JPS5920656B2 - Method for producing oil-dispersible metal salt-organic acid metal salt complex - Google Patents

Method for producing oil-dispersible metal salt-organic acid metal salt complex

Info

Publication number
JPS5920656B2
JPS5920656B2 JP4608577A JP4608577A JPS5920656B2 JP S5920656 B2 JPS5920656 B2 JP S5920656B2 JP 4608577 A JP4608577 A JP 4608577A JP 4608577 A JP4608577 A JP 4608577A JP S5920656 B2 JPS5920656 B2 JP S5920656B2
Authority
JP
Japan
Prior art keywords
metal salt
acid
metal
organic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4608577A
Other languages
Japanese (ja)
Other versions
JPS53132502A (en
Inventor
英松 大西
直秀 小竹
敏雄 鈴木
芳仁 安斉
正男 井沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Organic Chemicals Co Ltd
Original Assignee
Sankyo Organic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Organic Chemicals Co Ltd filed Critical Sankyo Organic Chemicals Co Ltd
Priority to JP4608577A priority Critical patent/JPS5920656B2/en
Publication of JPS53132502A publication Critical patent/JPS53132502A/en
Publication of JPS5920656B2 publication Critical patent/JPS5920656B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】 本発明は、油中分散性金属塩一有機酸金属塩複合体(以
下複合体という)の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oil-dispersible metal salt-organic acid metal salt complex (hereinafter referred to as the complex).

更に詳しくは、鉄、マンガン、ニッケル、コバルトの含
有率の高い複合体の製造法に関するものである。周知の
ように、鉄、マンガン、ニッケル、コバルトの有機酸金
属塩は、潤滑油添加剤、燃料油添加剤、合成樹脂添加剤
、合成用触媒、塗料添加剤、防錆剤等として使用され有
用なものである。
More specifically, the present invention relates to a method for producing a composite material having a high content of iron, manganese, nickel, and cobalt. As is well known, organic acid metal salts of iron, manganese, nickel, and cobalt are useful as lubricating oil additives, fuel oil additives, synthetic resin additives, synthesis catalysts, paint additives, rust preventives, etc. It is something.

これら有機酸金属塩の例としては、ナフテン酸、2ーエ
チルヘキシル酸、リシノレイン酸、ネオデカン酸等の金
属塩が広く知られているが、金属含有率も4%〜10%
位で低く、いずれも固体ないしは高粘度のもので、通常
は稀釈剤で稀釈調整されて使用されている。その場合に
は金属含有率が更に低下し、数%程度となり、これらの
稀釈された添加剤を使用すると、添加量が増加し被添加
液の本来の物性を低下させる等の不都合な面が多かつた
。本発明者等はこれらの問題点を解決すべく研究を重ね
た結果、有機溶剤中で或る種の有機カルボン酸又は有機
スルホン酸金属中性塩と、或る種の水溶性無機金属塩と
水酸化アルカリとを反応させ、・これに酸素及び/又は
過酸化水素を反応させることにより、金属含有率が高く
、且つ低粘度で取扱い容易な複合体を製造する方法を見
出し、本発明を完成した。本発明の複合体の製造法を更
に詳しく述べると、有機カルボン酸および有機スルホン
酸の各金属中性塩は、前記の酸と金属酸化物又は金属水
酸化物との反応、又は前記の酸のアルカリ塩と水溶性無
機金属塩との複分解反応により製造することが出来る。
As examples of these organic acid metal salts, metal salts such as naphthenic acid, 2-ethylhexylic acid, ricinoleic acid, and neodecanoic acid are widely known, but the metal content is also 4% to 10%.
All of them are solid or highly viscous, and are usually diluted with a diluent before use. In that case, the metal content further decreases to about several percent, and when these diluted additives are used, there are many disadvantages such as an increase in the amount added and a decrease in the original physical properties of the liquid to be added. Katta. As a result of repeated research in order to solve these problems, the present inventors discovered that a certain kind of organic carboxylic acid or organic sulfonic acid metal neutral salt and a certain water-soluble inorganic metal salt and a certain kind of organic carboxylic acid or organic sulfonic acid metal salt in an organic solvent. The present invention was accomplished by discovering a method for producing a complex with a high metal content, low viscosity, and easy handling by reacting alkali hydroxide with oxygen and/or hydrogen peroxide. did. To describe the method for producing the composite of the present invention in more detail, each metal neutral salt of an organic carboxylic acid and an organic sulfonic acid is prepared by reacting the above acid with a metal oxide or metal hydroxide, or by reacting the above acid with a metal oxide or metal hydroxide. It can be produced by a double decomposition reaction between an alkali salt and a water-soluble inorganic metal salt.

