WO2021045153A1 - Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone - Google Patents

Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone Download PDF

Info

Publication number
WO2021045153A1
WO2021045153A1 PCT/JP2020/033432 JP2020033432W WO2021045153A1 WO 2021045153 A1 WO2021045153 A1 WO 2021045153A1 JP 2020033432 W JP2020033432 W JP 2020033432W WO 2021045153 A1 WO2021045153 A1 WO 2021045153A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
butyrolactone
mol
gamma
producing
Prior art date
Application number
PCT/JP2020/033432
Other languages
French (fr)
Japanese (ja)
Inventor
勇輝 奈村
塚本 真也
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021544025A priority Critical patent/JPWO2021045153A1/ja
Publication of WO2021045153A1 publication Critical patent/WO2021045153A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing gamma-butyrolactone and a method for producing N-methylpyrrolidone.
  • the present application claims priority based on Japanese Patent Application No. 2019-162951 filed in Japan on September 6, 2019, the contents of which are incorporated herein by reference.
  • LIB batteries lithium-ion secondary batteries
  • NMP N-methylpyrrolidone
  • GBL gamma-butyrolactone
  • Patent Document 1 1,4-butanediol (1,4-BDO) is brought into contact with a catalyst represented by Cu-ZnO-Al 2 O 3- ZrO 2 in the gas phase to cause a dehydrogenation reaction.
  • a catalyst represented by Cu-ZnO-Al 2 O 3- ZrO 2 in the gas phase to cause a dehydrogenation reaction.
  • Patent Document 2 describes that a catalyst containing a platinum and a bismuth compound is used in a method for producing ⁇ -butyrolactone by oxidative dehydrogenation of 1,4-butanediol in the presence of molecular oxygen.
  • gamma butyrolactone there is a method of hydrogenating a dicarboxylic acid diester with hydrogen in a gas phase in the presence of a carrier catalyst supporting a copper metal and a silver metal.
  • 1,4-butanediol used as a raw material for gamma-butyrolactone is generally obtained by a reaction for producing a mixture of 2-hydroxytetrahydrofuran (2HTHF) and 4-hydroxybutyraldehyde (4-HBA) from allyl alcohol. It is produced using two reactions, the reaction of reducing the resulting mixture. Therefore, when gamma-butyrolactone is produced using 1,4-butanediol as a raw material, there is a problem that it takes time and effort to produce the raw material.
  • 2HTHF 2-hydroxytetrahydrofuran
  • 4-HBA 4-hydroxybutyraldehyde
  • the present inventors have diligently studied to solve the above problems. As a result, a raw material composed of 2-hydroxytetrahydrofuran and / or 4-hydroxybutyraldehyde and a specific catalyst are brought into contact with each other at a reaction temperature of more than 200 ° C. to produce gamma-butyrolactone, thereby efficiently producing gamma-butyrolactone. Found that it can be manufactured. That is, the first aspect of the present invention is the following method for producing gamma-butyrolactone.
  • a method for producing gamma-butyrolactone which comprises a reaction step of producing gamma-butyrolactone by contacting them at a reaction temperature of more than 200 ° C.
  • the method for producing gamma-butyrolactone according to the first aspect of the present invention can preferably include the following characteristics as described below. The following features may preferably be a combination of two or more.
  • [3] The method for producing gamma-butyrolactone according to [1] or [2], wherein in the reaction step, the raw material is vaporized and the catalyst is brought into contact with the catalyst at a gas space velocity (GHSV) of 20000 to 300,000 hr-1.
  • GHSV gas space velocity
  • [4] The method for producing gamma-butyrolactone according to any one of [1] to [3], wherein in the reaction step, the raw material and the catalyst are brought into contact with each other at a reaction temperature of 400 ° C. or lower.
  • [5] The method for producing gamma-butyrolactone according to any one of [1] to [4], wherein the catalyst contains zinc, zirconium, and aluminum oxides, and metallic copper.
  • [6] The method for producing gamma-butyrolactone according to any one of [1] to [5], wherein the catalyst further contains an oxide of chromium.
  • the catalyst contains 0.01 to 0.2 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper.
  • the catalyst contains 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum, and 0.01 to 0.3 mol of chromium with respect to 1 mol of copper.
  • the method for producing gamma butyrolactone according to any one of [6] to [11] which comprises.
  • the second aspect of the present invention is the following method for producing N-methylpyrrolidone.
  • a third aspect of the present invention is the following catalyst.
  • a catalyst for producing gamma-butyrolactone which comprises an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum, and copper.
  • the catalyst of the third aspect of the present invention can preferably include the following features, as described below.
  • the following features may preferably be a combination of two or more.
  • the catalyst according to [15] which is used in the production of producing gamma-butyrolactone from a raw material consisting of one or both of 2-hydroxytetrahydrofuran and 4-hydroxybutyraldehyde.
  • a raw material consisting of 2-hydroxytetrahydrofuran and / or 4-hydroxybutyraldehyde is used.
  • This raw material can be easily produced using only one reaction of hydroformylating allyl alcohol, has good reactivity, and oxidizes at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
  • Gamma butyrolactone is rapidly produced by contacting a catalyst containing a substance and copper at a reaction temperature of more than 200 ° C. Therefore, the method for producing gamma-butyrolactone of the present invention is excellent in productivity.
  • gamma-butyrolactone is produced using the method for producing gamma-butyrolactone of the present invention, so that N-methylpyrrolidone can be efficiently produced.
  • the method for producing gamma-butyrolactone of the present embodiment is from 2-hydroxytetrahydrofuran (2HTHF) represented by the following formula (1) and / or 4-hydroxybutyraldehyde (4-HBA) represented by the following formula (2). It has a reaction step of producing gamma-butyrolactone (GBL) represented by the following formula (3) by contacting the raw material to be described below with a catalyst described later at a reaction temperature of more than 200 ° C.
  • 2HTHF 2-hydroxytetrahydrofuran
  • 4-HBA 4-hydroxybutyraldehyde
  • 2HTHF and 4-HBA are in equilibrium in solution.
  • 2HTHF and / or 4-HBA may be referred to as "2HTHF and the like" below. Since 4-HBA is an unstable compound, it is unlikely to be used as a raw material (starting material) when producing gamma-butyrolactone or the like.
  • the 2HTHF or the like used as a raw material in the production method of the present embodiment a commercially available product may be used, or a product produced by hydration reaction of 2,3-dihydrofuran may be used, as shown below. Those produced by performing a raw material production step may be used.
  • the raw material such as 2HTHH can be easily produced by using only one reaction by performing the following raw material production step before the reaction step.
  • the ratio of 2HTHF to 4-HBA in 2HTHF and the like used as a raw material is not particularly limited. Due to the equilibrium relationship, 2HTHF may be the majority.
  • the ratio may be 0.01 to 50, 0.1 to 20, 0.5 to 5, or the like.
  • a raw material production step In the present embodiment, it is preferable to carry out the raw material production step before the reaction step.
  • a raw material (2HTHH, etc.) is produced by hydroformylating allyl alcohol (AAL) using a mixed gas of carbon monoxide and hydrogen (H 2).
  • AAL allyl alcohol
  • H 2 a mixed gas of carbon monoxide and hydrogen
  • the hydroformylation reaction of allyl alcohol is preferably carried out in the presence of a catalyst.
  • allyl alcohol and a catalyst and / or solvent used as needed are placed in a reaction vessel, and a mixed gas of carbon monoxide (CO) and hydrogen (H 2) is placed in the reaction vessel.
  • CO carbon monoxide
  • H 2 hydrogen
  • AAL hydroformylating allyl alcohol
  • the reaction vessel for example, a stainless steel pressure resistant reaction vessel can be used as the reaction vessel.
  • the mixed gas of carbon monoxide and hydrogen it is preferable to use a gas in which the molar ratio of hydrogen to carbon monoxide is in the range of 0.1 to 10, and more preferably in the range of 0.5 to 5. Yes, more preferably in the range of 0.8-2.
  • the molar ratio of hydrogen to carbon monoxide is in the range of 0.1 to 10
  • the hydroformylation reaction is promoted, and 2HTHF and the like can be produced in a higher yield.
  • the organophosphorus compound ligand is a bidentate diphosphine ligand.
  • the bidentate diphosphine ligand include trans-4,5-bis (diphenylphosphinomethyl) -2,2-dimethyl-1,3-dioxolane (DIOP).
  • DIOP trans-4,5-bis (diphenylphosphinomethyl) -2,2-dimethyl-1,3-dioxolane
  • aromatic hydrocarbons saturated hydrocarbons, ethers, esters and the like can be preferably used.
  • aromatic hydrocarbon it is particularly preferable to use an aromatic hydrocarbon, and specifically, toluene is preferably used.
  • the hydroformylation reaction of allyl alcohol is preferably carried out at an absolute pressure of 0.1 to 10 MPa, more preferably 0, in order to promote the hydroformylation reaction and produce 2HTHH and the like in a higher yield. It is .5 to 8 MPa, more preferably 1 to 4 MPa.
  • the hydroformylation reaction of allyl alcohol is preferably carried out at a reaction temperature of 0 to 150 ° C., more preferably 20 to 100 ° C. in order to promote the hydroformylation reaction and produce 2HTHH and the like in a higher yield. Yes, more preferably 40-80 ° C.
  • the reaction time of the hydroformylation reaction of allyl alcohol is preferably 0.5 to 10 hours, more preferably 1 to 7 hours, still more preferably 3 to 5 hours.
  • 2HTHF and the like produced by the hydroformylation reaction of allyl alcohol are preferably used as a raw material in the reaction step after being extracted with water or purified by distillation.
  • reaction process the raw material (2HTHF or the like) produced in the raw material production step and the catalyst are brought into contact with each other at a reaction temperature of more than 200 ° C. to carry out a dehydrogenation reaction of 2HTHF or the like, and gamma-butyrolactone (2HTHF or the like) GBL) is generated.
  • a reaction device used in the reaction step for example, a fixed bed type gas phase reaction device can be used.
  • catalyst As the catalyst to be brought into contact with the raw material in the reaction step, a catalyst containing an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum and copper is used. Copper is essential, but one or two of zinc oxides, zirconium oxides, and aluminum oxides may not be contained in the catalyst. However, it is preferable to include all of the above oxides.
  • the catalyst include a catalyst containing zinc oxide and metallic copper (CuZnOx); a catalyst containing zirconium oxide and metallic copper (CuZrOx); a catalyst containing aluminum oxide and metallic copper (CuAlOx); Zinc and aluminum oxides and catalysts containing metallic copper (CuZnAlOx); Zirconium and aluminum oxides and catalysts containing metallic copper (CuZrAlOx); Zinc and zirconium oxides and catalysts containing metallic copper (CuZnZrOx); examples thereof include oxides of zinc, zirconium and aluminum, and a catalyst containing metallic copper (CuZnZrAlOx).
  • X in the above equation may be a number arbitrarily selected, but for example, x may be 0.01 to 18.5, 0.01 to 10.0, or 0. It may be 0.03 to 6.0, or 0.05 to 2.0.
  • a catalyst containing zinc, zirconium and aluminum oxides, and metallic copper since the reaction for producing gamma-butyrolactone can be further promoted, it is preferable to use a catalyst containing zinc, zirconium and aluminum oxides, and metallic copper.
  • the catalyst may consist only of copper, at least one selected from the group consisting of zinc, zirconium and aluminum, and oxygen.
  • the reaction for producing gamma-butyrolactone can be further accelerated.
  • the amount of the oxide or metallic copper can be arbitrarily selected.
  • the content of each metal in the catalyst is preferably 1 mol or less of zinc, 5 mol or less of zirconium, and 5 mol or less of aluminum with respect to 1 mol of copper.
  • the lower limit of each of zinc, zirconium, and aluminum may be 0 mol.
  • the content of each metal in the catalyst is more preferably 0.01 to 0.1 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper.
  • zinc is 0.01 to 0.05 mol
  • zirconium is 0.05 to 0.2 mol
  • aluminum is 0.1 to 1 mol with respect to 1 mol of copper.
  • the amount of zinc in the catalyst is preferably 1.0 mol or less, more preferably 0.005 to 0.3 mol, and 0.01 to 0.2 mol with respect to 1 mol of copper. Is even more preferable, 0.01 to 0.1 mol is more preferable, and 0.01 to 0.05 mol is particularly preferable.
  • the amount of zirconium in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 1 mol, and further preferably 0.05 to 0.4 mol with respect to 1 mol of copper.
  • the amount of aluminum in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 3.0 mol, and 0.05 to 1.0 mol with respect to 1 mol of copper. Is even more preferable, 0.1 to 0.8 mol is more preferable, and 0.2 to 0.6 mol is particularly preferable.
  • the content of each metal in the catalyst can be arbitrarily selected and is not limited to the above range.
  • the catalyst in contact with the raw material may further contain other metal oxides in addition to the oxide and copper of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
  • a chromium oxide is preferable.
  • specific examples of the catalyst include zinc and chromium oxides, and a catalyst containing metallic copper (CuZnCrOx); zirconium and chromium oxides, and Catalysts containing metallic copper (CuZrCrOx); oxides of aluminum and chromium, and catalysts containing metallic copper (CuAlCrOx); oxides of zinc, zirconium and chromium, and catalysts containing metallic copper (CuZnZrCrOx); zinc, aluminum And chrome oxides, and catalysts containing metallic copper (CuZnAlCrOx); zirconium, aluminum and chromium oxides, and catalysts containing metallic copper (CuZnAlCrOx); zirconium, aluminum and chromium oxides,
  • X in the above equation may be a number arbitrarily selected, but for example, x may be 0.025 to 13.5, 0.045 to 10.5, or 0. It may be .065 to 6.5, or 0.085 to 2.25.
  • the catalyst preferably comprises only copper, at least one selected from the group consisting of zinc, zirconium, and aluminum, chromium, and oxygen.
  • the catalyst contains oxides of zinc, zirconium and aluminum, and metallic copper, and also oxides of chromium, activation of the reaction can be expected by lowering the active barrier of the dehydrogenation reaction. Therefore, it is more preferable as a catalyst to be used. Since the reaction for producing gamma butyrolactone can be further promoted, the content of each metal in the catalyst is 1 mol or less of zinc, 2 mol or less of zirconium, 5 mol or less of aluminum, and 0.5 mol of chromium with respect to 1 mol of copper. The following is preferable.
  • each metal in the catalyst is 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum, and 0.01 to 0 mol of chromium with respect to 1 mol of copper. It is more preferably 3 mol, more preferably 0.05 to 0.2 mol of zinc, 0.05 to 0.3 mol of zirconium, 0.1 to 1 mol of aluminum and 0. It is 05 to 0.2 mol.
  • the amount of zinc in the catalyst is preferably 1.0 mol or less, more preferably 0.005 to 0.3 mol, and 0.01 to 0.2 mol with respect to 1 mol of copper.
  • the amount of zirconium in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 1 mol, and further preferably 0.05 to 0.4 mol with respect to 1 mol of copper. It is more preferably 0.05 to 0.3 mol, and particularly preferably 0.10 to 0.2 mol.
  • the amount of aluminum in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 3.0 mol, and 0.05 to 1.0 mol with respect to 1 mol of copper. Is even more preferable, 0.1 to 0.8 mol is more preferable, and 0.2 to 0.6 mol is particularly preferable.
  • the amount of chromium in the catalyst is preferably 0.5 mol or less, more preferably 0.01 to 0.4 mol, and 0.03 to 0.3 mol with respect to 1 mol of copper. It is more preferably 0.05 to 0.2 mol, more preferably 0.07 to 0.15 mol.
  • the content of each metal in the catalyst can be arbitrarily selected and is not limited to the above range. Selectivity by suppressing the production of 1,4-butanediol caused by reduction of 2HTHH and the side reaction that causes 1,4-butanediol and other impurities by containing an oxide of chromium in the catalyst. The effect of improvement can be expected.
  • the method for producing the catalyst is not particularly limited and may be arbitrarily selected.
  • a coprecipitation method, a hydrothermal method, a sol-gel method and the like can be used, and the coprecipitation method is particularly preferable.
  • the catalyst can be prepared by the following procedure.
  • a metal precursor of the type and amount corresponding to the composition of the target catalyst is dissolved in water to prepare an aqueous precursor solution.
  • the metal include copper, zinc, zirconium, aluminum, chromium and the like.
  • the basic aqueous solution is added dropwise to the precursor aqueous solution while stirring the precursor aqueous solution to form a precipitate.
  • the precipitate is collected by filtration, washed with water, and dried.
  • the dried precipitate is calcined to form an oxide, and then hydrogen reduction, specifically, hydrogen reduction of the obtained copper oxide is performed.
  • Oxides of zinc, zirconium, aluminum, and chromium are difficult to reduce with hydrogen, so copper oxide is mainly reduced to metallic copper.
  • a catalyst is obtained by the above steps.
  • nitrate, acetate, carbonate, oxalate and the like can be used, and among them, nitrate is preferable.
  • the basic aqueous solution an aqueous ammonia solution and / or an aqueous alkali hydroxide solution can be preferably used.
  • an alkaline hydroxide aqueous solution as the basic aqueous solution.
  • Specific examples of the alkaline hydroxide aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and the like, and it is preferable to use sodium hydroxide.
  • the pH at the end of the dropping is preferably 5 to 10, and the pH is 6 to 8. Is more preferable.
  • the pH at the end of the dropping is within the above range, all the metals contained in the precursor aqueous solution can be made into a precipitate.
  • the precipitate may be formed by dropping the precursor aqueous solution onto the basic aqueous solution while stirring the basic aqueous solution.
  • the drying temperature for drying the precipitate is preferably 40 to 200 ° C, more preferably 60 to 100 ° C.
  • the drying time is preferably 3 to 48 hours, more preferably 12 to 24 hours.
  • the drying of the precipitate is preferably carried out by putting the precipitate in a container and setting the pressure in the container to 1 to 101.3 kPa, and more preferably to set the pressure in the container to 3 to 10 kPa.
  • the firing temperature when firing the dried precipitate in air is preferably 200 to 700 ° C, more preferably 300 to 600 ° C, and even more preferably 400 to 500 ° C.
  • the firing time is preferably 1 to 10 hours, more preferably 2 to 7 hours, still more preferably 4 to 6 hours.
  • the temperature at which the oxide obtained after calcination is hydrogen-reduced is preferably 100 to 500 ° C, more preferably 150 ° C to 450 ° C, still more preferably 200 to 400 ° C, and particularly preferably 250 to 300 ° C.
  • the time for hydrogen reduction is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and even more preferably 1 to 3 hours.
  • a mixed gas of hydrogen gas and nitrogen gas can be used as the hydrogen supply gas.
  • the hydrogen gas content contained in the hydrogen supply gas is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 90 to 100 mol%.
  • the composition of the metal component of the catalyst thus obtained can be calculated, for example, by the method shown below.
  • the mass of the precursor of each metal used as the raw material of the catalyst is measured.
  • Inductively coupled plasma (ICP) measurement is also performed on the filtrate produced by filtration to determine the content of each metal contained in the filtrate. Then, the composition of the catalyst is calculated using the mass of the precursor of each metal used as a raw material and the content of each metal contained in the filtrate.
  • ICP inductively coupled plasma
  • reaction process for producing gamma-butyrolactone In the reaction step, it is preferable to vaporize the aqueous solution of the raw material to bring the raw material into contact with the above catalyst.
  • the aqueous solution of the raw material it is preferable to use an aqueous solution containing 1 to 30% by mass of the raw material, more preferably 5 to 25% by mass, and further preferably 10 to 20% by mass.
  • the liquid space velocity (LHSV) converted to the raw material is preferably 1.6 hr -1 or less in order to maintain the yield of gamma-butyrolactone. It is more preferably 0.4 hr -1 or less.
  • the lower limit of the liquid space velocity (LHSV) can be selected as needed, and may be, for example, 0.1 hr -1 or more, but is not limited thereto.
  • the raw material is vaporized, it is preferred to contact with a gas space velocity (GHSV) 20000 ⁇ 300000hr -1 the catalyst, more preferably from 30000 ⁇ 200000hr -1, more preferably 40000 ⁇ 100000hr - It is 1.
  • GHSV gas space velocity
  • the catalyst more preferably from 30000 ⁇ 200000hr -1, more preferably 40000 ⁇ 100000hr - It is 1.
  • the contact time (W / F) between the raw material and the catalyst can be arbitrarily selected, but is preferably 0.05 hr ⁇ g / mL or more, more preferably 0.1 hr ⁇ g / mL or more. More preferably, it is 0.4 hr ⁇ g / mL or more.
  • the upper limit of the contact time (W / F) can be selected as needed, and may be, for example, 3.2 hr ⁇ g / mL or less, but is not limited thereto.
  • W represents the weight of the catalyst
  • F represents the raw material supply rate.
  • the raw material and the catalyst are brought into contact with each other at a reaction temperature of over 200 ° C. to produce gamma-butyrolactone.
  • a reaction temperature of over 200 ° C.
  • 2HTHF and the like in the reaction are present in the gas phase, the reaction for producing gamma-butyrolactone is promoted, and gamma-butyrolactone can be produced in a higher yield.
  • the reaction temperature is preferably 400 ° C. or lower because the safety of the reaction produced by gamma-butyrolactone is further increased.
  • the reaction temperature is more preferably 210 to 370 ° C, further preferably 230 to 360 ° C, and particularly preferably 260 to 350 ° C.
  • the gamma-butyrolactone obtained in the reaction step may be purified by a general method such as vacuum distillation.
  • the gamma-butyrolactone obtained in the reaction step can be preferably used as a raw material for N-methylpyrrolidone.
  • a raw material made of 2HTHH or the like and a catalyst containing an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum and copper are used at more than 200 ° C. It has a reaction step of producing gamma butyrolactone by contacting at the reaction temperature of. 2HTHF and the like have good reactivity, and gamma-butyrolactone is rapidly produced by contacting the catalyst at a reaction temperature of more than 200 ° C.
  • the method for producing N-methylpyrrolidone (NMP) of the present embodiment includes a step of producing gamma-butyrolactone using the method for producing gamma-butyrolactone of the present embodiment and a step of reacting the produced gamma-butyrolactone with monomethylamine.
  • the step of reacting gamma-butyrolactone and monomethylamine can be, for example, a step of producing N-methylpyrrolidone by putting gamma-butyrolactone, monomethylamine and a solvent in a reaction vessel and causing a liquid phase reaction.
  • a stainless steel reaction vessel can be preferably used as the reaction vessel.
  • the solvent alcohols or water can be used, and water is preferable.
  • the molar ratio of monomethylamine to gamma-butyrolactone used as a raw material is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and even more preferably in the range of 1 to 1.5.
  • the reaction between gamma-butyrolactone and monomethylamine may be carried out in the air, in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon atmosphere, and preferably in a nitrogen gas atmosphere.
  • the reaction between gamma-butyrolactone and monomethylamine is preferably carried out at a temperature of 100 to 400 ° C, more preferably 150 to 350 ° C, still more preferably 200 to 300 ° C.
  • the reaction time is preferably 0.1 to 10 hours, more preferably 0.5 to 7 hours, still more preferably 1 to 5 hours.
  • N-methylpyrrolidone obtained in the step of reacting gamma-butyrolactone and monomethylamine may be purified by a general method such as vacuum distillation.
  • N-methylpyrrolidone of the present embodiment gamma-butyrolactone is produced by using the method for producing gamma-butyrolactone of the present embodiment. Therefore, N-methylpyrrolidone can be efficiently produced.
  • catalyst (a) CuZnZrAlOx catalyst (1) Copper nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.03 g, zinc nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.622 g, aluminum nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as metal precursors in the beaker 3.56 g and 0.836 g of zinc nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added and dissolved in 100 g of water to prepare an aqueous precursor solution.
  • a 3N sodium hydroxide aqueous solution was added dropwise to the precursor aqueous solution until the pH reached 5, and a precipitate was obtained by the coprecipitation method.
  • the precipitate was collected by filtration and washed with water.
  • the water-washed precipitate was placed in a container and dried under reduced pressure at a pressure of 6.3 kPa in an air atmosphere at a temperature of 80 ° C.
  • the dried precipitate was placed in an electric furnace and calcined in air at 500 ° C. for 3 hours to obtain an oxide.
  • 0.2 g of the obtained oxide was filled in a cylindrical reaction vessel (reaction vessel of a fixed-bed vapor phase reactor) having a diameter of 4.5 mm and a height of 10 mm.
  • hydrogen gas at 300 ° C. is circulated in the reaction vessel filled with oxide at a flow rate of 30 mL / min for 1 hour to reduce copper oxide by hydrogen. went.
  • the catalyst layer of the prepared catalyst (a) was set in the reaction apparatus.
  • composition of the obtained catalyst was calculated by the above-mentioned method using the mass of the precursor of each metal used as a raw material and the content of each metal contained in the filtrate obtained after filtration.
  • a catalyst (b) of 0: 1.5: 4.5) was prepared.
  • the catalyst (e) was prepared.
  • CuZnZrAlOx catalyst (4)
  • the catalyst (f) was prepared.
  • the dried precipitate was placed in an electric furnace and calcined in air at 500 ° C. for 3 hours to obtain an oxide.
  • 0.2 g of the obtained oxide was filled in a cylindrical reaction vessel (reaction vessel of a fixed-bed vapor phase reactor) having a diameter of 4.5 mm and a height of 10 mm.
  • hydrogen gas at 300 ° C. is circulated in the reaction vessel filled with oxide at a flow rate of 30 mL / min for 1 hour to reduce copper oxide by hydrogen. went.
  • the catalyst layer of the prepared catalyst (g) was set in the reaction apparatus.
  • composition of the obtained catalyst was calculated by the above-mentioned method using the mass of the precursor of each metal used as a raw material and the content of each metal contained in the filtrate obtained after filtration.
  • the catalyst (h) which is 2.0) was prepared.
  • the reaction solution obtained after the reaction was extracted with 30 g of water to obtain the desired 2HTHF or the like as an aqueous solution.
  • the obtained aqueous solution containing 2HTHH and the like was analyzed by liquid chromatography to determine the conversion rate of allyl alcohol (AAL) and the yield of 2HTHF and the like.
  • AAL allyl alcohol
  • the yield of 2HTHF and the like is based on the total number of moles of 2HTHF and 4-HBA. From this, 2HTHF and the like can be easily produced with a high conversion rate and yield by using only one reaction of hydroformylating allyl alcohol using a mixed gas of carbon monoxide and hydrogen gas. It could be confirmed.
  • reaction step Production of gamma-butyrolactone (GBL)
  • GBL gamma-butyrolactone
  • a reaction solution is provided with a vaporizer at the top of the reaction vessel, a carrier gas inlet and a raw material inlet at the top of the vaporizer, and a gas outlet at the bottom of the reaction vessel.
  • the one provided with a collection container (cooling) was used.
  • Examples 1 to 7, Comparative Example 1 In Examples 1 to 7 and Comparative Example 1, the catalyst (a) was used. Using a fixed-bed gas phase reactor in which the catalyst layer obtained in (1) above is set in the reaction vessel, a vaporizer contains an aqueous solution containing 2HTHF and the like produced in (2) above at the concentrations shown in Table 1. From the upper part of the reaction vessel, the gas was supplied together with nitrogen gas as a carrier gas under the conditions shown in Table 1 and brought into contact with the catalyst (a) under the conditions shown in Table 1 to produce gamma butyrolactone. ..
  • Comparative Example 2 The catalyst (a) was also used in Comparative Example 2.
  • An aqueous solution of 1,4-butanediol (1,4-BDO) having a concentration shown in Table 1 was used in a fixed-bed gas phase reactor in which the catalyst layer obtained in (1) above was set in the reaction vessel. Is vaporized by a vaporizer and supplied from the upper part of the reaction vessel together with nitrogen gas as a carrier gas under the conditions shown in Table 1 and brought into contact with the catalyst (a) under the conditions shown in Table 1 to obtain gamma butyrolactone. It was generated.
  • Example 8 to 14 The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 2 were used. The results are shown in Table 2.
  • Example 3 (Examples 15 to 19, Comparative Example 3) The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 3 were used. The results are shown in Table 3. (Comparative Example 4) The reaction was carried out in the same manner as in Comparative Example 2 except that the catalysts and reaction conditions shown in Table 3 were used. The results are shown in Table 3.
  • Example 20 to 23 The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 4 were used.
  • the amount (flow rate) of the aqueous solution such as 2HTHH and the flow rate of the nitrogen gas are changed, these ratios are fixed, and the contact time (W / F) between the raw material and the catalyst is changed. did.
  • the results are shown in Table 4.
  • Examples 24-26 The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 4 were used.
  • Example 24 to 26 the concentration of 2HTHF and the like in an aqueous solution of 2HTHF and the like was set to 50% by mass, and the contact time (W / F) between the raw material and the catalyst was changed. The results are shown in Table 4.
  • hydrogen gas at 200 ° C. was circulated at a flow rate of 30 mL / min for 1 hour to reduce copper oxide with hydrogen.
  • NMP N-Methylpyrrolidone
  • GBL gamma-butyrolactone
  • Fujifilm sum 40% monomethylamine aqueous solution
  • the obtained reaction solution containing N-methylpyrrolidone was analyzed by liquid chromatography to determine the conversion rate of gamma-butyrolactone (GBL) and the yield of N-methylpyrrolidone.
  • the conversion rate of GBL was 98.4%
  • the yield of NMP was 97.9%. From this, it was confirmed that N-methylpyrrolidone can be efficiently produced by using the gamma-butyrolactone (GBL) obtained in Example 4.
  • the present invention provides a method for producing gamma-butyrolactone having good productivity.
  • the method for producing gamma-butyrolactone of the present invention has good productivity and is therefore suitable as an industrial method for producing gamma-butyrolactone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a method for producing gamma-butyrolactone, said method including a reaction step in which a raw material composed of one or both of 2-hydroxytetrahydrofuran and 4-hydroxybutyraldehyde and a catalyst containing copper and an oxide of at least one metal element selected from the group consisting of zinc, zirconium, and aluminum are brought into contact with each other at a reaction temperature higher than 200°C to generate gamma-butyrolactone.

