JPS61246173A - Productionof gamma-butyrolactone - Google Patents

Productionof gamma-butyrolactone

Info

Publication number
JPS61246173A
JPS61246173A JP60085438A JP8543885A JPS61246173A JP S61246173 A JPS61246173 A JP S61246173A JP 60085438 A JP60085438 A JP 60085438A JP 8543885 A JP8543885 A JP 8543885A JP S61246173 A JPS61246173 A JP S61246173A
Authority
JP
Japan
Prior art keywords
catalyst
copper
chromium
butyrolactone
butanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60085438A
Other languages
Japanese (ja)
Other versions
JPH0417954B2 (en
Inventor
Tadashi Kato
正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP60085438A priority Critical patent/JPS61246173A/en
Publication of JPS61246173A publication Critical patent/JPS61246173A/en
Publication of JPH0417954B2 publication Critical patent/JPH0417954B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

PURPOSE:To obtain the aimed compound in high yield with a long catalyst life, by catalytically dehydrogenating 1,4-butanediol in the presence of a catalyst, e.g. copper-chromium-manganese based catalyst or copper-chromium-zinc based catalyst. CONSTITUTION:1,4-Butandiol is dehydrogenated in the presence of a copper- chromium-manganese based catalyst or copper-chromium-zinc based catalyst, preferably under conditions of preferably 200-250 deg.C under 0-5kg/cm<2>G pressure and 0.5-3hr<-1> weight hourly space velocity (WHSV) in the liquid or vapor phase to give gamma-butyrolactone particularly useful as a precursor for N- methylpyrrolidone in high yield using the above-mentioned catalyst with a long life. Preferably, the composition ratios of the respective component elements in the above-mentioned catalyst expressed in terms of the respective metals are set as follows; 30-60pts.wt. Cu, 70-40pts.wt. Cr., 3-20pts.wt. Mn based on 100pts.wt. total of Cu and Cr and 20-50pts.wt. Zn based on 100pts.wt. total of Cu and Cr.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はN−メチルピロリドンの前駆体として有用なγ
−ブチロラクトンの製造方法に関し、更に詳しくは、高
い収率でγ−ブチロラクトンを製造する方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides γ useful as a precursor of N-methylpyrrolidone.
- It relates to a method for producing butyrolactone, and more specifically, to a method for producing γ-butyrolactone in high yield.

[発明の技術的背景とその問題点] γ−ブチロラクトンは溶剤、リチウム電池の電解封液、
潤滑油精製溶剤などとして、また、とくに、N−メチル
ピロリドンの前駆体として有用な化合物である。
[Technical background of the invention and its problems] γ-Butyrolactone is used as a solvent, an electrolytic sealing liquid for lithium batteries,
It is a compound useful as a lubricating oil refining solvent, and especially as a precursor of N-methylpyrrolidone.

このγ−ブチロラクトンは1.4−ブタンジオールを触
媒の存在下で接触脱水素することにより製造することが
一般的である。従来、この1.4−ブタンジオールの脱
水素触媒としてはCu−Cr系触媒が知られている。し
かしながら、この触媒を使用した場合、目的とするγ−
ブチロラクトンの収率が低く、シかも、触媒自体の寿命
が短いという問題があった。
This γ-butyrolactone is generally produced by catalytic dehydrogenation of 1,4-butanediol in the presence of a catalyst. Conventionally, a Cu-Cr catalyst is known as a dehydrogenation catalyst for 1,4-butanediol. However, when using this catalyst, the desired γ-
There were problems in that the yield of butyrolactone was low, and the life of the catalyst itself was short.

[発明の目的] 本発明は、従来のかかる問題を解消し、使用する触媒の
寿命が長く、かつ、高い収率でγ−ブチロラクトンを製
造する方法の提供を目的とする。
[Object of the Invention] The object of the present invention is to provide a method for producing γ-butyrolactone in a high yield while solving the conventional problems and having a long life of the catalyst used.

[発明の概要] 本発明者は、上記目的を達成すべく鋭意研究を重ねた結
果、脱水素触媒として、従来のCu−Cr系触媒に代え
て、Cu−Cr−Mn系またはCu−Cr−Zn系触媒
を使用するとγ−ブチロラクトンの収率が向上し、しか
も、この触媒自体の寿命も長いという事実を見出して本
発明を完成するに到った。
[Summary of the Invention] As a result of extensive research to achieve the above object, the present inventor has developed a Cu-Cr-Mn-based or Cu-Cr-based dehydrogenation catalyst in place of the conventional Cu-Cr-based catalyst. The present invention was completed based on the discovery that the use of a Zn-based catalyst improves the yield of γ-butyrolactone and that the catalyst itself has a long life.