これに水溶性無機金属塩と水酸化アルカリとを反応させ
、これを酸素及び/又は過酸化水素によつて酸化し、酸
化により高次の原子価に変換した酸化物、水酸化物等の
金属化合物をコロイド状に分散せしめることにより、金
属含有率の高い複合体を製造することが出来る。又、当
該有機カルボン酸又は有機スルホン酸の金属中性塩を予
め作ることなく、同一系内で有機カルボン酸又は有機ス
ルホン酸と、その有機酸を中性塩にするに必要な量及び
更に金属濃度を高めるための材料としての水酸化アルカ
リ及び水溶性無機金属塩とを同時に混合して反応させ、
これを酸素及び/又は過酸化水素によつて酸化していく
工程もとることが出来る。鉄金属を例にとれは、鉄は2
価、3価等の塩を作るが、2価の鉄を後工程の酸素酸化
により3価の鉄等に変換させるものである。本発明で用
いられる有機カルボン酸はナフテン酸又は炭素数8−1
8個を有する飽和又は不飽和の脂肪族カルボン酸で、そ
の例としてはナフテン酸、オクチル酸、ラウリン酸、リ
シノレイン酸、オレイン酸等を挙げることができ、最も
好ましい例としてはナフテン酸を挙げることができる。
This is reacted with a water-soluble inorganic metal salt and an alkali hydroxide, and this is oxidized with oxygen and/or hydrogen peroxide to produce metals such as oxides and hydroxides that are converted to higher valence by oxidation. By dispersing the compound in colloidal form, a composite with a high metal content can be produced. In addition, without making the metal neutral salt of the organic carboxylic acid or organic sulfonic acid in advance, it is possible to combine the organic carboxylic acid or organic sulfonic acid in the same system with the amount necessary to make the organic acid into a neutral salt, and also the metal. Alkaline hydroxide and water-soluble inorganic metal salt as materials for increasing concentration are simultaneously mixed and reacted,
A step of oxidizing this with oxygen and/or hydrogen peroxide can also be taken. Taking ferrous metals as an example, iron is 2
In this process, valent and trivalent salts are produced, and divalent iron is converted to trivalent iron through oxygen oxidation in the subsequent process. The organic carboxylic acid used in the present invention is naphthenic acid or carbon number 8-1.
A saturated or unsaturated aliphatic carboxylic acid having 8 carboxylic acids, examples of which include naphthenic acid, octylic acid, lauric acid, ricinoleic acid, oleic acid, and the most preferred example is naphthenic acid. Can be done.