Description

ガンマブチロラクトンの製造方法およびN-メチルピロリドンの製造方法Method for producing gamma-butyrolactone and method for producing N-methylpyrrolidone
 本発明は、ガンマブチロラクトンの製造方法およびN-メチルピロリドンの製造方法に関する。
 本願は、2019年9月6日に、日本に出願された特願2019-162951号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing gamma-butyrolactone and a method for producing N-methylpyrrolidone.
The present application claims priority based on Japanese Patent Application No. 2019-162951 filed in Japan on September 6, 2019, the contents of which are incorporated herein by reference.
 近年、リチウムイオン二次電池(LIB電池)の使用が増加傾向にある。これに伴って、LIB電池において、バインダーの溶媒として用いられるN-メチルピロリドン(NMP)の需要が増加している。そのため、NMPの原料として用いられるガンマブチロラクトン(GBL)を低コストで効率よく製造することが望まれている。 In recent years, the use of lithium-ion secondary batteries (LIB batteries) has been on the rise. Along with this, the demand for N-methylpyrrolidone (NMP) used as a binder solvent in LIB batteries is increasing. Therefore, it is desired to efficiently produce gamma-butyrolactone (GBL) used as a raw material for NMP at low cost.
 従来、ガンマブチロラクトンの製造方法として、1,4-ブタンジオール(1,4-BDO)の脱水素化反応を用いる方法が工業的に広く用いられている。1,4-ブタンジオールの脱水素化反応によりガンマブチロラクトンを製造する方法として、特許文献1または特許文献2に記載の方法がある。 Conventionally, as a method for producing gamma-butyrolactone, a method using a dehydrogenation reaction of 1,4-butanediol (1,4-BDO) has been widely used industrially. As a method for producing gamma-butyrolactone by a dehydrogenation reaction of 1,4-butanediol, there is a method described in Patent Document 1 or Patent Document 2.
 特許文献1には、Cu-ZnO-Al-ZrOで表される触媒に、1,4-ブタンジオール(1,4-BDO)を気相で接触させ、脱水素反応するラクトンの製造方法が記載されている。
 特許文献2には、分子状酸素の存在下、1,4-ブタンジオールの酸化脱水素によりγ―ブチロラクトンを製造する方法において、白金およびビスマス化合物を含む触媒を用いることが記載されている。
In Patent Document 1, 1,4-butanediol (1,4-BDO) is brought into contact with a catalyst represented by Cu-ZnO-Al 2 O 3- ZrO 2 in the gas phase to cause a dehydrogenation reaction. The manufacturing method is described.
Patent Document 2 describes that a catalyst containing a platinum and a bismuth compound is used in a method for producing γ-butyrolactone by oxidative dehydrogenation of 1,4-butanediol in the presence of molecular oxygen.
 また、ガンマブチロラクトンを製造する他の方法として、ジカルボン酸ジエステルを、銅金属および銀金属が担持された担体触媒の存在下で、水素により気相で水素化反応させる方法がある。 Further, as another method for producing gamma butyrolactone, there is a method of hydrogenating a dicarboxylic acid diester with hydrogen in a gas phase in the presence of a carrier catalyst supporting a copper metal and a silver metal.
特開2002-371075号公報Japanese Unexamined Patent Publication No. 2002-371075 特開平5-286959号公報Japanese Unexamined Patent Publication No. 5-286959
 しかしながら、従来のガンマブチロラクトンの製造方法では、生産性を向上させることが要求されていた。特に、1,4-ブタンジオールの脱水素化反応を用いてガンマブチロラクトンを製造する場合、1,4-ブタンジオールの反応性が低いため、十分にガンマブチロラクトンを生成させるためには、長時間反応させる必要があった。このため、生産性が不十分であった。 However, in the conventional method for producing gamma-butyrolactone, it has been required to improve the productivity. In particular, when gamma-butanediol is produced using the dehydrogenation reaction of 1,4-butanediol, the reactivity of 1,4-butanediol is low, so that a long-term reaction is required to sufficiently produce gamma-butanediol. I needed to let you. Therefore, the productivity was insufficient.
 また、ガンマブチロラクトンの原料として使用する1,4-ブタンジオールは、一般に、アリルアルコールから2-ヒドロキシテトラヒドロフラン(2HTHF)と4-ヒドロキシブチルアルデヒド(4-HBA)との混合物を生成させる反応と、得られた混合物を還元する反応の2つの反応を用いて製造されている。このため、原料として1,4-ブタンジオールを用いてガンマブチロラクトンを製造する場合、原料の製造に手間がかかることが問題となっていた。 In addition, 1,4-butanediol used as a raw material for gamma-butyrolactone is generally obtained by a reaction for producing a mixture of 2-hydroxytetrahydrofuran (2HTHF) and 4-hydroxybutyraldehyde (4-HBA) from allyl alcohol. It is produced using two reactions, the reaction of reducing the resulting mixture. Therefore, when gamma-butyrolactone is produced using 1,4-butanediol as a raw material, there is a problem that it takes time and effort to produce the raw material.
 本発明は、上記事情を鑑みてなされたものであり、生産性の良好なガンマブチロラクトンの製造方法を提供することを目的とする。
 また、本発明は、本発明のガンマブチロラクトンの製造方法を用いて製造したガンマブチロラクトンを用いて、効率よくN-メチルピロリドンを製造するN-メチルピロリドンの製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing gamma-butyrolactone having good productivity.
Another object of the present invention is to provide a method for producing N-methylpyrrolidone, which efficiently produces N-methylpyrrolidone using gamma-butyrolactone produced by using the method for producing gamma-butyrolactone of the present invention.
 本発明者らは、上記課題を解決すべく鋭意研究した。
 その結果、2-ヒドロキシテトラヒドロフランおよび/または4-ヒドロキシブチルアルデヒドからなる原料物質と特定の触媒とを、200℃超の反応温度で接触させて、ガンマブチロラクトンを生成することにより、効率よくガンマブチロラクトンを製造できることを見出した。
 すなわち、本発明の第一の態様は、以下のガンマブチロラクトンの製造方法である。
The present inventors have diligently studied to solve the above problems.
As a result, a raw material composed of 2-hydroxytetrahydrofuran and / or 4-hydroxybutyraldehyde and a specific catalyst are brought into contact with each other at a reaction temperature of more than 200 ° C. to produce gamma-butyrolactone, thereby efficiently producing gamma-butyrolactone. Found that it can be manufactured.
That is, the first aspect of the present invention is the following method for producing gamma-butyrolactone.
[1] 2-ヒドロキシテトラヒドロフランおよび4-ヒドロキシブチルアルデヒドの一方又は両方からなる原料物質と、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅とを含む触媒とを、200℃超の反応温度で接触させて、ガンマブチロラクトンを生成する反応工程を有することを特徴とする、ガンマブチロラクトンの製造方法。 [1] A catalyst containing a raw material composed of one or both of 2-hydroxytetrahydrofuran and 4-hydroxybutyraldehyde, an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum, and copper. A method for producing gamma-butyrolactone, which comprises a reaction step of producing gamma-butyrolactone by contacting them at a reaction temperature of more than 200 ° C.
 本発明の第一の態様のガンマブチロラクトンの製造方法は、次に述べるように、以下の特徴を好ましく含むことができる。以下の特徴は2つ以上を好ましく組み合わせてよい。
[2] 前記反応工程において、前記原料物質を1~30質量%含有する水溶液を気化させて前記触媒と接触させる、[1]に記載のガンマブチロラクトンの製造方法。
[3] 前記反応工程において、前記原料物質を気化させて、前記触媒にガス空間速度(GHSV)20000~300000hr-1で接触させる、[1]または[2]に記載のガンマブチロラクトンの製造方法。
The method for producing gamma-butyrolactone according to the first aspect of the present invention can preferably include the following characteristics as described below. The following features may preferably be a combination of two or more.
[2] The method for producing gamma-butyrolactone according to [1], wherein in the reaction step, an aqueous solution containing 1 to 30% by mass of the raw material is vaporized and brought into contact with the catalyst.
[3] The method for producing gamma-butyrolactone according to [1] or [2], wherein in the reaction step, the raw material is vaporized and the catalyst is brought into contact with the catalyst at a gas space velocity (GHSV) of 20000 to 300,000 hr-1.
[4] 前記反応工程において、前記原料物質と前記触媒とを400℃以下の反応温度で接触させる、[1]~[3]のいずれかに記載のガンマブチロラクトンの製造方法。
[5] 前記触媒が、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含有する、[1]~[4]のいずれかに記載のガンマブチロラクトンの製造方法。
[6] 前記触媒が、さらにクロムの酸化物を含有する、[1]~[5]のいずれかに記載のガンマブチロラクトンの製造方法。
[4] The method for producing gamma-butyrolactone according to any one of [1] to [3], wherein in the reaction step, the raw material and the catalyst are brought into contact with each other at a reaction temperature of 400 ° C. or lower.
[5] The method for producing gamma-butyrolactone according to any one of [1] to [4], wherein the catalyst contains zinc, zirconium, and aluminum oxides, and metallic copper.
[6] The method for producing gamma-butyrolactone according to any one of [1] to [5], wherein the catalyst further contains an oxide of chromium.
[7] 前記反応工程の前に、
 一酸化炭素と水素(H)との混合ガスを用いて、アリルアルコールをヒドロホルミル化反応させることにより、前記原料物質を生成する原料生成工程を有する、[1]~[6]のいずれかに記載のガンマブチロラクトンの製造方法。
[8] 前記原料生成工程において、有機リン化合物配位子およびロジウム錯体からなる触媒の存在下で前記アリルアルコールをヒドロホルミル化反応させる、[7]に記載のガンマブチロラクトンの製造方法。
[7] Before the reaction step,
Any of [1] to [6], which has a raw material producing step of producing the raw material by hydroformylating allyl alcohol using a mixed gas of carbon monoxide and hydrogen (H 2). The method for producing gamma butyrolactone according to the above.
[8] The method for producing a gamma butyrolactone according to [7], wherein in the raw material production step, the allyl alcohol is hydroformylated in the presence of a catalyst composed of an organophosphorus compound ligand and a rhodium complex.
[9] 前記混合ガスは、一酸化炭素に対する水素のモル比が0.1~10である、[7]または[8]に記載のガンマブチロラクトンの製造方法。
[10] 前記アリルアルコールのヒドロホルミル化反応を0.1~10MPaの反応圧力で行う、[7]~[9]のいずれかに記載のガンマブチロラクトンの製造方法。
[9] The method for producing gamma-butyrolactone according to [7] or [8], wherein the mixed gas has a molar ratio of hydrogen to carbon monoxide of 0.1 to 10.
[10] The method for producing gamma-butyrolactone according to any one of [7] to [9], wherein the hydroformylation reaction of allyl alcohol is carried out at a reaction pressure of 0.1 to 10 MPa.
[11] 前記アリルアルコールのヒドロホルミル化反応を0~150℃の反応温度で行う、[7]~[10]のいずれかに記載のガンマブチロラクトンの製造方法。
[12]  前記触媒が、銅1モルに対して、亜鉛0.01~0.2モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モルを含む、[1]~[11]のいずれかに記載のガンマブチロラクトンの製造方法。
[13] 前記触媒が、銅1モルに対して、亜鉛0.01~0.5モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モル、クロム0.01~0.3モルを含む、[6]~[11]のいずれかに記載のガンマブチロラクトンの製造方法。
[11] The method for producing gamma-butyrolactone according to any one of [7] to [10], wherein the hydroformylation reaction of allyl alcohol is carried out at a reaction temperature of 0 to 150 ° C.
[12] Of [1] to [11], the catalyst contains 0.01 to 0.2 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper. The method for producing gamma butyrolactone according to any one.
[13] The catalyst contains 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum, and 0.01 to 0.3 mol of chromium with respect to 1 mol of copper. The method for producing gamma butyrolactone according to any one of [6] to [11], which comprises.
 本発明の第二の態様は、以下のN-メチルピロリドンの製造方法である。
[14] [1]~[13]のいずれかに記載のガンマブチロラクトンの製造方法を用いてガンマブチロラクトンを製造する工程と、
 製造した前記ガンマブチロラクトンと、モノメチルアミンとを反応させる工程とを含む、N-メチルピロリドンの製造方法。
 本発明の第三の態様は、以下の触媒である。
[15] 亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と、銅とを含む、ガンマブチロラクトン製造用触媒。
 本発明の第三の態様の触媒は、次に述べるように、以下の特徴を好ましく含むことができる。以下の特徴は2つ以上を好ましく組み合わせてよい。
[16] 2-ヒドロキシテトラヒドロフランおよび4-ヒドロキシブチルアルデヒドの一方又は両方からなる原料物質から、ガンマブチロラクトンを生成する製造に用いられる、[15]に記載の触媒。
[17] 前記触媒が、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含有する、[15]又は[16]に記載の触媒。
[18] 前記触媒が、さらにクロムの酸化物を含有する、[15]~[17]のいずれかに記載の触媒。
[19] 前記触媒が、銅1モルに対して、亜鉛0.01~0.2モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モルを含む、[15]~[18]のいずれかに記載の触媒。
[20] 前記触媒が、銅1モルに対して、亜鉛0.01~0.5モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モル、クロム0.01~0.3モルを含む、[18]に記載の触媒。
The second aspect of the present invention is the following method for producing N-methylpyrrolidone.
[14] A step of producing gamma-butyrolactone using the method for producing gamma-butyrolactone according to any one of [1] to [13], and
A method for producing N-methylpyrrolidone, which comprises a step of reacting the produced gamma-butyrolactone with monomethylamine.
A third aspect of the present invention is the following catalyst.
[15] A catalyst for producing gamma-butyrolactone, which comprises an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum, and copper.
The catalyst of the third aspect of the present invention can preferably include the following features, as described below. The following features may preferably be a combination of two or more.
[16] The catalyst according to [15], which is used in the production of producing gamma-butyrolactone from a raw material consisting of one or both of 2-hydroxytetrahydrofuran and 4-hydroxybutyraldehyde.
[17] The catalyst according to [15] or [16], wherein the catalyst contains zinc, zirconium and aluminum oxides, and metallic copper.
[18] The catalyst according to any one of [15] to [17], wherein the catalyst further contains an oxide of chromium.
[19] The catalyst of [15] to [18], wherein the catalyst contains 0.01 to 0.2 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper. The catalyst according to any.
[20] The catalyst contains 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum, and 0.01 to 0.3 mol of chromium with respect to 1 mol of copper. The catalyst according to [18].
 本発明のガンマブチロラクトン製造方法では、2-ヒドロキシテトラヒドロフランおよび/または4-ヒドロキシブチルアルデヒドからなる原料物質を用いる。この原料物質は、アリルアルコールをヒドロホルミル化反応させる1つの反応のみを用いて容易に製造でき、反応性が良好であり、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅とを含む触媒と200℃超の反応温度で接触させることにより、速やかにガンマブチロラクトンを生成する。よって、本発明のガンマブチロラクトン製造方法は、生産性に優れる。 In the method for producing gamma-butyrolactone of the present invention, a raw material consisting of 2-hydroxytetrahydrofuran and / or 4-hydroxybutyraldehyde is used. This raw material can be easily produced using only one reaction of hydroformylating allyl alcohol, has good reactivity, and oxidizes at least one metal element selected from the group consisting of zinc, zirconium and aluminum. Gamma butyrolactone is rapidly produced by contacting a catalyst containing a substance and copper at a reaction temperature of more than 200 ° C. Therefore, the method for producing gamma-butyrolactone of the present invention is excellent in productivity.
 また、本発明のN-メチルピロリドンの製造方法によれば、本発明のガンマブチロラクトンの製造方法を用いてガンマブチロラクトンを製造するため、効率よくN-メチルピロリドンを製造できる。 Further, according to the method for producing N-methylpyrrolidone of the present invention, gamma-butyrolactone is produced using the method for producing gamma-butyrolactone of the present invention, so that N-methylpyrrolidone can be efficiently produced.
 以下、本発明のガンマブチロラクトンの製造方法およびN-メチルピロリドンの製造方法の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明の範囲内において、必要に応じて、数、位置、種類、量、比率、組み合わせ、数値などについて、省略、変更、及び/又は追加することも可能である。 Hereinafter, preferred examples of the method for producing gamma-butyrolactone and the method for producing N-methylpyrrolidone of the present invention will be described in detail. The present invention is not limited to the embodiments shown below. Within the scope of the present invention, numbers, positions, types, quantities, ratios, combinations, numerical values, etc. can be omitted, changed, and / or added as necessary.
<ガンマブチロラクトンの製造方法>