すなわち、本発明のγ−ブチロラクトンの製造方法は、
銅−クロム−マンガン系触媒または銅−クロム−亜鉛系
触媒の存在下で、1.4−ブタンジオールを脱水素する
ことを特徴とする。
That is, the method for producing γ-butyrolactone of the present invention includes:
It is characterized by dehydrogenating 1,4-butanediol in the presence of a copper-chromium-manganese catalyst or a copper-chromium-zinc catalyst.

まず、本発明において使用する触媒としては、上述した
ように、GuおよびCrに対し、MnまたはZnが配合
されてなるものである。これらの触媒は、各金属の酸化
物あるいは塩を出発物質として通常の方法を適用するこ
とにより容易に調製することができる。
First, as described above, the catalyst used in the present invention is one in which Mn or Zn is blended with Gu and Cr. These catalysts can be easily prepared by applying a conventional method using an oxide or salt of each metal as a starting material.

そして、得られた触媒中の各成分元素の組成比には、と
くに制限はないが、次のように設定することが好ましい
。すなわち、CuおよびCrはそれぞれ金属換算で30
〜60重量部および70〜40重量部に設定し、このC
u、 Crに対して配合されるMnまたはZnについて
は、CuとCrの合計100重量部に対し、同じく金属
換算でMnが3〜20重量部、Znが20〜50重量部
となるように設定する。
The composition ratio of each component element in the obtained catalyst is not particularly limited, but is preferably set as follows. That is, Cu and Cr each have a metal equivalent of 30
~60 parts by weight and 70 to 40 parts by weight, and this C
Mn or Zn to be mixed with u and Cr is set so that Mn is 3 to 20 parts by weight and Zn is 20 to 50 parts by weight, based on metal equivalents, for a total of 100 parts by weight of Cu and Cr. do.

本発明方法は、上記した触媒の存在下で1,4−ブタン
ジオールを脱水素するものであり、それに対しては、通
常の方法を適用することができる。具体的には、例えば
、1.4−ブタンジオールを水素などの希釈剤とともに
予熱後、上記の触媒を充填した反応器に導入して脱水素
反応を行わせしめ、ついで、得られた反応生成物を冷却
したのち気液分離を行なって目的とするγ−ブチロラク
トンを製造することができる。
The method of the present invention dehydrogenates 1,4-butanediol in the presence of the above-mentioned catalyst, and conventional methods can be applied thereto. Specifically, for example, 1,4-butanediol is preheated together with a diluent such as hydrogen, and then introduced into a reactor filled with the above catalyst to perform a dehydrogenation reaction, and then the resulting reaction product is After cooling, gas-liquid separation can be performed to produce the desired γ-butyrolactone.

かかる製造工程において、反応温度は 150〜300
℃、好ましくは、200〜250℃、圧力は0〜10k
g/dG 、好ましくは、 θ〜5kg/cnGにそれ
ぞれ設定する。なお、反応は液相および気相のいずれで
行なってもよく、重量空間速度(wHsv)は0.1−
10hr’ 、好ましくは0.5〜3 hr−’に設定
する。
In this manufacturing process, the reaction temperature is 150-300°C.
℃, preferably 200-250℃, pressure 0-10k
g/dG, preferably θ to 5 kg/cnG. The reaction may be carried out in either liquid phase or gas phase, and the weight hourly space velocity (wHsv) is 0.1-
It is set to 10 hr', preferably 0.5 to 3 hr-'.

[発明の実施例] 実施例1〜10  比較例1〜3 (1)触媒の調製 本発明方法において使用されるCuCu−1Or−系触
媒A、BおよびCu−Cr−Zn系触媒C,D、ならび
に従来法において使用されるCu−Cr系触媒Eのそれ
ぞれを以下のようにして調製した。
[Examples of the invention] Examples 1 to 10 Comparative examples 1 to 3 (1) Preparation of catalysts CuCu-1Or-based catalysts A, B and Cu-Cr-Zn-based catalysts C, D, used in the method of the present invention, In addition, Cu-Cr catalyst E used in the conventional method was prepared as follows.