本発明で用いられる有機スルホン酸は石油スルホン酸、
炭素数15〜30個を有するモノアルキルベンゼンスル
ホン酸又はジアルキルベンゼンスルホン酸であり、その
例としてはモノノニルベンゼンスルホン酸、モノデシル
ベンゼンスルホン酸、モノドデシルベンゼンスルホン酸
、モノヘキシルモノドデシルベンゼンスルホン酸、ジノ
ニルベンゼンスルホン酸、ジデシルベンゼンスルホン酸
、ジドデシルベンゼンスルホン酸等を挙げることができ
、最も好ましい例としては、モノドデシルベンゼンスル
ホン酸、分子量350〜520の石油スルホン酸を挙げ
ることができる。本発明で用いられる有機カルボン酸又
は有機スルホン酸の金属中性塩の金属としては、ナトリ
ウム、バリウム、カルシウム、マグネシウム、鉄、マン
ガン、ニツケル、コバルトを挙げることができ、好まし
い例としては、鉄、マンガンを挙げることができる。こ
れら金属に結合する酸基は、金属に結合して油溶性にな
る酸基が必要であり、それぞれの金属によつて適宜選択
される。本発明で用いられる水溶性無機金属塩は、2価
の鉄、マンガン、ニツケル、コバルトの塩化物、硫酸塩
、硝酸塩、臭化物、ヨウ化物であり、その例としては、
塩化第一鉄、塩化第一マンガン、塩化第一ニツケル、塩
化第一コバルト、硫酸第一鉄、硫酸第一マンガン、硫酸
第一ニツケル、硫酸第一コバルト、硝酸第一鉄、硝酸第
一マンガン、硝酸第一ニツケル、硝酸第一コバルト、臭
化第一鉄、臭化第一マンガン、ヨウ化第一鉄、ヨウ化第
一マンガン等を挙げることができ、好ましい例としては
、塩化第一鉄、塩化第一マンガン、塩化第一ニツケル、
塩化第一コバルト、硫酸第一鉄、硫酸第一マンガン、硫
酸第一ニツケル、硝酸第一鉄、硝酸第一マンガン、硝酸
第一コバルトを挙げることができる。これらの水溶性無
機金属塩は、水溶液の状態でも使用することができる。
水溶性の無機金属塩の使用量は、最終の複合体の濃度に
よつて、適宜決定すべきであるが、有機カルボン酸又は
有機スルホン酸の金属中性塩に対して1〜15倍モルが
好ましく、特に好ましくは2〜10倍モルである。この
範囲を超えると、未反応物が残り、かつ不経済でもある
。本発明で用いられる水酸化アルカリの例としては、水
酸化ナトリウム、水酸化カリウム、水酸化アンモニウム
等を挙げることができ、水溶液の状態で反応系に加える
ことが好ましいが、すでに反応系に水が存在する場合は
、水に溶解することなく用いることができる。
The organic sulfonic acids used in the present invention are petroleum sulfonic acid,
Monoalkylbenzenesulfonic acid or dialkylbenzenesulfonic acid having 15 to 30 carbon atoms, examples of which are monononylbenzenesulfonic acid, monodecylbenzenesulfonic acid, monododecylbenzenesulfonic acid, monohexylmonododecylbenzenesulfonic acid, Examples include dinonylbenzenesulfonic acid, didecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, and the most preferred examples include monododecylbenzenesulfonic acid and petroleum sulfonic acid having a molecular weight of 350 to 520. Examples of the metal of the metal neutral salt of organic carboxylic acid or organic sulfonic acid used in the present invention include sodium, barium, calcium, magnesium, iron, manganese, nickel, and cobalt. Preferred examples include iron, Manganese can be mentioned. The acid group that binds to these metals needs to be oil-soluble by binding to the metal, and is appropriately selected depending on each metal. The water-soluble inorganic metal salts used in the present invention are chlorides, sulfates, nitrates, bromides, and iodides of divalent iron, manganese, nickel, and cobalt, and examples thereof include:
Ferrous chloride, manganese chloride, nickel chloride, cobaltous chloride, ferrous sulfate, manganous sulfate, nickel sulfate, cobaltous sulfate, ferrous nitrate, manganous nitrate, Examples include nickel nitrate, cobaltous nitrate, ferrous bromide, manganese bromide, ferrous iodide, manganese iodide, etc., and preferred examples include ferrous chloride, manganous chloride, nickel chloride,
Mention may be made of cobaltous chloride, ferrous sulfate, manganous sulfate, nickelous sulfate, ferrous nitrate, manganous nitrate, and cobaltous nitrate. These water-soluble inorganic metal salts can also be used in the form of an aqueous solution.
The amount of the water-soluble inorganic metal salt to be used should be determined appropriately depending on the concentration of the final complex, but it is 1 to 15 times the molar amount of the metal neutral salt of the organic carboxylic acid or organic sulfonic acid. Preferably, it is particularly preferably 2 to 10 times the molar amount. If it exceeds this range, unreacted substances remain and it is also uneconomical. Examples of the alkali hydroxide used in the present invention include sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc., and it is preferable to add it to the reaction system in the form of an aqueous solution, but water may already be present in the reaction system. If present, it can be used without being dissolved in water.

通常水酸化アルカリの濃度は20〜50%が好ましく、
使用する水酸化アルカリの量は、水溶性無機金属塩を2
価の酸化物または水酸化物に変換するに必要な量または
や\過剰量が用いられる。本発明に用いられる溶剤の例
としては、ベンゼン、トルエン、キシレン、灯油、ノル
マルヘプタン、ノルマルオクタン等の無極性溶剤を挙げ
ることができ、必要に応じては、アルコール等の極性溶
剤を少量併用することができる。
Usually, the concentration of alkali hydroxide is preferably 20 to 50%,
The amount of alkali hydroxide used is 2 times the amount of water-soluble inorganic metal salt.
The amount necessary for conversion to the valent oxide or hydroxide or a slight excess is used. Examples of the solvent used in the present invention include nonpolar solvents such as benzene, toluene, xylene, kerosene, normal heptane, and normal octane, and if necessary, a small amount of a polar solvent such as alcohol may be used in combination. be able to.

