフテン酸コバルト70
■を用いた以外は、実施例1と同様にして酸化反応を行
った。その結果を表/に示した。
(Comparative Example 1) 6% cobalt naphthenate 70 instead of catalyst A O,31
An oxidation reaction was carried out in the same manner as in Example 1 except that (2) was used. The results are shown in Table/.

Claims (4)

【特許請求の範囲】[Claims] (1)シクロヘキサンを分子状酸素により酸化してシク
ロヘキサノール及びシクロヘキサノンを製造する方法に
おいて、触媒として酸化マグネシウム又はマグネシウム
の複合酸化物にコバルトを含有させたものを使用するこ
とを特徴とするシクロヘキサノール及びシクロヘキサノ
ンの製造方法。
(1) A method for producing cyclohexanol and cyclohexanone by oxidizing cyclohexane with molecular oxygen, characterized in that magnesium oxide or a composite oxide of magnesium containing cobalt is used as a catalyst. Method for producing cyclohexanone.
(2)マグネシウムの複合酸化物がマグネシウム−アル
ミニウム−ヒドロタルサイトであることを特徴とする特
許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the magnesium composite oxide is magnesium-aluminum-hydrotalcite.
(3)マグネシウムの複合酸化物かマグネシア−アルミ
ナであることを特徴とする特許請求の範囲第1項記載の
製造方法。
(3) The manufacturing method according to claim 1, wherein the manufacturing method is a composite oxide of magnesium or magnesia-alumina.
(4)マグネシウムの複合酸化物がマグネシウムでイオ
ン交換したゼオライトであることを特徴とする特許請求
の範囲第1項ないし3項のいづれか1項に記載の製造方
法。
(4) The manufacturing method according to any one of claims 1 to 3, wherein the magnesium composite oxide is a zeolite ion-exchanged with magnesium.
JP62299515A 1987-11-27 1987-11-27 Production of cyclohexanol and cyclohexanone Pending JPH01294646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299515A JPH01294646A (en) 1987-11-27 1987-11-27 Production of cyclohexanol and cyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299515A JPH01294646A (en) 1987-11-27 1987-11-27 Production of cyclohexanol and cyclohexanone

Publications (1)

Publication Number Publication Date
JPH01294646A true JPH01294646A (en) 1989-11-28

Family

ID=17873587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299515A Pending JPH01294646A (en) 1987-11-27 1987-11-27 Production of cyclohexanol and cyclohexanone

Country Status (1)

Country Link
JP (1) JPH01294646A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294739A (en) * 1991-06-20 1994-03-15 Shell Oil Company Catalyttic oxidation of hydrocarbons
JP2003524579A (en) * 1998-02-10 2003-08-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Direct oxidation of cycloalkanes
JP2006131582A (en) * 2004-11-09 2006-05-25 Sumitomo Chemical Co Ltd Catalyst useful in oxidation reaction of alicyclic hydrocarbons and oxidation method using the same
JP2006306838A (en) * 2005-03-31 2006-11-09 Sumitomo Chemical Co Ltd Method for producing cycloalkanol and/or cycloalkanone
EP2062867A3 (en) * 2007-11-21 2011-07-06 Sumitomo Chemical Company, Limited Process for Producing Cycloalkanol and/or Cycloalkanone
CN103204769A (en) * 2012-01-13 2013-07-17 中国石油化工股份有限公司 Method for production of cyclohexanone from cyclohexanol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294739A (en) * 1991-06-20 1994-03-15 Shell Oil Company Catalyttic oxidation of hydrocarbons
JP2003524579A (en) * 1998-02-10 2003-08-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Direct oxidation of cycloalkanes
JP2006131582A (en) * 2004-11-09 2006-05-25 Sumitomo Chemical Co Ltd Catalyst useful in oxidation reaction of alicyclic hydrocarbons and oxidation method using the same
JP4635571B2 (en) * 2004-11-09 2011-02-23 住友化学株式会社 Catalyst used for oxidation reaction of aliphatic cyclic hydrocarbons and oxidation method using the same
JP2006306838A (en) * 2005-03-31 2006-11-09 Sumitomo Chemical Co Ltd Method for producing cycloalkanol and/or cycloalkanone
EP2062867A3 (en) * 2007-11-21 2011-07-06 Sumitomo Chemical Company, Limited Process for Producing Cycloalkanol and/or Cycloalkanone
CN103204769A (en) * 2012-01-13 2013-07-17 中国石油化工股份有限公司 Method for production of cyclohexanone from cyclohexanol
CN103204769B (en) * 2012-01-13 2015-03-18 中国石油化工股份有限公司 Method for production of cyclohexanone from cyclohexanol

Similar Documents

Publication Publication Date Title
Chen et al. Selective oxidation of hydrocarbons with O2 over chromium aluminophosphate-5 molecular-sieve
Zhao et al. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant
EP0376453B1 (en) The oxidation of saturated hydrocarbon chains
Chen et al. Selective decomposition of cyclohexyl hydroperoxide to cyclohexanone catalyzed by chromium aluminophosphate-5
US4923837A (en) Hydrogenation catalyst
US4374758A (en) Preparation of stable tellurium-containing solution from metallic tellurium and process for producing tellurium-antimony containing oxide catalyst using said solution
US20030097025A1 (en) Method for producing alcohol/ketone mixtures
JPH01294646A (en) Production of cyclohexanol and cyclohexanone
JPH05255136A (en) Preparation of cyclohexene by partial hydrogenation of benzene
US3914323A (en) Process for preparing diphenols
JPH01110662A (en) Manufacture of ketoxime
RU2208605C1 (en) Method for oxidation of hydrocarbons, alcohols, and/or ketones
US4543427A (en) Preparation of cyclohexanol and cyclohexanone
JPH0325224B2 (en)
US2776320A (en) Aromatic hydroxy hydroperoxides
US3960909A (en) Process for preparing palladium(II)acetylacetonate
JPS6052136B2 (en) Alcohol manufacturing method
US3972943A (en) Process for preparing alkaliacetylacetonates
CN113828352A (en) Preparation method of supported palladium/titanium silicalite molecular sieve catalyst
US4551570A (en) Process for the isomerization of limonene to terpinolene
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
US4393243A (en) Carotenoid intermediate by an oxidation process
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
JPS62258335A (en) Production of methyl isobutyl ketone
US4028420A (en) Process for the preparation of hex-2-enal