触」L込 128.1gの重クロム酸アンモニウムを500ccの
蒸留水に溶解し、この溶液に28%のアンモニア水15
0ccを加えた。一方で硝酸ti4(3水和物)241
.13gおよび硝酸マンガン(6水和物) 28.7g
を蒸留水500ccに溶解させ、上記重クロム酸アンモ
ニウム溶液に、この硝酸塩溶液を攪拌しながら滴下した
。生じた沈殿を水洗乾燥後粉砕したのち、これを350
℃付近の温度で焼成し、さらに、3〜5%の黒鉛を加え
て所定形状に成形した。このようにして得られた触媒を
使用に先立って水素気流中、 180〜200℃におい
て還元した。なお、この触媒は例えば、クロム酸銅(C
uCr204)ににnが何らかの形で化合したものであ
ると推定され、各成分の組成比は重量部(以下同じ)で
Gu : Cr : Mn=55 : 45 : 5.
3であった。
Dissolve 128.1 g of ammonium dichromate in 500 cc of distilled water, and add 1.5 g of 28% ammonia water to this solution.
Added 0cc. On the other hand, nitric acid ti4 (trihydrate) 241
.. 13g and manganese nitrate (hexahydrate) 28.7g
was dissolved in 500 cc of distilled water, and this nitrate solution was added dropwise to the above ammonium dichromate solution while stirring. The resulting precipitate was washed with water, dried, and pulverized.
It was fired at a temperature around 0.degree. C., and 3 to 5% of graphite was added thereto and formed into a predetermined shape. Prior to use, the catalyst thus obtained was reduced in a hydrogen stream at 180-200°C. Note that this catalyst is, for example, copper chromate (C
It is estimated that n is combined with uCr204) in some form, and the composition ratio of each component is Gu: Cr: Mn = 55: 45: 5.
It was 3.

1五」 重クロム酸アンモニウム、硝酸銅(3水和物)および硝
酸マンガン(6永和物)の使用量をそれぞれ12f1.
1g、241.8gおよび57.0gとした以外は上記
の触媒Aと全く同様にして触媒Bを調製した。
15'' Ammonium dichromate, copper nitrate (trihydrate), and manganese nitrate (6 hydrate) were used in amounts of 12f1.
Catalyst B was prepared in exactly the same manner as Catalyst A above, except that the amounts were 1 g, 241.8 g, and 57.0 g.

各成分の組成比はCu : Or : Mr+= 55
 : 45 : 10であった。
The composition ratio of each component is Cu: Or: Mr+=55
:45:10.

触」LS 83gの重クロム酸アンモニウムを300ccの蒸留水
に溶解し、この溶液に28%のアンモニア水74ccを
加えた。一方で硝酸銅(3水和物)55gおよび硝酸亜
鉛(6水和物)87gを約70℃の蒸留水400ccに
溶解させ、上記重クロム酸アンモニウム溶液に、この悄
酸塩混合溶液を攪拌しながら滴下した。生じた沈殿をろ
過し、約 110℃で乾燥したのち、 350℃付近の
温度で焼成した。ついで、得られた焼成物を粉砕後10
%酢酸各800ccで2回処理し、蒸留水容800cc
で4回洗浄したのち、ろ過乾燥を行ない、さらに粉砕し
た。このものに3〜5%の黒鉛を加えて所定形状に成形
した。このようにして得らえた触媒を使用に先立って水
素気流中、 200〜210℃において還元した。なお
、この触媒は、例えばクロム1%2銅(CuCr204
)とクロム酸亜鉛(ZnCr204)との複合体である
と推定され、各成分ノ1i1成比はテcu : Or 
: Zn= 35 : 65 : 3s−t’あった。
83 g of ammonium dichromate was dissolved in 300 cc of distilled water, and 74 cc of 28% aqueous ammonia was added to this solution. On the other hand, 55 g of copper nitrate (trihydrate) and 87 g of zinc nitrate (hexahydrate) were dissolved in 400 cc of distilled water at about 70°C, and this citrate mixed solution was stirred into the ammonium dichromate solution. It dripped. The resulting precipitate was filtered, dried at about 110°C, and then calcined at a temperature around 350°C. Then, the obtained baked product was crushed for 10
Treated twice with 800 cc each of % acetic acid, distilled water volume 800 cc
After washing four times with 3 to 5% of graphite was added to this material and it was molded into a predetermined shape. The catalyst thus obtained was reduced at 200-210° C. in a hydrogen stream prior to use. Note that this catalyst is, for example, chromium 1% 2 copper (CuCr204
) and zinc chromate (ZnCr204), and the composition ratio of each component is Tecu: Or
: Zn=35:65:3s-t'.