本発明において、有機カルボン酸又は有機スルホン酸の
金属中性塩、水溶性無機金属塩、水酸化アルカリ、有機
溶剤等の混合順序、混合温度等に特に制限はないが、有
機溶剤、有機カルボン酸又は有機スルホン酸の金属中性
塩、水溶性無機金属塩、水酸化アルカリの順に加えるの
が好ましく、且つ攪拌されていることが好ましい。
In the present invention, there are no particular restrictions on the mixing order, mixing temperature, etc. of metal neutral salts of organic carboxylic acids or organic sulfonic acids, water-soluble inorganic metal salts, alkali hydroxides, organic solvents, etc.; Alternatively, it is preferable to add the metal neutral salt of organic sulfonic acid, the water-soluble inorganic metal salt, and the alkali hydroxide in this order, and preferably to stir the mixture.

混合温度は50〜130℃が好ましい。本発明において
、酸化反応は酸素及び/又は過酸化水素で行うが、酸素
源としては空気も使用出来る。
The mixing temperature is preferably 50 to 130°C. In the present invention, the oxidation reaction is carried out using oxygen and/or hydrogen peroxide, but air can also be used as the oxygen source.

酸化反応に必要な酸素の量は、本発明に用いられる2価
の金属の原子価を2価から3価等に変換させる量が最低
必要であり、通常大過剰に使用するが、過酸化水素の場
合は、や\過剰でよい。
The amount of oxygen required for the oxidation reaction is the minimum amount required to convert the valence of the divalent metal used in the present invention from divalent to trivalent, etc., and is usually used in large excess, but hydrogen peroxide In this case, it may be too much.

この酸化反応の反応温度は、40〜150℃で、好まし
くは60〜90℃であり、酸化の方法は酸素又は空気を
反応系に吹き込むか、または過酸化水素を滴下する方法
にて行うことができる。この酸化反応が終了したら、反
応系に存在する水を分液または蒸溜によつて、系外に除
去する。分液により水を除去する場合には、副生する塩
化ナトリウム又は硫酸ナトリウム等のアルカリ塩を溶解
した下層の水層を分液により、その大部分を分離し、上
層の油層に残存する少量の水は蒸留によつて除去し、そ
の後に油層中の少量の水に溶解していたアルカリ塩は析
出するのでこれをろ過により除去出来る。又、蒸留によ
る場合は、溶剤との共沸蒸留及び減圧蒸留により系外へ
除去し、系内に析出した多量のアルカリ塩を淵過により
除去することによつて、常温で液体の複合体が得られる
。この液体は有機溶剤を含んでおり、通常このま\でも
添加剤として使用し得るが、更に溶剤を追加したり、溶
剤を一部又は全量を他の溶剤と置換して濃度調製、溶剤
組成の調製等も出来る。次に、本発明方法を実施例で具
体的に示す。
The reaction temperature of this oxidation reaction is 40 to 150°C, preferably 60 to 90°C, and the oxidation can be carried out by blowing oxygen or air into the reaction system, or by dropping hydrogen peroxide. can. After this oxidation reaction is completed, water present in the reaction system is removed from the system by liquid separation or distillation. When removing water by liquid separation, the lower aqueous layer in which the by-produced alkali salts such as sodium chloride or sodium sulfate are dissolved is separated by liquid separation, and a small amount remaining in the upper oil layer is removed. Water is removed by distillation, and then the alkali salts dissolved in a small amount of water in the oil layer precipitate and can be removed by filtration. In addition, in the case of distillation, the complex, which is liquid at room temperature, is removed by removing it from the system by azeotropic distillation with a solvent and distillation under reduced pressure, and removing a large amount of alkali salts precipitated in the system by filtration. can get. This liquid contains an organic solvent and can normally be used as an additive as is, but it is possible to adjust the concentration or change the solvent composition by adding more solvent or replacing part or all of the solvent with another solvent. It can also be prepared. Next, the method of the present invention will be specifically illustrated with examples.

実施例中の金属比は次式で求めた。実施例 1 100t反応機に灯油141<g、ナフテン酸鉄中性塩
6.0kg(9.4モル)、塩化第一鉄.四水塩6.1
kg(30.6モル)、20%水酸化ナトリウム水溶液
13.0kg(65モル)を攪拌しながら仕込み、混合
しこの溶液に80〜90℃で空気を25〜28t/Mm
の割合で3時間吹き込み酸化反応を行つた。
The metal ratio in the examples was determined by the following formula. Example 1 A 100-ton reactor was charged with 141<g of kerosene, 6.0 kg (9.4 mol) of iron naphthenate neutral salt, and ferrous chloride. Tetrahydrate salt 6.1
kg (30.6 moles) and 13.0 kg (65 moles) of a 20% aqueous sodium hydroxide solution were charged with stirring, mixed, and air was added to this solution at 80 to 90°C at a rate of 25 to 28 t/Mm.
The oxidation reaction was carried out by blowing at a rate of 3 hours.