 本実施形態のガンマブチロラクトンの製造方法は、下記式(1)で表される2-ヒドロキシテトラヒドロフラン(2HTHF)および/または下記式(2)で表される4-ヒドロキシブチルアルデヒド(4-HBA)からなる原料物質と、後述する触媒とを、200℃超の反応温度で接触させて、下記式(3)で表されるガンマブチロラクトン(GBL)を生成する反応工程を有する。
<Manufacturing method of gamma-butyrolactone>
The method for producing gamma-butyrolactone of the present embodiment is from 2-hydroxytetrahydrofuran (2HTHF) represented by the following formula (1) and / or 4-hydroxybutyraldehyde (4-HBA) represented by the following formula (2). It has a reaction step of producing gamma-butyrolactone (GBL) represented by the following formula (3) by contacting the raw material to be described below with a catalyst described later at a reaction temperature of more than 200 ° C.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 2HTHFと4-HBAは、溶液中において平衡関係にある。2HTHFと4-HBAとを含む水溶液について、核磁気共鳴(NMR)装置を用いて構造を確認した結果、2HTHFが主成分として存在していることが確認できた。このため、以下、2HTHFおよび/または4-HBAを「2HTHF等」と呼ぶことがある。
 なお、4-HBAは、不安定な化合物であるため、ガンマブチロラクトンなどを製造する際に原料(出発物質)として使用することが想定されにくい化合物である。
2HTHF and 4-HBA are in equilibrium in solution. As a result of confirming the structure of the aqueous solution containing 2HTHH and 4-HBA using a nuclear magnetic resonance (NMR) device, it was confirmed that 2HTHF was present as a main component. Therefore, 2HTHF and / or 4-HBA may be referred to as "2HTHF and the like" below.
Since 4-HBA is an unstable compound, it is unlikely to be used as a raw material (starting material) when producing gamma-butyrolactone or the like.
 本実施形態の製造方法において原料物質として使用する2HTHF等は、市販品を用いてもよいし、2,3-ジヒドロフランを水和反応させて製造したものを用いてもよいし、以下に示す原料生成工程を行うことにより製造したものを用いてもよい。原料物質である2HTHF等は、反応工程の前に以下に示す原料生成工程を行うことにより、1つの反応のみを用いて容易に製造できる。
 原料物質として使用する2HTHF等中の2HTHFと4-HBAの比率は、特に限定されない。前記平衡関係により、2HTHFが大部分であってもよい。2HTHFと4-HBAの両方を含む場合、水またはクロロホルム等の有機溶媒中での2HTHFと4-HBAの比率(モル比)は、例えば、2HTHF/4-HBA=1~50であってもよく、2HTHF/4-HBA=1~30であってもよく、2HTHF/4-HBA=1~10であってもよい。前記比率は、0.01~50や、0.1~20や、0.5~5などであってもよい。
As the 2HTHF or the like used as a raw material in the production method of the present embodiment, a commercially available product may be used, or a product produced by hydration reaction of 2,3-dihydrofuran may be used, as shown below. Those produced by performing a raw material production step may be used. The raw material such as 2HTHH can be easily produced by using only one reaction by performing the following raw material production step before the reaction step.
The ratio of 2HTHF to 4-HBA in 2HTHF and the like used as a raw material is not particularly limited. Due to the equilibrium relationship, 2HTHF may be the majority. When both 2HTHF and 4-HBA are contained, the ratio (molar ratio) of 2HTHF and 4-HBA in an organic solvent such as water or chloroform may be, for example, 2HTHF / 4-HBA = 1 to 50. , 2HTHF / 4-HBA = 1 to 30, and 2HTHF / 4-HBA = 1 to 10. The ratio may be 0.01 to 50, 0.1 to 20, 0.5 to 5, or the like.
(原料生成工程)
 本実施形態では、反応工程の前に原料生成工程を行うことが好ましい。原料生成工程では、一酸化炭素と水素(H)との混合ガスを用いて、アリルアルコール(AAL)をヒドロホルミル化反応させることにより、原料物質(2HTHF等)を生成する。アリルアルコールのヒドロホルミル化反応は、触媒の存在下で行うことが好ましい。
(Raw material production process)
In the present embodiment, it is preferable to carry out the raw material production step before the reaction step. In the raw material production step, a raw material (2HTHH, etc.) is produced by hydroformylating allyl alcohol (AAL) using a mixed gas of carbon monoxide and hydrogen (H 2). The hydroformylation reaction of allyl alcohol is preferably carried out in the presence of a catalyst.
 原料生成工程は、例えば、反応容器内にアリルアルコールと、必要に応じて用いられる触媒および/または溶媒とを入れ、反応容器内に一酸化炭素(CO)と水素(H)との混合ガスを充填して、アリルアルコール(AAL)をヒドロホルミル化反応させる工程とすることができる。
 この場合、反応容器としては、例えば、ステンレス製耐圧反応容器を用いることができる。
In the raw material production step, for example, allyl alcohol and a catalyst and / or solvent used as needed are placed in a reaction vessel, and a mixed gas of carbon monoxide (CO) and hydrogen (H 2) is placed in the reaction vessel. Can be used as a step of hydroformylating allyl alcohol (AAL).
In this case, as the reaction vessel, for example, a stainless steel pressure resistant reaction vessel can be used.
 また、一酸化炭素と水素との混合ガスとしては、一酸化炭素に対する水素のモル比が0.1~10の範囲であるものを用いることが好ましく、より好ましくは0.5~5の範囲であり、さらに好ましくは0.8~2の範囲である。一酸化炭素に対する水素のモル比が0.1~10の範囲であると、ヒドロホルミル化反応が促進され、2HTHF等をより高い収率で製造できる。 Further, as the mixed gas of carbon monoxide and hydrogen, it is preferable to use a gas in which the molar ratio of hydrogen to carbon monoxide is in the range of 0.1 to 10, and more preferably in the range of 0.5 to 5. Yes, more preferably in the range of 0.8-2. When the molar ratio of hydrogen to carbon monoxide is in the range of 0.1 to 10, the hydroformylation reaction is promoted, and 2HTHF and the like can be produced in a higher yield.
 触媒としては、有機リン化合物配位子およびロジウム錯体を用いることが好ましく、有機リン化合物配位子が二座ジホスフィン配位子であることがより好ましい。二座ジホスフィン配位子としては、例えば、トランス-4,5-ビス(ジフェニルホスフィノメチル)-2,2-ジメチル-1,3-ジオキソラン(DIOP)などが挙げられる。有機リン化合物配位子およびロジウム錯体からなる触媒、すなわち、ロジウム錯体が有機リン化合物配位子に配位された触媒、の存在下で、アリルアルコールをヒドロホルミル化反応させることにより、2HTHF等をより高い収率で製造できる。
 触媒の添加量は、特に制限されないが、反応液1リットルに対して0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモルであり、さらに好ましくは1~5ミリモルである。
As the catalyst, it is preferable to use an organophosphorus compound ligand and a rhodium complex, and it is more preferable that the organophosphorus compound ligand is a bidentate diphosphine ligand. Examples of the bidentate diphosphine ligand include trans-4,5-bis (diphenylphosphinomethyl) -2,2-dimethyl-1,3-dioxolane (DIOP). By hydroformylating allyl alcohol in the presence of a catalyst composed of an organic phosphorus compound ligand and a rhodium complex, that is, a catalyst in which the rhodium complex is coordinated with the organic phosphorus compound ligand, 2HTHF and the like are obtained. Can be produced in high yield.
The amount of the catalyst added is not particularly limited, but is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, still more preferably 1 to 5 mmol per liter of the reaction solution.
 溶媒としては、芳香族炭化水素、飽和炭化水素、エーテル類、エステル類などを好ましく用いることができる。溶媒としては、特に、芳香族炭化水素を用いることが好ましく、具体的にはトルエンを用いることが好ましい。 As the solvent, aromatic hydrocarbons, saturated hydrocarbons, ethers, esters and the like can be preferably used. As the solvent, it is particularly preferable to use an aromatic hydrocarbon, and specifically, toluene is preferably used.
 アリルアルコールのヒドロホルミル化反応は、ヒドロホルミル化反応を促進して、2HTHF等をより高い収率で製造するために、絶対圧で0.1~10MPaの反応圧力で行うことが好ましく、より好ましくは0.5~8MPaであり、さらに好ましくは1~4MPaである。 The hydroformylation reaction of allyl alcohol is preferably carried out at an absolute pressure of 0.1 to 10 MPa, more preferably 0, in order to promote the hydroformylation reaction and produce 2HTHH and the like in a higher yield. It is .5 to 8 MPa, more preferably 1 to 4 MPa.
 アリルアルコールのヒドロホルミル化反応は、ヒドロホルミル化反応を促進して、2HTHF等をより高い収率で製造するために、0~150℃の反応温度で行うことが好ましく、より好ましくは20~100℃であり、さらに好ましくは40~80℃である。
 アリルアルコールのヒドロホルミル化反応の反応時間は、0.5~10時間であることが好ましく、より好ましくは1~7時間であり、さらに好ましくは3~5時間である。
The hydroformylation reaction of allyl alcohol is preferably carried out at a reaction temperature of 0 to 150 ° C., more preferably 20 to 100 ° C. in order to promote the hydroformylation reaction and produce 2HTHH and the like in a higher yield. Yes, more preferably 40-80 ° C.
The reaction time of the hydroformylation reaction of allyl alcohol is preferably 0.5 to 10 hours, more preferably 1 to 7 hours, still more preferably 3 to 5 hours.
 アリルアルコールのヒドロホルミル化反応により生成した2HTHF等は、水による抽出あるいは蒸留による精製を行ってから、反応工程における原料物質として使用することが好ましい。 2HTHF and the like produced by the hydroformylation reaction of allyl alcohol are preferably used as a raw material in the reaction step after being extracted with water or purified by distillation.
(反応工程)
 次に、本実施形態では、原料生成工程において生成した原料物質(2HTHF等)と、触媒とを、200℃超の反応温度で接触させて、2HTHF等の脱水素化反応を行い、ガンマブチロラクトン(GBL)を生成させる。
 反応工程において使用する反応装置としては、例えば、固定床式気相反応装置を用いることができる。
(Reaction process)
Next, in the present embodiment, the raw material (2HTHF or the like) produced in the raw material production step and the catalyst are brought into contact with each other at a reaction temperature of more than 200 ° C. to carry out a dehydrogenation reaction of 2HTHF or the like, and gamma-butyrolactone (2HTHF or the like) GBL) is generated.
As the reaction device used in the reaction step, for example, a fixed bed type gas phase reaction device can be used.
「触媒」
 反応工程において原料物質と接触させる触媒としては、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅とを含む触媒を用いる。銅は必須であるが、亜鉛の酸化物、ジルコニウムの酸化物、及びアルミニウムの酸化物の中の1つ又は2つは、触媒中に含まれていなくても良い。しかしながら、前記全ての酸化物を含むことは好ましい。前記触媒の具体例としては、亜鉛の酸化物及び金属銅を含む触媒(CuZnOx);ジルコニウムの酸化物及び金属銅を含む触媒(CuZrOx);アルミニウムの酸化物及び金属銅を含む触媒(CuAlOx);亜鉛及びアルミニウムの各酸化物、並びに金属銅を含む触媒(CuZnAlOx);ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含む触媒(CuZrAlOx);亜鉛及びジルコニウムの各酸化物、並びに金属銅を含む触媒(CuZnZrOx);亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含む触媒(CuZnZrAlOx)、などが挙げられる。上記式のxは、任意に選択される数であってよいが、例えば、xは、0.01~18.5であってもよく、0.01~10.0であってもよく、0.03~6.0であってもよく、0.05~2.0であってもよい。触媒としては、ガンマブチロラクトンの生成する反応をより一層促進できるため、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含有するものを用いることが好ましい。前記触媒は、銅と、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種と、酸素のみからなるものであってよい。
"catalyst"
As the catalyst to be brought into contact with the raw material in the reaction step, a catalyst containing an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum and copper is used. Copper is essential, but one or two of zinc oxides, zirconium oxides, and aluminum oxides may not be contained in the catalyst. However, it is preferable to include all of the above oxides. Specific examples of the catalyst include a catalyst containing zinc oxide and metallic copper (CuZnOx); a catalyst containing zirconium oxide and metallic copper (CuZrOx); a catalyst containing aluminum oxide and metallic copper (CuAlOx); Zinc and aluminum oxides and catalysts containing metallic copper (CuZnAlOx); Zirconium and aluminum oxides and catalysts containing metallic copper (CuZrAlOx); Zinc and zirconium oxides and catalysts containing metallic copper (CuZnZrOx); examples thereof include oxides of zinc, zirconium and aluminum, and a catalyst containing metallic copper (CuZnZrAlOx). X in the above equation may be a number arbitrarily selected, but for example, x may be 0.01 to 18.5, 0.01 to 10.0, or 0. It may be 0.03 to 6.0, or 0.05 to 2.0. As the catalyst, since the reaction for producing gamma-butyrolactone can be further promoted, it is preferable to use a catalyst containing zinc, zirconium and aluminum oxides, and metallic copper. The catalyst may consist only of copper, at least one selected from the group consisting of zinc, zirconium and aluminum, and oxygen.
 触媒が、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含む場合、ガンマブチロラクトンの生成する反応をより一層促進できる。前記酸化物や金属銅の量は、任意に選択できる。前記反応をより促進する為には、触媒中の各金属の含有量は、銅1モルに対して、亜鉛1モル以下、ジルコニウム5モル以下、アルミニウム5モル以下であることが好ましい。なお前記亜鉛、ジルコニウム、及びアルミニウムの、それぞれの下限値は0モルであってよい。触媒中の各金属の含有量は、銅1モルに対して、亜鉛0.01~0.1モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モルであることがより好ましく、さらに好ましくは銅1モルに対して、亜鉛0.01~0.05モル、ジルコニウム0.05~0.2モル、アルミニウム0.1~1モルである。
 銅1モルに対して、触媒中の亜鉛は、1.0モル以下であることが好ましく、0.005~0.3モルであることがより好ましく、0.01~0.2モルであることがさらに好ましく、0.01~0.1モルであることが一層好ましく、0.01~0.05モルであることが特に好ましい。
 銅1モルに対して、触媒中のジルコニウムは、5.0モル以下であることが好ましく、0.01~1モルであることがより好ましく、0.05~0.4モルであることがさらに好ましく、0.05~0.3モルであることが一層好ましく、0.10~0.2モルであることが特に好ましい。
 銅1モルに対して、触媒中のアルミニウムは、5.0モル以下であることが好ましく、0.01~3.0モルであることがより好ましく、0.05~1.0モルであることがさらに好ましく、0.1~0.8モルであることが一層好ましく、0.2~0.6モルであることが特に好ましい。
 ただし、触媒中の各金属の含有量は任意に選択でき、上記範囲のみに限定されない。
When the catalyst contains zinc, zirconium and aluminum oxides, and metallic copper, the reaction for producing gamma-butyrolactone can be further accelerated. The amount of the oxide or metallic copper can be arbitrarily selected. In order to further promote the reaction, the content of each metal in the catalyst is preferably 1 mol or less of zinc, 5 mol or less of zirconium, and 5 mol or less of aluminum with respect to 1 mol of copper. The lower limit of each of zinc, zirconium, and aluminum may be 0 mol. The content of each metal in the catalyst is more preferably 0.01 to 0.1 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper. Preferably, zinc is 0.01 to 0.05 mol, zirconium is 0.05 to 0.2 mol, and aluminum is 0.1 to 1 mol with respect to 1 mol of copper.
The amount of zinc in the catalyst is preferably 1.0 mol or less, more preferably 0.005 to 0.3 mol, and 0.01 to 0.2 mol with respect to 1 mol of copper. Is even more preferable, 0.01 to 0.1 mol is more preferable, and 0.01 to 0.05 mol is particularly preferable.
The amount of zirconium in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 1 mol, and further preferably 0.05 to 0.4 mol with respect to 1 mol of copper. It is more preferably 0.05 to 0.3 mol, and particularly preferably 0.10 to 0.2 mol.
The amount of aluminum in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 3.0 mol, and 0.05 to 1.0 mol with respect to 1 mol of copper. Is even more preferable, 0.1 to 0.8 mol is more preferable, and 0.2 to 0.6 mol is particularly preferable.
However, the content of each metal in the catalyst can be arbitrarily selected and is not limited to the above range.