触」L旦 重クロム酸アンモニウム、硝酸銅(3水和物)および硝
酸亜鉛(6水和物)の使用量をそれぞれ63g 、 5
5gおよび84gとした以外は上記の触媒Cと全く同様
にして触媒りを調製した。各成分の組成比はCu: C
r: Zn=35= 85: 45テあった。
The amounts of ammonium dichromate, copper nitrate (trihydrate) and zinc nitrate (hexahydrate) used were 63g and 5g, respectively.
Catalysts were prepared in exactly the same manner as Catalyst C above, except that the amounts were 5 g and 84 g. The composition ratio of each component is Cu:C
r: Zn=35=85: There were 45 teeth.

1墓J 重クロム酸アンモニウム56.3gを200ccの蒸留
水に溶解し、この溶液に28%のアンモニア水48.4
gを加え、さらに、この中へ硫酸銅(5水和物) 94
.3gを300ccの蒸留水に溶解せしめた溶液を滴下
しながら攪拌した。生じた沈殿をろ過し、500ccの
温水で2〜3回繰り返し洗浄したのち乾燥した。ついで
、粉砕したのち、 350〜380℃で焼成した。得ら
れた銅クロム酸化物粉末100gに40%のクロム酸水
溶液75gを加えて銅クロム酸化物中の酸化銅(約23
%)をクロム酸銅に変え、乾燥、粉砕後に3〜5%の黒
鉛を加えて所定形状に成形した。このようにして得らえ
た触媒を使用に先立って水素気流中 180〜200℃
において還元した。なお、この触媒における各成分の組
成比はCu : Cr= 40 : f30であった。
1 Grave J Dissolve 56.3 g of ammonium dichromate in 200 cc of distilled water, and add 48.4 g of 28% ammonia water to this solution.
Add 94 g of copper sulfate (pentahydrate) into this.
.. A solution prepared by dissolving 3 g in 300 cc of distilled water was added dropwise while stirring. The resulting precipitate was filtered, washed 2 to 3 times with 500 cc of warm water, and then dried. Then, after pulverizing, it was fired at 350 to 380°C. Copper oxide (approximately 23
%) was changed to copper chromate, and after drying and pulverizing, 3 to 5% graphite was added and molded into a predetermined shape. Prior to use, the catalyst thus obtained was heated at 180 to 200°C in a hydrogen stream.
It was returned in The composition ratio of each component in this catalyst was Cu:Cr=40:f30.

(2)γ−ブチロラクトンの製造 1.4−ブタンジオール(市販品、1級試薬)を99%
の水素(希釈剤)とともに予熱器で約200℃に予熱後
、それぞれ、第1表に示した供給量で、内径10mmの
ステンレス製の反応器に供給した。この反応器には第1
表に示した各触媒29gを充填しておき、反応は常圧、
ならびに表示した各温度において行なった。ついで、得
られた反応生成物を冷却し、気液分離を行なったのち、
ガスクロマトグラフィにて生成物の組成比(重量%)分
析した。得られた結果を第1表に示した。
(2) Production of γ-butyrolactone 99% 1,4-butanediol (commercial product, first class reagent)
After preheating to about 200° C. with hydrogen (diluent) in a preheater, each sample was fed into a stainless steel reactor with an inner diameter of 10 mm at the feed rates shown in Table 1. This reactor has a first
Filled with 29g of each catalyst shown in the table, the reaction was carried out at normal pressure.
and at the indicated temperatures. Then, after cooling the obtained reaction product and performing gas-liquid separation,
The composition ratio (wt%) of the product was analyzed by gas chromatography. The results obtained are shown in Table 1.

参考例 上記した各触媒の寿命を評価するために、上記実施例と
同様にして1.4−ブタンジオールの脱水素反応を行な
わせしめ、通油量に対する1、4−ブタンジオールの転
化率の推移を調べ、結果を第2表に示した。ただし、反
応は下記条件で行なった。
Reference Example In order to evaluate the life of each of the above catalysts, a dehydrogenation reaction of 1,4-butanediol was carried out in the same manner as in the above example, and the change in the conversion rate of 1,4-butanediol with respect to the amount of oil passed was observed. The results are shown in Table 2. However, the reaction was conducted under the following conditions.