反応終了後、水を溜去させ、次にろ過助剤を用いてろ過
した後、戸液中の灯油を減圧下で7.0kg溜去すると
、Fe含有量16.5%、金属比3.97の複合体が1
2.7kg得られた。収率は92.0%であつた。実施
例 2 100t反応機にナフテン酸鉄中性塩10.9k9(1
7.1モル)トルエン20.0kg、硫酸第一鉄・七水
塩14.1kg(50.7モノ(ハ)、30%一水酸化
ナトリウム水溶液14.9kg(111.7モル)を撹
拌しながら仕込み、混合しこの溶液に80〜90℃で空
気を25〜27t/Mmの割合で3時間吹き込み酸化反
応を行つた。
After the reaction was completed, the water was distilled off, then filtered using a filter aid, and 7.0 kg of kerosene in the liquid was distilled off under reduced pressure, resulting in an Fe content of 16.5% and a metal ratio of 3. 97 complexes are 1
2.7 kg was obtained. The yield was 92.0%. Example 2 10.9k9 (1
7.1 mol) Toluene 20.0 kg, ferrous sulfate heptahydrate 14.1 kg (50.7 mono(c), 30% sodium monohydroxide aqueous solution 14.9 kg (111.7 mol) while stirring After charging and mixing, air was blown into the solution at a rate of 25 to 27 t/Mm at 80 to 90°C for 3 hours to carry out an oxidation reaction.

反応終了後、水を溜去させ、次に淵過助剤を用いて淵過
した後、戸液中のトルエンを全量減圧下で溜去させ、ス
プレー灯油を7kg加えると、Fe含有量15.7%、
金属比3.68の複合体が21.9kg得られた。収率
は90.8%であつた。実施例 3 50t反応機にナフテン酸鉄中性塩3.3kg(5.2
モル)、トルエン6.0kg、スプレー灯油2.4kg
、硫酸第一鉄・七水塩7.31<9(26.3モル)、
20%水酸化ナトリウム水溶液11.5kg(57.5
モル)を、攪拌しながら仕込み、80〜90℃で30分
間混合した後、60〜70℃で17.5%過酸化水素3
.01<gを徐々に滴下し酸化反応を行つた。
After the reaction was completed, the water was distilled off, and then the water was filtered using a deep filter aid, and the entire amount of toluene in the liquid was distilled off under reduced pressure. When 7 kg of spray kerosene was added, the Fe content was 15. 7%,
21.9 kg of a composite with a metal ratio of 3.68 was obtained. The yield was 90.8%. Example 3 3.3 kg of iron naphthenate neutral salt (5.2
mole), toluene 6.0kg, spray kerosene 2.4kg
, ferrous sulfate heptahydrate 7.31<9 (26.3 mol),
20% sodium hydroxide aqueous solution 11.5 kg (57.5
mol) with stirring, mixed for 30 minutes at 80-90°C, and then added 17.5% hydrogen peroxide at 60-70°C.
.. 01<g was gradually added dropwise to carry out an oxidation reaction.

反応終了後、水を分液し油層を脱水後ろ過助剤を用いて
ろ過を行い淵液中のトルエンを全量減圧下で溜去させる
と、Fe含有量19.4%、金属比5.20の複合体が
7.6kg得られた。収率は93.7%であつた。実施
例 4 100t反応機に、ナフテン酸7.5kg(24,95
モノ(ハ)、トルエン31.41<g、スプレー灯油5
.21<9、水酸化ナトリウム6.5kg(162.5
モル)、水19.8kg、硫酸第一鉄・七水塩22.1
1<g(79.5モル)を攪拌しながら仕込み、還流下
1時間反応後、7.5%過酸化水素12.6kgを40
分間で滴下つ し酸化反応を行なつた。
After the reaction, the water was separated, the oil layer was dehydrated, filtered using a filter aid, and all the toluene in the bottom liquid was distilled off under reduced pressure, resulting in a Fe content of 19.4% and a metal ratio of 5.20. 7.6 kg of the complex was obtained. The yield was 93.7%. Example 4 7.5 kg of naphthenic acid (24,95 kg
Mono(c), toluene 31.41<g, spray kerosene 5
.. 21<9, sodium hydroxide 6.5 kg (162.5
mole), water 19.8 kg, ferrous sulfate heptahydrate 22.1
1<g (79.5 mol) was charged with stirring, and after reacting for 1 hour under reflux, 12.6 kg of 7.5% hydrogen peroxide was added to 40
The oxidation reaction was carried out dropwise in minutes.