 原料物質と接触させる前記触媒は、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅に加えて、他の金属酸化物を更に含んでもよい。前記他の金属酸化物としては、クロムの酸化物が好ましい。本発明の製法に用いる触媒がクロムの酸化物を含む場合、触媒の具体例としては、亜鉛及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnCrOx);ジルコニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZrCrOx);アルミニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuAlCrOx);亜鉛、ジルコニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnZrCrOx);亜鉛、アルミニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnAlCrOx);ジルコニウム、アルミニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZrAlCrOx);亜鉛、ジルコニウム、アルミニウム、及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnZrAlCrOx)、などが挙げられる。上記式のxは、任意に選択される数であってよいが、例えば、xは、0.025~13.5であってもよく、0.045~10.5であってもよく、0.065~6.5であってもよく、0.085~2.25であってもよい。前記触媒は、銅と、亜鉛、ジルコニウム、及びアルミニウムからなる群より選ばれる少なくとも1種と、クロムと、酸素、のみからなることが好ましい。 The catalyst in contact with the raw material may further contain other metal oxides in addition to the oxide and copper of at least one metal element selected from the group consisting of zinc, zirconium and aluminum. As the other metal oxide, a chromium oxide is preferable. When the catalyst used in the production method of the present invention contains a chromium oxide, specific examples of the catalyst include zinc and chromium oxides, and a catalyst containing metallic copper (CuZnCrOx); zirconium and chromium oxides, and Catalysts containing metallic copper (CuZrCrOx); oxides of aluminum and chromium, and catalysts containing metallic copper (CuAlCrOx); oxides of zinc, zirconium and chromium, and catalysts containing metallic copper (CuZnZrCrOx); zinc, aluminum And chrome oxides, and catalysts containing metallic copper (CuZnAlCrOx); zirconium, aluminum and chromium oxides, and catalysts containing metallic copper (CuZrAlCrOx); zinc, zirconium, aluminum, and chromium oxides, In addition, a catalyst containing metallic copper (CuZnZrAlCrOx) and the like can be mentioned. X in the above equation may be a number arbitrarily selected, but for example, x may be 0.025 to 13.5, 0.045 to 10.5, or 0. It may be .065 to 6.5, or 0.085 to 2.25. The catalyst preferably comprises only copper, at least one selected from the group consisting of zinc, zirconium, and aluminum, chromium, and oxygen.
 触媒が、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅に加え、さらにクロムの酸化物を含む場合、脱水素化反応の活性障壁を低下させることによる反応の活性化が期待できる。このため、使用する触媒としてより好ましい。ガンマブチロラクトンの生成する反応をより一層促進できるため、触媒中の各金属の含有量は、銅1モルに対して、亜鉛1モル以下、ジルコニウム2モル以下、アルミニウム5モル以下、クロム0.5モル以下であることが好ましい。触媒中の各金属の含有量は、銅1モルに対して、亜鉛0.01~0.5モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モル、クロム0.01~0.3モルであることがより好ましく、さらに好ましくは銅1モルに対して、亜鉛0.05~0.2モル、ジルコニウム0.05~0.3モル、アルミニウム0.1~1モル、クロム0.05~0.2モルである。
 銅1モルに対して、触媒中の亜鉛は、1.0モル以下であることが好ましく、0.005~0.3モルであることがより好ましく、0.01~0.2モルであることがさらに好ましく、0.01~0.1モルであることが一層好ましく、0.01~0.05モルであることが特に好ましい。
 銅1モルに対して、触媒中のジルコニウムは、5.0モル以下であることが好ましく、0.01~1モルであることがより好ましく、0.05~0.4モルであることがさらに好ましく、0.05~0.3モルであることが一層好ましく、0.10~0.2モルであることが特に好ましい。
 銅1モルに対して、触媒中のアルミニウムは、5.0モル以下であることが好ましく、0.01~3.0モルであることがより好ましく、0.05~1.0モルであることがさらに好ましく、0.1~0.8モルであることが一層好ましく、0.2~0.6モルであることが特に好ましい。
 銅1モルに対して、触媒中のクロムは0.5モル以下である事が好ましく、0.01~0.4モルであることがより好ましく、0.03~0.3モルであることがより好ましく、0.05~0.2モルであることがより好ましく、0.07~0.15モルであることがより好ましくい。
 ただし、触媒中の各金属の含有量は任意に選択でき、上記範囲のみに限定されない。
 触媒がクロムの酸化物を含むことにより、2HTHF等の還元により生じる1,4-ブタンジオールの生成の抑制や、1,4-ブタンジオールやその他不純物を生じさせる副反応を抑制することによる選択性向上の効果が、期待できる。
When the catalyst contains oxides of zinc, zirconium and aluminum, and metallic copper, and also oxides of chromium, activation of the reaction can be expected by lowering the active barrier of the dehydrogenation reaction. Therefore, it is more preferable as a catalyst to be used. Since the reaction for producing gamma butyrolactone can be further promoted, the content of each metal in the catalyst is 1 mol or less of zinc, 2 mol or less of zirconium, 5 mol or less of aluminum, and 0.5 mol of chromium with respect to 1 mol of copper. The following is preferable. The content of each metal in the catalyst is 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum, and 0.01 to 0 mol of chromium with respect to 1 mol of copper. It is more preferably 3 mol, more preferably 0.05 to 0.2 mol of zinc, 0.05 to 0.3 mol of zirconium, 0.1 to 1 mol of aluminum and 0. It is 05 to 0.2 mol.
The amount of zinc in the catalyst is preferably 1.0 mol or less, more preferably 0.005 to 0.3 mol, and 0.01 to 0.2 mol with respect to 1 mol of copper. Is even more preferable, 0.01 to 0.1 mol is more preferable, and 0.01 to 0.05 mol is particularly preferable.
The amount of zirconium in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 1 mol, and further preferably 0.05 to 0.4 mol with respect to 1 mol of copper. It is more preferably 0.05 to 0.3 mol, and particularly preferably 0.10 to 0.2 mol.
The amount of aluminum in the catalyst is preferably 5.0 mol or less, more preferably 0.01 to 3.0 mol, and 0.05 to 1.0 mol with respect to 1 mol of copper. Is even more preferable, 0.1 to 0.8 mol is more preferable, and 0.2 to 0.6 mol is particularly preferable.
The amount of chromium in the catalyst is preferably 0.5 mol or less, more preferably 0.01 to 0.4 mol, and 0.03 to 0.3 mol with respect to 1 mol of copper. It is more preferably 0.05 to 0.2 mol, more preferably 0.07 to 0.15 mol.
However, the content of each metal in the catalyst can be arbitrarily selected and is not limited to the above range.
Selectivity by suppressing the production of 1,4-butanediol caused by reduction of 2HTHH and the side reaction that causes 1,4-butanediol and other impurities by containing an oxide of chromium in the catalyst. The effect of improvement can be expected.
[触媒の製造方法]
 触媒の製造方法は、特に限定されるものではなく任意に選択できるが、例えば共沈法、水熱法、ゾル-ゲル法などを用いることができ、中でも共沈法を用いることが好ましい。共沈法を用いる場合、例えば、以下の手順により触媒を調製できる。
[Catalyst manufacturing method]
The method for producing the catalyst is not particularly limited and may be arbitrarily selected. For example, a coprecipitation method, a hydrothermal method, a sol-gel method and the like can be used, and the coprecipitation method is particularly preferable. When the coprecipitation method is used, for example, the catalyst can be prepared by the following procedure.
 まず、目的とする触媒の組成に対応する種類および量の金属の前駆体を、水に溶かして前駆体水溶液とする。前記金属の例としては、銅、亜鉛、ジルコニウム、アルミニウム及びクロム等が挙げられる。次に、前駆体水溶液を撹拌しながら、前駆体水溶液に塩基性水溶液を滴下し、沈殿物を生成させる。その後、濾過により沈殿物を回収して水洗し、乾燥させる。乾燥後の沈殿物を焼成して酸化物とし、その後、水素還元を、具体的には得られた銅酸化物の水素還元を、行う。亜鉛、ジルコニウム、アルミニウム、及びクロムの酸化物は、水素では還元されにくいため、主に酸化銅が金属銅に還元される。以上の工程により、触媒が得られる。 First, a metal precursor of the type and amount corresponding to the composition of the target catalyst is dissolved in water to prepare an aqueous precursor solution. Examples of the metal include copper, zinc, zirconium, aluminum, chromium and the like. Next, the basic aqueous solution is added dropwise to the precursor aqueous solution while stirring the precursor aqueous solution to form a precipitate. Then, the precipitate is collected by filtration, washed with water, and dried. The dried precipitate is calcined to form an oxide, and then hydrogen reduction, specifically, hydrogen reduction of the obtained copper oxide is performed. Oxides of zinc, zirconium, aluminum, and chromium are difficult to reduce with hydrogen, so copper oxide is mainly reduced to metallic copper. A catalyst is obtained by the above steps.
 上記の触媒の製造方法において用いられる各金属の前駆体の例としては、硝酸塩、酢酸塩、炭酸塩、シュウ酸塩などを用いることができ、中でも硝酸塩を用いることが好ましい。塩基性水溶液としては、アンモニア水溶液および/または水酸化アルカリ水溶液を好ましく用いることができる。中でも、塩基性水溶液としては、水酸化アルカリ水溶液を用いることが好ましい。水酸化アルカリ水溶液の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどが挙げられ、水酸化ナトリウムを用いることが好ましい。 As an example of the precursor of each metal used in the above-mentioned method for producing a catalyst, nitrate, acetate, carbonate, oxalate and the like can be used, and among them, nitrate is preferable. As the basic aqueous solution, an aqueous ammonia solution and / or an aqueous alkali hydroxide solution can be preferably used. Above all, it is preferable to use an alkaline hydroxide aqueous solution as the basic aqueous solution. Specific examples of the alkaline hydroxide aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and the like, and it is preferable to use sodium hydroxide.
 上記の触媒の製造方法において、前駆体水溶液に塩基性水溶液を滴下して沈殿物を生成させる工程では、滴下終了時のpHが5~10であることが好ましく、pHが6~8であることがより好ましい。滴下終了時のpHが前記範囲内であると、前駆体水溶液に含まれる金属を全て沈殿物にすることができる。沈殿物を生成させる工程では、塩基性水溶液を撹拌しながら、塩基性水溶液に前駆体水溶液を滴下することで、沈殿物を生成させてもよい。 In the above method for producing a catalyst, in the step of dropping a basic aqueous solution into a precursor aqueous solution to form a precipitate, the pH at the end of the dropping is preferably 5 to 10, and the pH is 6 to 8. Is more preferable. When the pH at the end of the dropping is within the above range, all the metals contained in the precursor aqueous solution can be made into a precipitate. In the step of forming a precipitate, the precipitate may be formed by dropping the precursor aqueous solution onto the basic aqueous solution while stirring the basic aqueous solution.
 上記の製造方法における濾過および水洗については、一般的な方法を用いることができる。
 沈殿物を乾燥させる際の乾燥温度は、好ましくは40~200℃であり、より好ましくは60~100℃である。乾燥時間は、好ましくは3~48時間であり、より好ましくは12~24時間である。沈殿物の乾燥は、沈殿物を容器に入れ、容器内の圧力を1~101.3kPaとして行うことが好ましく、容器内の圧力を3~10kPaとすることがより好ましい。
For filtration and washing with water in the above production method, general methods can be used.
The drying temperature for drying the precipitate is preferably 40 to 200 ° C, more preferably 60 to 100 ° C. The drying time is preferably 3 to 48 hours, more preferably 12 to 24 hours. The drying of the precipitate is preferably carried out by putting the precipitate in a container and setting the pressure in the container to 1 to 101.3 kPa, and more preferably to set the pressure in the container to 3 to 10 kPa.
 乾燥後の沈殿物を空気中で焼成する際の焼成温度は、好ましくは200~700℃、より好ましくは300~600℃、さらに好ましくは400~500℃である。焼成時間は、1~10時間が好ましく、2~7時間がより好ましく、4~6時間がさらに好ましい。焼成後に得られた酸化物の水素還元を行う温度は、好ましくは100~500℃、より好ましくは150℃~450℃、さらに好ましくは200~400℃、特に好ましくは250~300℃である。水素還元を行う時間は、0.5~5時間が好ましく、0.5~3時間がより好ましく、1~3時間がさらに好ましい。水素還元を行う際には水素供給ガスとして、水素ガスと窒素ガスの混合ガスを用いることができる。水素供給ガスに含まれる水素ガス含有量は、10~100モル%が好ましく、50~100モル%がより好ましく、90~100モル%がさらに好ましい。 The firing temperature when firing the dried precipitate in air is preferably 200 to 700 ° C, more preferably 300 to 600 ° C, and even more preferably 400 to 500 ° C. The firing time is preferably 1 to 10 hours, more preferably 2 to 7 hours, still more preferably 4 to 6 hours. The temperature at which the oxide obtained after calcination is hydrogen-reduced is preferably 100 to 500 ° C, more preferably 150 ° C to 450 ° C, still more preferably 200 to 400 ° C, and particularly preferably 250 to 300 ° C. The time for hydrogen reduction is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and even more preferably 1 to 3 hours. When performing hydrogen reduction, a mixed gas of hydrogen gas and nitrogen gas can be used as the hydrogen supply gas. The hydrogen gas content contained in the hydrogen supply gas is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 90 to 100 mol%.
 このようにして得られた触媒の金属成分の組成は、例えば、以下に示す方法により算出できる。
 触媒の原料として使用した各金属の前駆体の質量を測定する。また、濾過により生じた濾液について誘導結合プラズマ(ICP)測定を行い、濾液中に含まれる各金属の含有量を求める。その後、原料として使用した各金属の前駆体の質量と、濾液中に含まれる各金属の含有量とを用いて、触媒の組成を算出する。
The composition of the metal component of the catalyst thus obtained can be calculated, for example, by the method shown below.
The mass of the precursor of each metal used as the raw material of the catalyst is measured. Inductively coupled plasma (ICP) measurement is also performed on the filtrate produced by filtration to determine the content of each metal contained in the filtrate. Then, the composition of the catalyst is calculated using the mass of the precursor of each metal used as a raw material and the content of each metal contained in the filtrate.
 [ガンマブチロラクトンを生成する反応工程]
 反応工程においては、原料物質の水溶液を気化させて、原料物質と上記の触媒とを接触させることが好ましい。原料物質の水溶液としては、原料物質を1~30質量%含有する水溶液を用いることが好ましく、より好ましくは5~25質量%であり、さらに好ましくは10~20質量%である。原料物質を1~30質量%含有する水溶液を気化させて、原料物質と上記の触媒と接触させることにより、ガンマブチロラクトンの生成する反応をより一層促進できる。
 原料物質の水溶液として、原料物質を30質量%以上含有する水溶液を用いる場合は、原料換算した液空間速度(LHSV)を調整することが好ましい。たとえば、原料物質を30~50質量%含有する水溶液を用いる場合、ガンマブチロラクトンの収率を維持するために、原料換算した液空間速度(LHSV)は1.6hr-1以下であることが好ましく、0.4hr-1以下であることがより好ましい。液空間速度(LHSV)の下限は、必要に応じて選択でき、例えば0.1hr-1以上であってもよいが、これのみに限定されない。
[Reaction process for producing gamma-butyrolactone]
In the reaction step, it is preferable to vaporize the aqueous solution of the raw material to bring the raw material into contact with the above catalyst. As the aqueous solution of the raw material, it is preferable to use an aqueous solution containing 1 to 30% by mass of the raw material, more preferably 5 to 25% by mass, and further preferably 10 to 20% by mass. By vaporizing an aqueous solution containing 1 to 30% by mass of the raw material and bringing the raw material into contact with the above-mentioned catalyst, the reaction for producing gamma-butyrolactone can be further promoted.
When an aqueous solution containing 30% by mass or more of the raw material is used as the aqueous solution of the raw material, it is preferable to adjust the liquid space velocity (LHSV) converted to the raw material. For example, when an aqueous solution containing 30 to 50% by mass of a raw material is used, the liquid space velocity (LHSV) converted to the raw material is preferably 1.6 hr -1 or less in order to maintain the yield of gamma-butyrolactone. It is more preferably 0.4 hr -1 or less. The lower limit of the liquid space velocity (LHSV) can be selected as needed, and may be, for example, 0.1 hr -1 or more, but is not limited thereto.
 反応工程においては、原料物質を気化させて、触媒にガス空間速度(GHSV)20000~300000hr-1で接触させることが好ましく、より好ましくは30000~200000hr-1であり、さらに好ましくは40000~100000hr-1である。GHSVが20000hr-1以上であると、ガンマブチロラクトンの生産性の低下を抑制できる。GHSVが300000hr-1以下であると、ガンマブチロラクトンの生成する反応が十分に進行する。 In the reaction step, the raw material is vaporized, it is preferred to contact with a gas space velocity (GHSV) 20000 ~ 300000hr -1 the catalyst, more preferably from 30000 ~ 200000hr -1, more preferably 40000 ~ 100000hr - It is 1. When GHSV is 20000 hr -1 or more, the decrease in the productivity of gamma-butyrolactone can be suppressed. When GHSV is 300,000 hr -1 or less, the reaction for producing gamma-butyrolactone proceeds sufficiently.
 反応工程においては、原料物質と触媒との接触時間(W/F)は任意に選択できるが、0.05hr・g/mL以上が好ましく、より好ましくは0.1hr・g/mL以上であり、さらに好ましくは0.4hr・g/mL以上である。W/Fが0.05hr・g/mL以上であると、ガンマブチロラクトンの生成する反応が十分に進行する。接触時間(W/F)の上限は、必要に応じて選択でき、例えば3.2hr・g/mL以下であってもよいが、これのみに限定されない。なおWは触媒の重量を示し、Fは原料供給速度を表す。 In the reaction step, the contact time (W / F) between the raw material and the catalyst can be arbitrarily selected, but is preferably 0.05 hr · g / mL or more, more preferably 0.1 hr · g / mL or more. More preferably, it is 0.4 hr · g / mL or more. When the W / F is 0.05 hr · g / mL or more, the reaction for producing gamma-butyrolactone proceeds sufficiently. The upper limit of the contact time (W / F) can be selected as needed, and may be, for example, 3.2 hr · g / mL or less, but is not limited thereto. W represents the weight of the catalyst, and F represents the raw material supply rate.