触媒充填量         5.0g反反応度   
       240℃1.4−ブタンジオ−)1H殉
蔽敬25 g / h r水素供給量        
 8.3N!;L/hrWH9V          
  5.Ohr’第2表 [発明の効果] 以上の説明から明らかなように、本発明方法を適用すれ
ば従来法と比べてはるかに高い収率でγ−ブチロラクト
ンを製造することができ、しかも、使用する触媒の寿命
も長いため、とくに、N−メチルピロリドンの製造工程
においてその工業的価値は極めて犬である。
Catalyst loading amount 5.0g Reactivity
240°C 1,4-butanedio-)1H martyrdom 25 g/hr Hydrogen supply amount
8.3N! ;L/hrWH9V
5. Ohr' Table 2 [Effects of the Invention] As is clear from the above explanation, by applying the method of the present invention, γ-butyrolactone can be produced in a much higher yield than the conventional method. Since the life of the catalyst is long, its industrial value is extremely important, especially in the process of producing N-methylpyrrolidone.

Claims (1)

【特許請求の範囲】[Claims] 銅−クロム−マンガン系触媒または銅−クロム−亜鉛系
触媒の存在下で、1,4−ブタンジオールを脱水素する
ことを特徴とするγ−ブチロラクトンの製造方法。
A method for producing γ-butyrolactone, which comprises dehydrogenating 1,4-butanediol in the presence of a copper-chromium-manganese catalyst or a copper-chromium-zinc catalyst.
JP60085438A 1985-04-23 1985-04-23 Productionof gamma-butyrolactone Granted JPS61246173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085438A JPS61246173A (en) 1985-04-23 1985-04-23 Productionof gamma-butyrolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085438A JPS61246173A (en) 1985-04-23 1985-04-23 Productionof gamma-butyrolactone

Publications (2)

Publication Number Publication Date
JPS61246173A true JPS61246173A (en) 1986-11-01
JPH0417954B2 JPH0417954B2 (en) 1992-03-26

Family

ID=13858861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085438A Granted JPS61246173A (en) 1985-04-23 1985-04-23 Productionof gamma-butyrolactone

Country Status (1)

Country Link
JP (1) JPS61246173A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000973A1 (en) * 1990-07-11 1992-01-23 E.I. Du Pont De Nemours And Company Dehydrogenation of diols
EP0584408A2 (en) * 1992-08-25 1994-03-02 Tonen Chemical Corporation Process for the preparation of gamma-butyrolactone
EP0628552A1 (en) * 1993-06-11 1994-12-14 Hüls Aktiengesellschaft Process for the catalytic dehydration of diols
CN1044866C (en) * 1994-05-05 1999-09-01 化学工业部北京化工研究院 Catalyst for preparing gamma-butyrolactone by maleic anhydride gas-phase hydrogenation
CN1045174C (en) * 1994-05-05 1999-09-22 化学工业部北京化工研究院 Catalyst for preparing gamma-butyrolactone from 1,4-butanediol by dehydrogenation
CN1046216C (en) * 1994-06-04 1999-11-10 中国石油化工总公司 Catalyst for preparing 1,4-butanediol and/or gamma-butyrolactone
CN1054843C (en) * 1996-08-12 2000-07-26 中国石油化工总公司 Method for prepn. of N-methyl pyrrolidone
US6323347B2 (en) 2000-01-14 2001-11-27 Dairen Chemical Corporation Catalyst for preparing lactone and a method for preparing lactone
JP2005523148A (en) * 2002-04-22 2005-08-04 エギョン ペトロケミカル カンパニー リミテッド Hydrogenation reaction catalyst, process for producing the same, and process for producing gamma-butyrolactone from maleic anhydride using the catalyst
WO2009082086A1 (en) * 2007-12-21 2009-07-02 Isu Chemical Co., Ltd. Process for preparing of n-methyl pyrrolidone
WO2021045153A1 (en) * 2019-09-06 2021-03-11 昭和電工株式会社 Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583344A (en) * 1944-10-20 1946-12-16 John George Mackay Bremner Process for the production of lactones
JPS4924906A (en) * 1972-06-26 1974-03-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583344A (en) * 1944-10-20 1946-12-16 John George Mackay Bremner Process for the production of lactones
JPS4924906A (en) * 1972-06-26 1974-03-05