反応終了後水層を分液し、油層を脱水後、淵過助剤を用
いて淵過を行ない戸液中のトルエン全量を減圧下で溜去
させると、Fe含有量18.3%、金属比5.27の複
合体が18.0kg得られた。収率は90.0(f)で
あつた。C実施例 5100t反応機に灯油20.0k
g、モノドデシルベンゼンスルホン酸鉄10.4kg(
16.3モル)、塩化第一鉄・四水塩10.71<9(
53.8モノリ、30%水酸化ナトリウム水溶液16.
0kg(120.0モノ(ハ)を攪拌しながら仕込み、
混合し、この溶液に80〜90℃で25〜27!./M
mの割合で4時間空気を吹き込み酸化反応を行つた。
After the completion of the reaction, the aqueous layer was separated, and the oil layer was dehydrated and filtered using a deep-filtering aid, and the entire amount of toluene in the liquid was distilled off under reduced pressure. 18.0 kg of a composite with a ratio of 5.27 was obtained. The yield was 90.0(f). Example C kerosene 20.0k in 5100t reactor
g, iron monododecylbenzenesulfonate 10.4 kg (
16.3 mol), ferrous chloride tetrahydrate 10.71 < 9 (
53.8 monomer, 30% sodium hydroxide aqueous solution 16.
Prepare 0 kg (120.0 mono(c)) while stirring,
Mix and heat this solution at 80-90°C for 25-27 seconds. .. /M
The oxidation reaction was carried out by blowing air at a rate of m for 4 hours.

反応終了後水を溜去させ、淵過助剤を用いてろ過を行い
、戸液中の灯油を減圧下で7.5kg溜去させると、F
e含有量14.8%金属比4.00の複合体が24.6
kg得られた。収率は90.5f6であつた。実施例
6 30t反応機にトルエン10.0kf,ナフテン酸マン
ガン中性塩5.0kg(7.9モル)、塩化第一マンガ
ン・四水塩3.6k!?(18.2モル)、20%水酸
化ナトリウム水溶液8.0kg(40.0モル)、を撹
拌しながら仕込み、混合しこの溶液に80〜90℃で2
5〜27t/Uの割合で空気を3時間吹き込み酸化反応
を行つた。
After the reaction is complete, water is distilled off, filtered using a fuchi filter aid, and 7.5 kg of kerosene in the liquid is distilled off under reduced pressure.F
A composite with an e content of 14.8% and a metal ratio of 4.00 is 24.6
kg was obtained. The yield was 90.5f6. Example
6 Toluene 10.0kf, manganese naphthenate neutral salt 5.0kg (7.9 mol), manganese chloride tetrahydrate 3.6k in a 30t reactor! ? (18.2 mol) and 8.0 kg (40.0 mol) of a 20% aqueous sodium hydroxide solution were added with stirring, mixed, and added to this solution at 80 to 90°C.
Air was blown at a rate of 5 to 27 t/U for 3 hours to perform an oxidation reaction.

反応終了後水を溜去し、ろ過助剤を用いて淵過し枦液中
のトルエンを減圧下で溜去し、スプレー灯油3.4kf
Iと置換すると、Mn含有量13.9%金属比3.12
の複合体が9.7kg得られた。収率は90.2%であ
つた。実施例 730t反応機に灯油12.0kg、ナ
フテン酸ニツケル中性塩6.0kf(9.4モル)、硫
酸第一ニツケル・六水塩3.3kf!(12.6モル)
、20%水酸化ナトリウム水溶液5.4kg(27.0
モル)を攪拌しながら仕込み70〜80℃で30分間混
合した後、65〜75℃にて17%過酸化水素2.6k
gを徐々に滴下して酸化反応を行つた。
After the reaction was completed, water was distilled off, filtered using a filter aid, toluene in the liquid was distilled off under reduced pressure, and sprayed with 3.4 kf of kerosene.
When replaced with I, Mn content 13.9% metal ratio 3.12
9.7 kg of the complex was obtained. The yield was 90.2%. Example In a 730t reactor, 12.0 kg of kerosene, 6.0 kf (9.4 mol) of neutral salt of nickel naphthenate, and 3.3 kf of nickel sulfate hexahydrate! (12.6 moles)
, 20% sodium hydroxide aqueous solution 5.4 kg (27.0
After mixing for 30 minutes at 70-80℃, add 2.6k of 17% hydrogen peroxide at 65-75℃.
The oxidation reaction was carried out by gradually dropping 1.