 反応工程においては、原料物質と触媒とを200℃超の反応温度で接触させて、ガンマブチロラクトンを生成する。本実施形態では、反応温度が200℃超であるので、反応中の2HTHF等が気相で存在し、ガンマブチロラクトンの生成する反応が促進され、ガンマブチロラクトンをより高い収率で製造できる。反応温度は、ガンマブチロラクトンの生成する反応の安全性がより一層高くなるため、400℃以下であることが好ましい。反応温度は、210~370℃であることがより好ましく、230~360℃であることがさらに好ましく、260~350℃であることが特に好ましい。 In the reaction step, the raw material and the catalyst are brought into contact with each other at a reaction temperature of over 200 ° C. to produce gamma-butyrolactone. In the present embodiment, since the reaction temperature is over 200 ° C., 2HTHF and the like in the reaction are present in the gas phase, the reaction for producing gamma-butyrolactone is promoted, and gamma-butyrolactone can be produced in a higher yield. The reaction temperature is preferably 400 ° C. or lower because the safety of the reaction produced by gamma-butyrolactone is further increased. The reaction temperature is more preferably 210 to 370 ° C, further preferably 230 to 360 ° C, and particularly preferably 260 to 350 ° C.
 反応工程において得られたガンマブチロラクトンは、一般的な減圧蒸留などの方法により精製してもよい。反応工程において得られたガンマブチロラクトンは、N-メチルピロリドンの原料として好ましく使用できる。 The gamma-butyrolactone obtained in the reaction step may be purified by a general method such as vacuum distillation. The gamma-butyrolactone obtained in the reaction step can be preferably used as a raw material for N-methylpyrrolidone.
 本実施形態のガンマブチロラクトン製造方法では、2HTHF等からなる原料物質と、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅とを含む触媒とを、200℃超の反応温度で接触させて、ガンマブチロラクトンを生成する反応工程を有する。2HTHF等は、反応性が良好であり、上記触媒と200℃超の反応温度で接触させることにより、速やかにガンマブチロラクトンを生成する。しかも、2HTHF等は、反応工程の前に、一酸化炭素と水素(H)との混合ガスを用いて、アリルアルコールをヒドロホルミル化反応させる1つの反応のみを用いる原料生成工程を行うことにより、容易に製造できる。よって、本実施形態のガンマブチロラクトン製造方法は、生産性に優れる。 In the method for producing gamma butyrolactone of the present embodiment, a raw material made of 2HTHH or the like and a catalyst containing an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum and copper are used at more than 200 ° C. It has a reaction step of producing gamma butyrolactone by contacting at the reaction temperature of. 2HTHF and the like have good reactivity, and gamma-butyrolactone is rapidly produced by contacting the catalyst at a reaction temperature of more than 200 ° C. Moreover, for 2HTHF and the like, before the reaction step, a raw material production step using only one reaction of hydroformylating allyl alcohol using a mixed gas of carbon monoxide and hydrogen (H 2) is performed. Easy to manufacture. Therefore, the method for producing gamma-butyrolactone of the present embodiment is excellent in productivity.
<N-メチルピロリドンの製造方法>
 本実施形態のN-メチルピロリドン(NMP)の製造方法は、本実施形態のガンマブチロラクトンの製造方法を用いてガンマブチロラクトンを製造する工程と、製造したガンマブチロラクトンと、モノメチルアミンとを反応させる工程とを含む。
 ガンマブチロラクトンとモノメチルアミンとを反応させる工程は、例えば、反応容器内にガンマブチロラクトンとモノメチルアミンと溶媒とを入れて液相反応させることにより、N-メチルピロリドンを生成する工程とすることができる。
<Manufacturing method of N-methylpyrrolidone>
The method for producing N-methylpyrrolidone (NMP) of the present embodiment includes a step of producing gamma-butyrolactone using the method for producing gamma-butyrolactone of the present embodiment and a step of reacting the produced gamma-butyrolactone with monomethylamine. including.
The step of reacting gamma-butyrolactone and monomethylamine can be, for example, a step of producing N-methylpyrrolidone by putting gamma-butyrolactone, monomethylamine and a solvent in a reaction vessel and causing a liquid phase reaction.
 この場合、反応容器としては、ステンレス製の反応容器を好ましく用いることができる。
 溶媒としては、アルコール類または水を用いることができ、好ましくは水である。
 原料として使用するガンマブチロラクトンに対するモノメチルアミンのモル比は、1~10の範囲であることが好ましく、より好ましくは1~5の範囲であり、さらに好ましくは1~1.5の範囲である。
In this case, a stainless steel reaction vessel can be preferably used as the reaction vessel.
As the solvent, alcohols or water can be used, and water is preferable.
The molar ratio of monomethylamine to gamma-butyrolactone used as a raw material is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and even more preferably in the range of 1 to 1.5.
 ガンマブチロラクトンとモノメチルアミンとの反応は、大気中で行ってもよいし、窒素ガス雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下で行ってもよく、好ましくは窒素ガス雰囲気下で行う。
 ガンマブチロラクトンとモノメチルアミンとの反応は、100~400℃の温度で行うことが好ましく、より好ましくは150~350℃であり、さらに好ましくは200~300℃である。反応時間は0.1~10時間であることが好ましく、より好ましくは0.5~7時間であり、さらに好ましくは1~5時間である。
The reaction between gamma-butyrolactone and monomethylamine may be carried out in the air, in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon atmosphere, and preferably in a nitrogen gas atmosphere.
The reaction between gamma-butyrolactone and monomethylamine is preferably carried out at a temperature of 100 to 400 ° C, more preferably 150 to 350 ° C, still more preferably 200 to 300 ° C. The reaction time is preferably 0.1 to 10 hours, more preferably 0.5 to 7 hours, still more preferably 1 to 5 hours.
 ガンマブチロラクトンとモノメチルアミンとを反応させる工程において得られたN-メチルピロリドンは、一般的な減圧蒸留などの方法により精製してもよい。 N-methylpyrrolidone obtained in the step of reacting gamma-butyrolactone and monomethylamine may be purified by a general method such as vacuum distillation.
 本実施形態のN-メチルピロリドンの製造方法では、本実施形態のガンマブチロラクトンの製造方法を用いてガンマブチロラクトンを製造する。このため、効率よくN-メチルピロリドンを製造できる。 In the method for producing N-methylpyrrolidone of the present embodiment, gamma-butyrolactone is produced by using the method for producing gamma-butyrolactone of the present embodiment. Therefore, N-methylpyrrolidone can be efficiently produced.
 以下、実施例および比較例を示して本発明をさらに詳細に説明する。なお、本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
(1)触媒の調製
(a)CuZnZrAlOx触媒(1)
 ビーカー内に金属の前駆体として、硝酸銅(富士フイルム和光純薬社製)5.03g、硝酸亜鉛(富士フイルム和光純薬社製)0.622g、硝酸アルミニウム(富士フイルム和光純薬社製)3.56g、硝酸ジルコニウム(富士フイルム和光純薬社製)0.836gを入れ、水100gに溶解させて前駆体水溶液とした。次に、前駆体水溶液を攪拌しながら、前駆体水溶液に3N水酸化ナトリウム水溶液をpHが5になるまで滴下し、共沈法により沈殿物を得た。濾過により沈殿物を回収して水洗した。水洗した沈殿物を容器に入れ、温度80℃の大気雰囲気中で圧力を6.3kPaとし、減圧乾燥させた。
(1) Preparation of catalyst (a) CuZnZrAlOx catalyst (1)
Copper nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.03 g, zinc nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.622 g, aluminum nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as metal precursors in the beaker 3.56 g and 0.836 g of zinc nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added and dissolved in 100 g of water to prepare an aqueous precursor solution. Next, while stirring the precursor aqueous solution, a 3N sodium hydroxide aqueous solution was added dropwise to the precursor aqueous solution until the pH reached 5, and a precipitate was obtained by the coprecipitation method. The precipitate was collected by filtration and washed with water. The water-washed precipitate was placed in a container and dried under reduced pressure at a pressure of 6.3 kPa in an air atmosphere at a temperature of 80 ° C.
 乾燥後の沈殿物を電気炉に入れ、空気中、500℃で3時間焼成して酸化物とした。得られた酸化物0.2gを、直径4.5mm高さ10mmの円筒型の反応容器(固定床式気相反応装置の反応容器)に充填した。下記(3)の反応(GBLの製造)を行う前に、酸化物の充填された前記反応容器に、300℃の水素ガスを流量30mL/minで1時間流通させて、酸化銅の水素還元を行った。以上の工程により、前記反応装置内に、調製された触媒(a)の触媒層を、設定した。得られた触媒の組成を、原料として使用した各金属の前駆体の質量と、濾過後に得た濾液中に含まれる各金属の含有量とを用いて、上述した方法により算出した。その結果、触媒の組成はCuZnZrAlOx(モル比Cu:Zn:Zr:Al=10:0.2:1.9:5.5(Zn=1を基準とすると、Cu:Zn:Zr:Al=46:1:8.6:25))であった。 The dried precipitate was placed in an electric furnace and calcined in air at 500 ° C. for 3 hours to obtain an oxide. 0.2 g of the obtained oxide was filled in a cylindrical reaction vessel (reaction vessel of a fixed-bed vapor phase reactor) having a diameter of 4.5 mm and a height of 10 mm. Before the reaction (3) below (production of GBL) is carried out, hydrogen gas at 300 ° C. is circulated in the reaction vessel filled with oxide at a flow rate of 30 mL / min for 1 hour to reduce copper oxide by hydrogen. went. Through the above steps, the catalyst layer of the prepared catalyst (a) was set in the reaction apparatus. The composition of the obtained catalyst was calculated by the above-mentioned method using the mass of the precursor of each metal used as a raw material and the content of each metal contained in the filtrate obtained after filtration. As a result, the composition of the catalyst was CuZnZrAlOx (molar ratio Cu: Zn: Zr: Al = 10: 0.2: 1.9: 5.5 (based on Zn = 1, Cu: Zn: Zr: Al = 46). It was 1: 8.6: 25)).
(b)CuZnZrAlOx触媒(2)
 前駆体水溶液に3N水酸化ナトリウム水溶液をpHが7になるまで滴下したこと以外は、上記(a)と同様の手順により、組成がCuZnZrAlOx(モル比Cu:Zn:Zr:Al=10:1.0:1.5:4.5)である触媒(b)を調製した。
(B) CuZnZrAlOx catalyst (2)
The composition was CuZnZrAlOx (molar ratio Cu: Zn: Zr: Al = 10: 1) according to the same procedure as in (a) above, except that a 3N aqueous sodium hydroxide solution was added dropwise to the precursor aqueous solution until the pH reached 7. A catalyst (b) of 0: 1.5: 4.5) was prepared.
(c)CuZrAlOx触媒
 金属の前駆体の比率を変えたこと、および、3N水酸化ナトリウム水溶液をビーカーに入れ攪拌しながら、前駆体水溶液をpHが7になるまで滴下したこと以外は、上記(a)の手順に準じて、組成がCuZrAlOx(モル比Cu:Zr:Al=10:1.5:4.5)である触媒(c)を調製した。
(C) CuZrAlOx catalyst The above (a) except that the ratio of the precursor of the metal was changed and the aqueous precursor solution was added dropwise to the pH of 7 while stirring the 3N aqueous sodium hydroxide solution in a beaker. ), A catalyst (c) having a composition of CuZrAlOx (molar ratio Cu: Zr: Al = 10: 1.5: 4.5) was prepared.
(d)CuZnAlOx触媒
 金属の前駆体の比率を変えて、上記(c)の手順に準じて、組成がCuZnAlOx(モル比Cu:Zn:Al=10:1.0:4.5)である触媒(d)を調製した。
(D) CuZnAlOx catalyst A catalyst having a composition of CuZnAlOx (molar ratio Cu: Zn: Al = 10: 1.0: 4.5) according to the procedure of (c) above by changing the ratio of metal precursors. (D) was prepared.
(e)CuZnZrAlOx触媒(3)
 金属の前駆体の比率を変えて、上記(c)の手順に準じて、組成がCuZnZrAlOx(モル比Cu:Zn:Zr:Al=10:1.0:1.5:2.5)である触媒(e)を調製した。
(E) CuZnZrAlOx catalyst (3)
The composition is CuZnZrAlOx (molar ratio Cu: Zn: Zr: Al = 10: 1.0: 1.5: 2.5) according to the procedure (c) above by changing the ratio of the metal precursor. The catalyst (e) was prepared.
(f)CuZnZrAlOx触媒(4)
 金属の前駆体の比率を変えて、上記(c)の手順に準じて、組成がCuZnZrAlOx(モル比Cu:Zn:Zr:Al=15:1.0:1.5:4.5)である触媒(f)を調製した。
(F) CuZnZrAlOx catalyst (4)
The composition is CuZnZrAlOx (molar ratio Cu: Zn: Zr: Al = 15: 1.0: 1.5: 4.5) according to the procedure (c) above by changing the ratio of the metal precursor. The catalyst (f) was prepared.
(g)CuZnZrAlCrOx触媒(1)
 ビーカー内に金属の前駆体として、硝酸銅(富士フイルム和光純薬社製)5.03g、硝酸亜鉛(富士フイルム和光純薬社製)0.622g、硝酸アルミニウム(富士フイルム和光純薬社製)3.56g、硝酸ジルコニウム(富士フイルム和光純薬社製)0.836g、硝酸クロム(関東化学製)0.836gを入れ、水106gに溶解させて前駆体水溶液とした。次に、3N水酸化ナトリウム水溶液30gをビーカーに入れ攪拌しながら、前駆体水溶液をpHが7になるまで滴下し、共沈法により沈殿物を得た。濾過により沈殿物を回収して水洗した。水洗した沈殿物を容器に入れ、温度80℃の大気雰囲気中で圧力を6.3kPaとし、減圧乾燥させた。
(G) CuZnZrAlCrOx catalyst (1)
Copper nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.03 g, zinc nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.622 g, aluminum nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as metal precursors in the beaker 3.56 g, 0.836 g of zinc nitrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.836 g of chromium nitrate (manufactured by Kanto Kagaku) were added and dissolved in 106 g of water to prepare an aqueous precursor solution. Next, 30 g of a 3N aqueous sodium hydroxide solution was placed in a beaker, and the precursor aqueous solution was added dropwise until the pH reached 7, while stirring to obtain a precipitate by the coprecipitation method. The precipitate was collected by filtration and washed with water. The water-washed precipitate was placed in a container and dried under reduced pressure at a pressure of 6.3 kPa in an air atmosphere at a temperature of 80 ° C.
 乾燥後の沈殿物を電気炉に入れ、空気中、500℃で3時間焼成して酸化物とした。得られた酸化物0.2gを、直径4.5mm高さ10mmの円筒型の反応容器(固定床式気相反応装置の反応容器)に充填した。下記(3)の反応(GBLの製造)を行う前に、酸化物の充填された前記反応容器に、300℃の水素ガスを流量30mL/minで1時間流通させて、酸化銅の水素還元を行った。以上の工程により、前記反応装置内に、調製された触媒(g)の触媒層を、設定した。得られた触媒の組成を、原料として使用した各金属の前駆体の質量と、濾過後に得た濾液中に含まれる各金属の含有量とを用いて、上述した方法により算出した。その結果、触媒の組成はCuZnZrAlCrOx(モル比Cu:Zn:Zr:Al:Cr=10:1.0:1.5:4.5:1.0)であった。 The dried precipitate was placed in an electric furnace and calcined in air at 500 ° C. for 3 hours to obtain an oxide. 0.2 g of the obtained oxide was filled in a cylindrical reaction vessel (reaction vessel of a fixed-bed vapor phase reactor) having a diameter of 4.5 mm and a height of 10 mm. Before the reaction (3) below (production of GBL) is carried out, hydrogen gas at 300 ° C. is circulated in the reaction vessel filled with oxide at a flow rate of 30 mL / min for 1 hour to reduce copper oxide by hydrogen. went. Through the above steps, the catalyst layer of the prepared catalyst (g) was set in the reaction apparatus. The composition of the obtained catalyst was calculated by the above-mentioned method using the mass of the precursor of each metal used as a raw material and the content of each metal contained in the filtrate obtained after filtration. As a result, the composition of the catalyst was CuZnZrAlCrOx (molar ratio Cu: Zn: Zr: Al: Cr = 10: 1.0: 1.5: 4.5: 1.0).
(h)CuZnZrAlCrOx触媒(2)
 金属の前駆体の比率を変えて、上記(g)の手順に準じて、組成がCuZnZrAlCrOx(モル比Cu:Zn:Zr:Al:Cr=10:1.0:1.5:4.5:2.0)である触媒(h)を調製した。
(H) CuZnZrAlCrOx catalyst (2)
By changing the ratio of the metal precursor, the composition is CuZnZrAlCrOx (molar ratio Cu: Zn: Zr: Al: Cr = 10: 1.0: 1.5: 4.5: 4.5: according to the procedure of (g) above. The catalyst (h) which is 2.0) was prepared.
(2)原料生成工程(2HTHF等の製造)
 ステンレス製の容量100mLのオートクレーブの反応容器内に、アリルアルコール(AAL)1.89gと、溶媒としてのトルエン30gとを入れ、触媒としてのRhH(CO)(PPh0.0536gと、二座ジホスフィン配位子であるトランス-4,5-ビス(ジフェニルホスフィノメチル)-2,2-ジメチル-1,3-ジオキソラン(DIOP)0.116gとを入れた。そして、反応容器内に一酸化炭素と水素ガスとの混合ガスを充填して圧力2MPa(分圧CO/H=1)とし、反応温度65℃で3時間、反応容器内をメカニカルスターラーで撹拌しながら反応させた。反応後に得られた反応液を水30gで抽出し、目的とする2HTHF等を水溶液として得た。
(2) Raw material production process (manufacturing of 2HTHF, etc.)
1.89 g of allyl alcohol (AAL) and 30 g of toluene as a solvent were placed in a reaction vessel of an autoclave having a capacity of 100 mL made of stainless steel, and RhH (CO) (PPh 3 ) 3 0.0536 g as a catalyst was added. 0.116 g of trans-4,5-bis (diphenylphosphinomethyl) -2,2-dimethyl-1,3-dioxolane (DIOP), which is a counterdiphosphin ligand, was added. Then, the reaction vessel is filled with a mixed gas of carbon monoxide and hydrogen gas to a pressure of 2 MPa (partial pressure CO / H 2 = 1), and the inside of the reaction vessel is stirred with a mechanical stirrer at a reaction temperature of 65 ° C. for 3 hours. I made it react while. The reaction solution obtained after the reaction was extracted with 30 g of water to obtain the desired 2HTHF or the like as an aqueous solution.