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000973A1 (en) * 1990-07-11 1992-01-23 E.I. Du Pont De Nemours And Company Dehydrogenation of diols
EP0584408A2 (en) * 1992-08-25 1994-03-02 Tonen Chemical Corporation Process for the preparation of gamma-butyrolactone
EP0584408A3 (en) * 1992-08-25 1994-06-22 Tonen Sekiyukagaku Kk Process for the preparation of gamma-butyrolactone
EP0628552A1 (en) * 1993-06-11 1994-12-14 Hüls Aktiengesellschaft Process for the catalytic dehydration of diols
CN1044866C (en) * 1994-05-05 1999-09-01 化学工业部北京化工研究院 Catalyst for preparing gamma-butyrolactone by maleic anhydride gas-phase hydrogenation
CN1045174C (en) * 1994-05-05 1999-09-22 化学工业部北京化工研究院 Catalyst for preparing gamma-butyrolactone from 1,4-butanediol by dehydrogenation
CN1046216C (en) * 1994-06-04 1999-11-10 中国石油化工总公司 Catalyst for preparing 1,4-butanediol and/or gamma-butyrolactone
CN1054843C (en) * 1996-08-12 2000-07-26 中国石油化工总公司 Method for prepn. of N-methyl pyrrolidone
US6323347B2 (en) 2000-01-14 2001-11-27 Dairen Chemical Corporation Catalyst for preparing lactone and a method for preparing lactone
JP2005523148A (en) * 2002-04-22 2005-08-04 エギョン ペトロケミカル カンパニー リミテッド Hydrogenation reaction catalyst, process for producing the same, and process for producing gamma-butyrolactone from maleic anhydride using the catalyst
WO2009082086A1 (en) * 2007-12-21 2009-07-02 Isu Chemical Co., Ltd. Process for preparing of n-methyl pyrrolidone
JP2011507830A (en) * 2007-12-21 2011-03-10 イス・ケミカル・カンパニー・リミテッド Method for producing N-methylpyrrolidone
WO2021045153A1 (en) * 2019-09-06 2021-03-11 昭和電工株式会社 Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone

Also Published As

Publication number Publication date
JPH0417954B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
EP2727899B1 (en) High yield production method for 1,3-butadiene
JP5614601B2 (en) A method for producing 1,3-butadiene using a multicomponent bismuth molybdate catalyst.
JPS6118435A (en) Oxidizing catalyst
CN104549338B (en) Molybdenum-containing bismuth-containing composite oxide catalyst as well as preparation method and function thereof
DE3882075T2 (en) Ammoxidation process and catalyst composition therefor.
JPS61246173A (en) Productionof gamma-butyrolactone
JPS6176470A (en) Manufacture of maleic anhydride
JP2841324B2 (en) Method for producing methacrolein
JPS5850775B2 (en) Production method of copper-iron-aluminum catalyst
EP0323129B1 (en) Process for preparing iron-antimony-phosphorus-containing catalyst for fluidized bed process
US4382880A (en) Preparation of molybdenum/tungsten mixed oxide catalysts
DE69311157T2 (en) Ammoxidation process of saturated hydrocarbons
US2077422A (en) Process for hydrogenating furfural
JP6672556B2 (en) Method for producing butadiene with excellent catalyst reproducibility
US4000176A (en) Process for simultaneously producing methacrylo-nitrile and butadiene by vapor-phase catalytic oxidation of mixed butenes
DE2000425C3 (en)
DE2000425A1 (en) Process for the oxidation of olefins
JPS59204163A (en) Production of unsaturated nitrile
DE2264529C3 (en) Process for the production of butadiene by the oxidative dehydrogenation of butenes
JP3261621B2 (en) Methyl formate production catalyst
DE1964786A1 (en) Ammoxidation of saturated hydrocarbons
JPH03157356A (en) Ammoxidation of paraffin
JPS59190984A (en) Production of furfuryl alcohol
JPH02104536A (en) Production of cyclohexenes and hydrogenation catalyst therefor
DE2243012C3 (en) Catalyst containing antimony, iron, cobalt and its use for the synthesis of unsaturated nitriles