反応終了後水を溜去させ、済過助剤を用いて淵過を行い
戸液中の灯油を5.5kg溜去させると、Ni含有量1
0.0%、金属比2.10の複合体が10.6kg得ら
れた。収率は83.3%であつた。実施例 8 30t反応機にトルエン8.0kg、ナフテン酸コバル
ト中性塩6.4kg(10.1モル)、硝酸第一コバル
ト・六水塩5.6kg(19.2モノリ、水2.0kg
(11.1モル)、40%水酸化ナトリウム水溶液4.
4kg(44.0モル)を撹拌しながら仕込み、混合し
この溶液に80〜90℃で23〜25t/11の割合で
3.5時間空気を吹込み酸化反応を行つた。
After the reaction is completed, the water is distilled off, and 5.5 kg of kerosene in the liquid is distilled off using a filter aid, and the Ni content is 1.
10.6 kg of a composite with a metal ratio of 0.0% and a metal ratio of 2.10 was obtained. The yield was 83.3%. Example 8 In a 30-ton reactor, 8.0 kg of toluene, 6.4 kg (10.1 mol) of neutral cobalt naphthenate salt, 5.6 kg (19.2 monoli) of cobaltous nitrate hexahydrate, 2.0 kg of water
(11.1 mol), 40% aqueous sodium hydroxide solution4.
4 kg (44.0 mol) was charged and mixed with stirring, and air was blown into the solution at a rate of 23 to 25 t/11 for 3.5 hours at 80 to 90°C to carry out an oxidation reaction.

反応終了後水を溜去させ、淵過助剤を用いてろ過を行い
戸液中のトルエンを減圧下で全量溜去し、スプレー灯油
4.5kgと置換させると、CO含有量12.596、
金属比2.49の複合体が11.76kg得られた。収
率は78.1%であつた〇実施例 9 301反応機に灯油10.0kg石油スルホン酸カルシ
ウム中性塩(分子量840)4.5kg(5.4モノリ
、硫酸第一鉄・七水塩4.5kg(16.2モル)、2
096水酸化ナトリウム水溶液7.0kf(35.0モ
ル)を攪拌しながら仕込み、混合しこの溶液に90〜1
00℃で25〜271/鰭の割合で3時間空気を吹き込
み酸化反応を行つた。
After the reaction was completed, the water was distilled off, filtered using a fuchi filter aid, and all toluene in the liquid was distilled off under reduced pressure, and replaced with 4.5 kg of spray kerosene, resulting in a CO content of 12.596,
11.76 kg of a composite with a metal ratio of 2.49 was obtained. The yield was 78.1%. Example 9 10.0 kg of kerosene and 4.5 kg (5.4 monoliths, ferrous sulfate heptahydrate) of petroleum sulfonate calcium neutral salt (molecular weight 840) were placed in a 301 reactor. 4.5 kg (16.2 mol), 2
096 Sodium hydroxide aqueous solution 7.0 kf (35.0 mol) was charged with stirring, mixed, and added to this solution.
An oxidation reaction was carried out at 00°C by blowing air at a ratio of 25 to 271/fin for 3 hours.

Claims (1)