 得られた2HTHF等を含む水溶液を、液体クロマトグラフィーを用いて分析し、アリルアルコール(AAL)の転化率と、2HTHF等の収率とを求めた。その結果、AALの転化率は100%であり、2HTHF等の収率は87.6%であった。なお、2HTHF等の収率とは、2HTHFと4-HBAの合計モル数を基準とする。
 このことから、2HTHF等は、一酸化炭素と水素ガスとの混合ガスを用いて、アリルアルコールをヒドロホルミル化反応させる1つの反応のみを用いて、高い転化率および収率で、容易に製造できることが確認できた。
The obtained aqueous solution containing 2HTHH and the like was analyzed by liquid chromatography to determine the conversion rate of allyl alcohol (AAL) and the yield of 2HTHF and the like. As a result, the conversion rate of AAL was 100%, and the yield of 2HTHH and the like was 87.6%. The yield of 2HTHF and the like is based on the total number of moles of 2HTHF and 4-HBA.
From this, 2HTHF and the like can be easily produced with a high conversion rate and yield by using only one reaction of hydroformylating allyl alcohol using a mixed gas of carbon monoxide and hydrogen gas. It could be confirmed.
(3)反応工程(ガンマブチロラクトン(GBL)の製造)
 固定床式気相反応装置として、反応容器の上部に気化器が備えられ、気化器の上部にキャリアーガス導入口と原料流入口とが設けられ、反応容器の下部にガス抜け口を有する反応液捕集容器(冷却)が設けられているものを用いた。
(3) Reaction step (Production of gamma-butyrolactone (GBL))
As a fixed-bed gas phase reactor, a reaction solution is provided with a vaporizer at the top of the reaction vessel, a carrier gas inlet and a raw material inlet at the top of the vaporizer, and a gas outlet at the bottom of the reaction vessel. The one provided with a collection container (cooling) was used.
(実施例1~7、比較例1)
 実施例1~7および比較例1においては、触媒(a)を用いた。上記(1)で得た触媒層が前記反応容器に設定された、固定床式気相反応装置を用いて、上記(2)で製造した2HTHF等を表1に示す濃度で含む水溶液を気化器で気化させて、前記反応容器の上部から、キャリアーガスである窒素ガスと共に、表1に示す条件で供給し、表1に示す条件で触媒(a)と接触させて、ガンマブチロラクトンを生成させた。
(Examples 1 to 7, Comparative Example 1)
In Examples 1 to 7 and Comparative Example 1, the catalyst (a) was used. Using a fixed-bed gas phase reactor in which the catalyst layer obtained in (1) above is set in the reaction vessel, a vaporizer contains an aqueous solution containing 2HTHF and the like produced in (2) above at the concentrations shown in Table 1. From the upper part of the reaction vessel, the gas was supplied together with nitrogen gas as a carrier gas under the conditions shown in Table 1 and brought into contact with the catalyst (a) under the conditions shown in Table 1 to produce gamma butyrolactone. ..
(比較例2)
 比較例2においても、触媒(a)を用いた。上記(1)で得た触媒層が前記反応容器に設定された、固定床式気相反応装置を用いて、表1に示す濃度の1,4-ブタンジオール(1,4-BDO)の水溶液を気化器で気化させて、前記反応容器の上部から、キャリアーガスである窒素ガスと共に、表1に示す条件で供給し、表1に示す条件で触媒(a)と接触させて、ガンマブチロラクトンを生成させた。
(Comparative Example 2)
The catalyst (a) was also used in Comparative Example 2. An aqueous solution of 1,4-butanediol (1,4-BDO) having a concentration shown in Table 1 was used in a fixed-bed gas phase reactor in which the catalyst layer obtained in (1) above was set in the reaction vessel. Is vaporized by a vaporizer and supplied from the upper part of the reaction vessel together with nitrogen gas as a carrier gas under the conditions shown in Table 1 and brought into contact with the catalyst (a) under the conditions shown in Table 1 to obtain gamma butyrolactone. It was generated.
 実施例1~7、比較例1、2において使用した、原料、2HTHF等の水溶液中における2HTHF等の濃度(比較例2においては、1,4-BDO水溶液中における1,4-BDOの濃度)、反応温度、2HTHF等の水溶液(比較例2においては、1,4-BDO水溶液)の送液量(流速)、窒素ガスの流速、原料換算した液空間速度(LHSV)、ガス空間速度(GHSV)を、表1に示す。
 また、実施例1~7、比較例1、2で得られたガンマブチロラクトンを、液体クロマトグラフィーを用いて分析し、原料(2HTHF等)の転化率と、ガンマブチロラクトン(GBL)の収率および選択率を求めた。その結果を表1に示す。
Concentration of 2HTHF and the like in an aqueous solution of raw materials, 2HTHF and the like used in Examples 1 to 7 and Comparative Examples 1 and 2 (in Comparative Example 2, the concentration of 1,4-BDO in an aqueous solution of 1,4-BDO). , Reaction temperature, 2THTH and other aqueous solutions (1,4-BDO aqueous solution in Comparative Example 2), nitrogen gas flow velocity, raw material equivalent liquid space velocity (LHSV), gas space velocity (GHSV). ) Is shown in Table 1.
Further, the gamma-butyrolactone obtained in Examples 1 to 7 and Comparative Examples 1 and 2 was analyzed by using liquid chromatography, and the conversion rate of the raw material (2HTHF, etc.) and the yield and selection of gamma-butyrolactone (GBL) were selected. I asked for the rate. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表1に示すように、原料物質である2HTHF等と、CuZnZrAlOxからなる触媒(a)とを、200℃超の反応温度で接触させて、ガンマブチロラクトンを生成した実施例1~7は、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が高く、生産性が良好であることが確認できた。
 また、実施例1と実施例2とでは、反応濃度および反応温度が同じで、GHSVが異なっているが、原料転化率およびガンマブチロラクトン(GBL)の収率は同程度であった。このことから、30000hr-1以上の高いGHSVで反応を行うことにより生産性を向上させても、良好な原料転化率およびガンマブチロラクトン(GBL)の収率を維持できることが示された。
As shown in Table 1, Examples 1 to 7 in which gamma-butyrolactone was produced by contacting 2HTHF or the like as a raw material with a catalyst (a) composed of CuZnZrAlOx at a reaction temperature of more than 200 ° C. It was confirmed that the rate, the yield and selectivity of gamma-butyrolactone (GBL) were high, and the productivity was good.
Further, in Example 1 and Example 2, the reaction concentration and the reaction temperature were the same, but the GHSV was different, but the raw material conversion rate and the yield of gamma-butyrolactone (GBL) were about the same. From this, it was shown that a good raw material conversion rate and a yield of gamma-butyrolactone (GBL) can be maintained even if the productivity is improved by carrying out the reaction at a high GHSV of 30,000 hr-1 or more.
 これに対し、原料物質である2HTHF等と、CuZnZrAlOxからなる触媒(a)とを、反応温度200℃で接触させて、ガンマブチロラクトンを生成した比較例1は、反応温度が200℃超である実施例1~7と比較して、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が低かった。
 また、原料物質として1,4-ブタンジオール(1,4-BDO)を用い、触媒(a)を用いた比較例2では、実施例1~7と比較して、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が低かった。これは、1,4-ブタンジオールの反応性が、2HTHF等の反応性と比較して低いためである。
On the other hand, in Comparative Example 1 in which gamma-butyrolactone was produced by contacting a raw material such as 2HTHH and a catalyst (a) made of CuZnZrAlOx at a reaction temperature of 200 ° C., the reaction temperature was over 200 ° C. Compared with Examples 1 to 7, the raw material conversion rate, the yield and selectivity of gamma-butyrolactone (GBL) were lower.
Further, in Comparative Example 2 in which 1,4-butanediol (1,4-BDO) was used as the raw material and the catalyst (a) was used, the raw material conversion rate and gamma-butyrolactone (gamma-butyrolactone) were higher than those in Examples 1 to 7. The yield and selectivity of GBL) was low. This is because the reactivity of 1,4-butanediol is lower than that of 2HTHF and the like.
(実施例8~14)
 表2に記載の触媒および反応条件を用いた以外は、実施例1と同様にして、反応を行った。結果を表2に示す。
(Examples 8 to 14)
The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 2 were used. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 反応温度のみが異なる実施例8~10の結果の比較から、反応温度が300℃である実施例9において、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率がもっとも高いことが確認された。また、触媒の種類が異なる実施例9および実施例11~14の結果の比較から、触媒組成がCuZnZrAlOx(モル比Cu:Zn:Zr:Al=10:1.0:1.5:4.5)である実施例9において、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率がもっとも高いことが確認された。 From the comparison of the results of Examples 8 to 10 in which only the reaction temperature was different, it was confirmed that the raw material conversion rate, the yield of gamma-butyrolactone (GBL) and the selectivity were the highest in Example 9 in which the reaction temperature was 300 ° C. It was. Further, from the comparison of the results of Examples 9 and 11 to 14 in which the types of catalysts are different, the catalyst composition is CuZnZrAlOx (molar ratio Cu: Zn: Zr: Al = 10: 1.0: 1.5: 4.5). ), It was confirmed that the raw material conversion rate, the yield of gamma-butyrolactone (GBL), and the selectivity were the highest.
(実施例15~19、比較例3)
 表3に記載の触媒および反応条件を用いた以外は、実施例1と同様にして、反応を行った。結果を表3に示す。
(比較例4)
 表3に記載の触媒および反応条件を用いた以外は、比較例2と同様にして、反応を行った。結果を表3に示す。
(Examples 15 to 19, Comparative Example 3)
The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 3 were used. The results are shown in Table 3.
(Comparative Example 4)
The reaction was carried out in the same manner as in Comparative Example 2 except that the catalysts and reaction conditions shown in Table 3 were used. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 反応温度のみが異なる、実施例15と16の結果の比較、または、実施例17と18の結果の比較から、反応温度が270℃である場合に比べ、反応温度が300℃である場合に、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が向上することが確認された。また、触媒の種類のみが異なる実施例15と17の結果の比較、または、実施例16と18の結果の比較から、触媒組成がCuZnZrAlCrOx(モル比Cu:Zn:Zr:Al=10:1.0:1.5:4.5:1.0)である場合に、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が向上することが確認された。
 反応温度が200℃である比較例3では、反応温度が200℃超である実施例19と比較して、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が低かった。また、原料物質として1,4-ブタンジオール(1,4-BDO)を用いた比較例4では、原料転化率、ガンマブチロラクトン(GBL)の収率および選択率が低かった。
From the comparison of the results of Examples 15 and 16 or the comparison of the results of Examples 17 and 18, which differ only in the reaction temperature, when the reaction temperature is 300 ° C. as compared with the case where the reaction temperature is 270 ° C. It was confirmed that the raw material conversion rate, the yield and selectivity of gamma-butyrolactone (GBL) were improved. Further, from the comparison of the results of Examples 15 and 17 in which only the types of catalysts are different, or the comparison of the results of Examples 16 and 18, the catalyst composition is CuZnZrAlCrOx (molar ratio Cu: Zn: Zr: Al = 10: 1. It was confirmed that when the ratio was 0: 1.5: 4.5: 1.0), the raw material conversion rate, the yield of gamma-butyrolactone (GBL), and the selectivity were improved.
In Comparative Example 3 in which the reaction temperature was 200 ° C., the raw material conversion rate, the yield and selectivity of gamma-butyrolactone (GBL) were lower than those in Example 19 in which the reaction temperature was over 200 ° C. Further, in Comparative Example 4 in which 1,4-butanediol (1,4-BDO) was used as the raw material, the conversion rate of the raw material, the yield of gamma-butyrolactone (GBL) and the selectivity were low.
(実施例20~23)
 表4に記載の触媒および反応条件を用いた以外は、実施例1と同様にして、反応を行った。実施例20~23では、2HTHF等の水溶液の送液量(流速)と窒素ガスの流速を変更し、これらの比率を固定して、原料物質と触媒との接触時間(W/F)を変更した。結果を表4に示す。
(実施例24~26)
 表4に記載の触媒および反応条件を用いた以外は、実施例1と同様にして、反応を行った。実施例24~26では、2HTHF等の水溶液中における2HTHF等の濃度を50質量%とし、原料物質と触媒との接触時間(W/F)を変更した。結果を表4に示す。
 なお、実施例24~26に用いた触媒の調製においては、200℃の水素ガスを流量30mL/minで1時間流通させて、酸化銅の水素還元を行った。
(Examples 20 to 23)
The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 4 were used. In Examples 20 to 23, the amount (flow rate) of the aqueous solution such as 2HTHH and the flow rate of the nitrogen gas are changed, these ratios are fixed, and the contact time (W / F) between the raw material and the catalyst is changed. did. The results are shown in Table 4.
(Examples 24-26)
The reaction was carried out in the same manner as in Example 1 except that the catalysts and reaction conditions shown in Table 4 were used. In Examples 24 to 26, the concentration of 2HTHF and the like in an aqueous solution of 2HTHF and the like was set to 50% by mass, and the contact time (W / F) between the raw material and the catalyst was changed. The results are shown in Table 4.
In the preparation of the catalyst used in Examples 24 to 26, hydrogen gas at 200 ° C. was circulated at a flow rate of 30 mL / min for 1 hour to reduce copper oxide with hydrogen.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 実施例20~23の結果から、2HTHF等の水溶液の送液量(流速)と窒素ガスの流速との比率を固定した場合、原料物質と触媒との接触時間(W/F)が大きいほど、ガンマブチロラクトン(GBL)の収率が向上することが確認できた。また、実施例24~26の結果から、2HTHF等の濃度が50質量%と高濃度であっても、原料物質と触媒との接触時間(W/F)を大きくすることで、ガンマブチロラクトン(GBL)の収率が向上することが確認できた。 From the results of Examples 20 to 23, when the ratio of the liquid feed amount (flow rate) of an aqueous solution such as 2HTHF to the flow rate of nitrogen gas is fixed, the larger the contact time (W / F) between the raw material and the catalyst, the more. It was confirmed that the yield of gamma-butyrolactone (GBL) was improved. Further, from the results of Examples 24 to 26, even if the concentration of 2HTHF or the like is as high as 50% by mass, gamma-butyrolactone (GBL) can be obtained by increasing the contact time (W / F) between the raw material and the catalyst. ) Was confirmed to be improved.
(4)N-メチルピロリドン(NMP)の製造
 ステンレス製の容量100mLのオートクレーブの反応容器内に、実施例4で得たガンマブチロラクトン(GBL)12.92gと、40%モノメチルアミン水溶液(富士フイルム和光純薬社製)12.89gと、溶媒としての水51.66gとを入れた。そして、窒素ガス雰囲気下で、反応開始圧力を101.3kPaとし、240℃で3時間撹拌しながら反応させてN-メチルピロリドンを生成させた。
(4) Production of N-Methylpyrrolidone (NMP) 12.92 g of gamma-butyrolactone (GBL) obtained in Example 4 and a 40% monomethylamine aqueous solution (Fujifilm sum) were placed in a stainless steel autoclave reaction vessel having a capacity of 100 mL. 12.89 g (manufactured by Kojun Yakuhin Co., Ltd.) and 51.66 g of water as a solvent were added. Then, in a nitrogen gas atmosphere, the reaction starting pressure was set to 101.3 kPa, and the reaction was carried out at 240 ° C. for 3 hours with stirring to generate N-methylpyrrolidone.
 得られたN-メチルピロリドンを含む反応液を、液体クロマトグラフィーを用いて分析し、ガンマブチロラクトン(GBL)の転化率と、N-メチルピロリドンの収率とを求めた。その結果、GBLの転化率は98.4%であり、NMPの収率は97.9%であった。
 このことから、実施例4で得たガンマブチロラクトン(GBL)を用いて、効率よくN-メチルピロリドンを製造できることが確認できた。
The obtained reaction solution containing N-methylpyrrolidone was analyzed by liquid chromatography to determine the conversion rate of gamma-butyrolactone (GBL) and the yield of N-methylpyrrolidone. As a result, the conversion rate of GBL was 98.4%, and the yield of NMP was 97.9%.
From this, it was confirmed that N-methylpyrrolidone can be efficiently produced by using the gamma-butyrolactone (GBL) obtained in Example 4.
 本発明は、生産性の良好なガンマブチロラクトンの製造方法を提供する。
 本発明のガンマブチロラクトンの製造方法は、生産性が良好であるため、ガンマブチロラクトンの工業的な製造方法として好適である。
The present invention provides a method for producing gamma-butyrolactone having good productivity.
The method for producing gamma-butyrolactone of the present invention has good productivity and is therefore suitable as an industrial method for producing gamma-butyrolactone.

Claims (20)

  1.  2-ヒドロキシテトラヒドロフランおよび4-ヒドロキシブチルアルデヒドの一方又は両方からなる原料物質と、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅とを含む触媒とを、200℃超の反応温度で接触させて、ガンマブチロラクトンを生成する反応工程を有することを特徴とする、ガンマブチロラクトンの製造方法。 A catalyst containing a raw material consisting of one or both of 2-hydroxytetrahydrofuran and 4-hydroxybutyraldehyde, an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum, and copper. A method for producing gamma-butyrolactone, which comprises a reaction step of producing gamma-butyrolactone by contacting the mixture at a reaction temperature exceeding ° C.
  2.  前記反応工程において、前記原料物質を1~30質量%含有する水溶液を気化させて前記触媒と接触させる、請求項1に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to claim 1, wherein in the reaction step, an aqueous solution containing 1 to 30% by mass of the raw material is vaporized and brought into contact with the catalyst.
  3.  前記反応工程において、前記原料物質を気化させて、前記触媒にガス空間速度(GHSV)20000~300000hr-1で接触させる、請求項1または請求項2に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to claim 1 or 2, wherein in the reaction step, the raw material is vaporized and brought into contact with the catalyst at a gas space velocity (GHSV) of 20000 to 300,000 hr- 1.
  4.  前記反応工程において、前記原料物質と前記触媒とを400℃以下の反応温度で接触させる、請求項1~請求項3のいずれか一項に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to any one of claims 1 to 3, wherein in the reaction step, the raw material and the catalyst are brought into contact with each other at a reaction temperature of 400 ° C. or lower.
  5.  前記触媒が、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含有する、請求項1~請求項4のいずれか一項に記載のガンマブチロラクトンの製造方法。 The method for producing gamma butyrolactone according to any one of claims 1 to 4, wherein the catalyst contains zinc, zirconium, and aluminum oxides, and metallic copper.
  6.  前記触媒が、さらにクロムの酸化物を含有する、請求項1~5のいずれか一項に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to any one of claims 1 to 5, wherein the catalyst further contains an oxide of chromium.
  7.  前記反応工程の前に、
     一酸化炭素と水素(H)との混合ガスを用いて、アリルアルコールをヒドロホルミル化反応させることにより、前記原料物質を生成する原料生成工程を有する、請求項1~請求項6のいずれか一項に記載のガンマブチロラクトンの製造方法。
    Before the reaction step,
    Any one of claims 1 to 6, which comprises a raw material producing step of producing the raw material by hydroformylating allyl alcohol using a mixed gas of carbon monoxide and hydrogen (H 2). The method for producing gamma butyrolactone according to the section.
  8.  前記原料生成工程において、有機リン化合物配位子およびロジウム錯体からなる触媒の存在下で前記アリルアルコールをヒドロホルミル化反応させる、請求項7に記載のガンマブチロラクトンの製造方法。 The method for producing a gamma butyrolactone according to claim 7, wherein in the raw material production step, the allyl alcohol is hydroformylated in the presence of a catalyst composed of an organophosphorus compound ligand and a rhodium complex.
  9.  前記混合ガスは、一酸化炭素に対する水素のモル比が0.1~10である、請求項7または請求項8に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to claim 7 or 8, wherein the mixed gas has a molar ratio of hydrogen to carbon monoxide of 0.1 to 10.
  10.  前記アリルアルコールのヒドロホルミル化反応を0.1~10MPaの反応圧力で行う、請求項7~請求項9のいずれか一項に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to any one of claims 7 to 9, wherein the hydroformylation reaction of the allyl alcohol is carried out at a reaction pressure of 0.1 to 10 MPa.
  11.  前記アリルアルコールのヒドロホルミル化反応を0~150℃の反応温度で行う、請求項7~請求項10のいずれか一項に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to any one of claims 7 to 10, wherein the hydroformylation reaction of the allyl alcohol is carried out at a reaction temperature of 0 to 150 ° C.
  12.  前記触媒が、銅1モルに対して、亜鉛0.01~0.2モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モルを含む、請求項1~請求項11のいずれか一項に記載のガンマブチロラクトンの製造方法。 Any one of claims 1 to 11, wherein the catalyst contains 0.01 to 0.2 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper. The method for producing gamma butyrolactone according to the item.
  13.  前記触媒が、銅1モルに対して、亜鉛0.01~0.5モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モル、クロム0.01~0.3モルを含む、請求項6~請求項11のいずれか一項に記載のガンマブチロラクトンの製造方法。 Claimed that the catalyst comprises 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum and 0.01 to 0.3 mol of chromium with respect to 1 mol of copper. The method for producing gamma butyrolactone according to any one of items 6 to 11.
  14.  請求項1~請求項13のいずれか一項に記載のガンマブチロラクトンの製造方法を用いてガンマブチロラクトンを製造する工程と、
     製造した前記ガンマブチロラクトンと、モノメチルアミンとを反応させる工程とを含む、N-メチルピロリドンの製造方法。
    A step of producing gamma-butyrolactone using the method for producing gamma-butyrolactone according to any one of claims 1 to 13.
    A method for producing N-methylpyrrolidone, which comprises a step of reacting the produced gamma-butyrolactone with monomethylamine.
  15.  亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅とを含む、ガンマブチロラクトン製造用触媒。 A catalyst for producing gamma-butyrolactone containing an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum and copper.
  16.  2-ヒドロキシテトラヒドロフランおよび4-ヒドロキシブチルアルデヒドの一方又は両方からなる原料物質から、ガンマブチロラクトンを生成する製造に用いられる、請求項15に記載のガンマブチロラクトン製造用触媒。 The catalyst for producing gamma-butyrolactone according to claim 15, which is used for producing gamma-butyrolactone from a raw material composed of one or both of 2-hydroxytetrahydrofuran and 4-hydroxybutyraldehyde.
  17.  前記触媒が、亜鉛、ジルコニウム及びアルミニウムの各酸化物、並びに金属銅を含有する、請求項15または16に記載のガンマブチロラクトン製造用触媒。 The catalyst for producing gamma butyrolactone according to claim 15 or 16, wherein the catalyst contains zinc, zirconium, and aluminum oxides, and metallic copper.
  18.  前記触媒が、さらにクロムの酸化物を含有する、請求項15~17のいずれか一項に記載のガンマブチロラクトン製造用触媒。 The catalyst for producing gamma-butyrolactone according to any one of claims 15 to 17, wherein the catalyst further contains an oxide of chromium.
  19.  前記触媒が、銅1モルに対して、亜鉛0.01~0.2モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モルを含む、請求項15~18のいずれか一項に記載のガンマブチロラクトン製造用触媒。 The catalyst according to any one of claims 15 to 18, wherein the catalyst contains 0.01 to 0.2 mol of zinc, 0.01 to 1 mol of zirconium, and 0.05 to 3 mol of aluminum with respect to 1 mol of copper. The catalyst for producing gamma butyrolactone according to the above.
  20.  前記触媒が、銅1モルに対して、亜鉛0.01~0.5モル、ジルコニウム0.01~1モル、アルミニウム0.05~3モル、クロム0.01~0.3モルを含む、請求項18に記載のガンマブチロラクトン製造用触媒。 The catalyst comprises 0.01 to 0.5 mol of zinc, 0.01 to 1 mol of zirconium, 0.05 to 3 mol of aluminum and 0.01 to 0.3 mol of chromium with respect to 1 mol of copper. Item 18. The catalyst for producing gamma butyrolactone according to Item 18.
PCT/JP2020/033432 2019-09-06 2020-09-03 Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone WO2021045153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021544025A JPWO2021045153A1 (en) 2019-09-06 2020-09-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162951 2019-09-06
JP2019162951 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045153A1 true WO2021045153A1 (en) 2021-03-11