【特許請求の範囲】[Claims] 1 有機溶剤中でナフテン酸、炭素数8〜18個を有す
る飽和および不飽和脂肪族カルボン酸、石油スルホン酸
、炭素数15〜30個を有するモノ若しくはジアルキル
ベンゼンスルホン酸から選択された有機カルボン酸また
は有機スルホン酸のナトリウム、バリウム、カルシウム
、鉄、マンガン、ニッケル、コバルトより選択された金
属の金属中性塩と2価の鉄、マンガン、ニッケル、コバ
ルトの塩化物、硫酸塩、硝酸塩、臭化物、ヨウ化物から
選択された水溶性無機金属塩と水酸化アルカリとを混合
し、これに酸素及び/又は過酸化水素を反応させること
を特徴とする油中分散性金属塩−有機酸金属塩複合体の
製造法。
1 Organic carboxylic acids selected from naphthenic acids, saturated and unsaturated aliphatic carboxylic acids with 8 to 18 carbon atoms, petroleum sulfonic acids, mono- or dialkylbenzene sulfonic acids with 15 to 30 carbon atoms in organic solvents. or neutral salts of metals selected from sodium, barium, calcium, iron, manganese, nickel, and cobalt of organic sulfonic acids, and chlorides, sulfates, nitrates, and bromides of divalent iron, manganese, nickel, and cobalt; An oil-dispersible metal salt-organic acid metal salt complex characterized by mixing a water-soluble inorganic metal salt selected from iodides and an alkali hydroxide, and reacting the mixture with oxygen and/or hydrogen peroxide. manufacturing method.
JP4608577A 1977-04-21 1977-04-21 Method for producing oil-dispersible metal salt-organic acid metal salt complex Expired JPS5920656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4608577A JPS5920656B2 (en) 1977-04-21 1977-04-21 Method for producing oil-dispersible metal salt-organic acid metal salt complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4608577A JPS5920656B2 (en) 1977-04-21 1977-04-21 Method for producing oil-dispersible metal salt-organic acid metal salt complex

Publications (2)

Publication Number Publication Date
JPS53132502A JPS53132502A (en) 1978-11-18
JPS5920656B2 true JPS5920656B2 (en) 1984-05-15

Family

ID=12737140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4608577A Expired JPS5920656B2 (en) 1977-04-21 1977-04-21 Method for producing oil-dispersible metal salt-organic acid metal salt complex

Country Status (1)

Country Link
JP (1) JPS5920656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472779A (en) * 1990-07-13 1992-03-06 Nec Corp High speed repetitive pulse gas laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO324545B1 (en) * 2004-10-22 2007-11-19 Nor X Industry As Process for the manufacture of thermoplastics having an adjustable lifetime, mixing of additives for use in carrying out the process and thermoplastics so produced.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472779A (en) * 1990-07-13 1992-03-06 Nec Corp High speed repetitive pulse gas laser device

Also Published As

Publication number Publication date
JPS53132502A (en) 1978-11-18

Similar Documents

Publication Publication Date Title
KR101472230B1 (en) Modified zinc ferrite catalyst and method of preparation and use
US3888886A (en) Oxidation of alkanes to maleic anhydride using promoted vanadium-phosphorus catalyst
US5922920A (en) Catalytic production of aryl alkyl hydroperoxides by polynuclear transition metal aggregates
DE2748097C2 (en) Process for the production of primary, saturated and straight-chain alcohols
CA1107747A (en) Oil soluble high metal content transitional metal organic oxy, hydroxy complexes
US20090143595A1 (en) Use of grinding in chemical synthesis
US6156931A (en) Crystalline manganese (II/III) phosphate compositions
EP0019989B1 (en) Method for producing a solution containing nitrates of iron and chromium and making a high temperature shift catalyst from it
Niu et al. Preparation, characterization, and catalytic performances of a pyrazine dicarboxylate-bridging rare-earth-containing polytungstoarsenate aggregate for selective oxidation of thiophenes and deep desulfurization of model fuels
JPS5920656B2 (en) Method for producing oil-dispersible metal salt-organic acid metal salt complex
US3932305A (en) V-P-Zr Catalysts and method of preparation thereof in the absence of hydrogen halide
CN108473388B (en) Method for preparing butadiene with catalyst reproducibility
JPH0639458B2 (en) Disulfide manufacturing method
US3256266A (en) Process for making oil-soluble chromium carboxylates
CN107614107B (en) Catalyst for oxidative dehydrogenation and preparation method thereof
JPS61246173A (en) Productionof gamma-butyrolactone
JPS62108838A (en) Production of vanadium-containing mixed metal soap solution
JP6678922B2 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for producing the same and method for producing butadiene using the same
CN107847923B (en) Method for preparing catalyst for oxidative dehydrogenation
JPWO2019182137A1 (en) Manufacturing method of metal-organic framework
JPS6041980B2 (en) A method for dispersing fine particles of metal compounds in organic solvents at high concentrations
CN113164927B (en) Method for preparing zinc ferrite catalyst and zinc ferrite catalyst prepared by same
JP3715774B2 (en) Catalyst for producing carbonate ester, process for producing the same, and process for producing carbonate ester using the catalyst
KR102229193B1 (en) Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and method for preparing butadiene using the same catalyst
JP3230243B2 (en) Phenol production catalyst and phenol production method