Family

ID=74853251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033432 WO2021045153A1 (en) 2019-09-06 2020-09-03 Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone

Country Status (3)

Country Link
JP (1) JPWO2021045153A1 (en)
TW (1) TWI776225B (en)
WO (1) WO2021045153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080071A1 (en) * 2021-11-02 2023-05-11 株式会社レゾナック Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545646A (en) * 1978-09-29 1980-03-31 Toyo Soda Mfg Co Ltd Preparation of hydroxybutylaldehyde
JPS56166185A (en) * 1980-04-23 1981-12-21 Stamicarbon Manufacture of 2-hydroxytetrahydrofuran
JPS61246173A (en) * 1985-04-23 1986-11-01 Idemitsu Petrochem Co Ltd Productionof gamma-butyrolactone
JPH09505067A (en) * 1993-11-18 1997-05-20 ビーエーエスエフ アクチェンゲゼルシャフト Production method of γ-butyrolactone
JP2002371075A (en) * 2001-06-14 2002-12-26 Chisso Corp Method for producing lactone
JP2003512453A (en) * 1999-10-27 2003-04-02 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing N-methylpyrrolidone using a mixture of gamma-butyl lactone and methylamine as starting material
JP2011507830A (en) * 2007-12-21 2011-03-10 イス・ケミカル・カンパニー・リミテッド Method for producing N-methylpyrrolidone
KR20110058002A (en) * 2009-11-25 2011-06-01 에스케이이노베이션 주식회사 Process for preparing of n-methyl pyrrolidone from 1,4-butanediol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545646A (en) * 1978-09-29 1980-03-31 Toyo Soda Mfg Co Ltd Preparation of hydroxybutylaldehyde
JPS56166185A (en) * 1980-04-23 1981-12-21 Stamicarbon Manufacture of 2-hydroxytetrahydrofuran
JPS61246173A (en) * 1985-04-23 1986-11-01 Idemitsu Petrochem Co Ltd Productionof gamma-butyrolactone
JPH09505067A (en) * 1993-11-18 1997-05-20 ビーエーエスエフ アクチェンゲゼルシャフト Production method of γ-butyrolactone
JP2003512453A (en) * 1999-10-27 2003-04-02 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing N-methylpyrrolidone using a mixture of gamma-butyl lactone and methylamine as starting material
JP2002371075A (en) * 2001-06-14 2002-12-26 Chisso Corp Method for producing lactone
JP2011507830A (en) * 2007-12-21 2011-03-10 イス・ケミカル・カンパニー・リミテッド Method for producing N-methylpyrrolidone
KR20110058002A (en) * 2009-11-25 2011-06-01 에스케이이노베이션 주식회사 Process for preparing of n-methyl pyrrolidone from 1,4-butanediol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080071A1 (en) * 2021-11-02 2023-05-11 株式会社レゾナック Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound

Also Published As

Publication number Publication date
TW202124368A (en) 2021-07-01
JPWO2021045153A1 (en) 2021-03-11
TWI776225B (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6501754B2 (en) Method for producing methyl methacrylate
US8877966B2 (en) Process for preparing acrylic acid from methanol and acetic acid
KR101985035B1 (en) Integrated process for the preparation of 1,4-cyclohexanedimethanol from terephtalic acid
KR101985034B1 (en) Process for the preparation of 1,4-cyclohexanedimethanol from terephthalic acid
EP0175558A1 (en) Process for the vapor phase hydrogenation of carboxylic acids to esters and alcohols
KR20110011603A (en) Catalyst for producing acrolein and acrylic acid through glycerin dehydration and production method of same
JP6060906B2 (en) Method for producing high-purity 1,5-pentanediol
US20060079711A1 (en) Method of producing diol derivatives
KR20140058584A (en) Process for the preparation of 1,4-cyclohexanedimethanol
US9790155B2 (en) Polyether diol and method for producing the same
EP2591854A1 (en) Novel glycerol dehydration catalyst and production method therefor
WO2021045153A1 (en) Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone
KR101205897B1 (en) The noble metal based catalyst supported on complex metal oxide and the method for the producing of 1,2-propanediol
WO2020161750A1 (en) Process of preparation of 1,2-pentanediol from furfural
KR20010079700A (en) Method for producing catalysts for synthesising maleic anhydride by means of gas phase oxidation
CN117545554A (en) Method for preparing a water gas shift catalyst, catalyst and method for reducing carbon monoxide content
US9120743B2 (en) Integrated process for the production of acrylic acids and acrylates
KR100982831B1 (en) Method for preparing heteropoly acid catalyst
US11377411B2 (en) Method for producing 3-methylcycloalkenone compound
CN108137463B (en) Method for producing acrylic acid from glycerol
EP4129963A1 (en) Catalyst, method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
US20230372903A1 (en) Catalysts for selective oxidation of methanol to dimethoxymethane and related methods
JP3783243B2 (en) Method for producing alcohol and catalyst precursor therefor
JP4432205B2 (en) Esters manufacturing method
JP2023167855A (en) Acetone hydrogenation catalyst and method for producing isopropanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861048

Country of ref document: EP

Kind code of ref document: A1