JPS6041808A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPS6041808A
JPS6041808A JP14984883A JP14984883A JPS6041808A JP S6041808 A JPS6041808 A JP S6041808A JP 14984883 A JP14984883 A JP 14984883A JP 14984883 A JP14984883 A JP 14984883A JP S6041808 A JPS6041808 A JP S6041808A
Authority
JP
Japan
Prior art keywords
axis
axes
acoustic wave
surface acoustic
wave element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14984883A
Other languages
Japanese (ja)
Other versions
JPH0347771B2 (en
Inventor
Masaaki Ono
正明 小野
Noboru Wakatsuki
昇 若月
Shigeo Tanji
丹治 成生
Masanobu Yanagisawa
柳沢 正伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14984883A priority Critical patent/JPS6041808A/en
Publication of JPS6041808A publication Critical patent/JPS6041808A/en
Publication of JPH0347771B2 publication Critical patent/JPH0347771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To obtain a surface acoustic wave element excellent also in the coupling coefficient by cutting a piezoelectric medium substrate of lithium tantalate having substantially an excellent temperature coefficient in a prescribed direction. CONSTITUTION:The X, Y and Z axes of the lithium tantalate single crystal are taken respectively as the 1st, 2nd and 3rd axes. The 2nd and 3rd axes are rotated counterclockwise by nearly 40 deg. by taking the 1st axis as the rotating axis and the Y and Z axes in this azimus is taken respectively as the 4th and 5th axes. The 1st and 4th axes are rotated counterclockwise by nearly 3 deg. by taking the 5th axis as the rotating axis and the X and Z axes in this azimuth are taken respectively as the 6th and 7th axes. The 6th axis is rotated counterclociwise slightly by taking the 7th axis as the rotating axis and the direction of the X axis in this azimuth is taken as the 8th axis. The direction of the 7th axis is used as the plane azimuth and the direction of the 8th axis is taken as the propagation direction of the surface acoustic wave so as to form the surface acoustic wave element. As a result, the characteristic curve G better than the curve H of the 40 deg. rot Y cut in the resonance characteristic is obtained.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は弾性表面波素子の改良に関する。特にリチュウ
ムタンタレート(L+Ta03)を基材とし。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field of the invention The present invention relates to improvements in surface acoustic wave elements. In particular, lithium tantalate (L+Ta03) is used as the base material.

結合係数を大きく、温度係数を小さくする弾性表面波素
子の改良に関する。
This invention relates to improvements in surface acoustic wave devices that increase the coupling coefficient and decrease the temperature coefficient.

(2)技術の背景 弾性表面波素子とは圧電媒体等のりi性体の表面にそっ
て伝播する弾性波を信号伝送媒体とする信号伝送手段を
いい、波の伝播速度が電磁波のそれの約10分の1であ
るから、素子が小型軽量となり、波がその中を伝播する
弾性体よりなる基板の任意の場所で駆動・検出すること
ができ、外部から伝播特性を容易に制御することができ
る等の特徴を有し、特に、遅延素子としてひろく利用さ
れているほか、増幅器9波形変換素子等として使用しう
る。
(2) Background of the technology A surface acoustic wave element is a signal transmission means that uses an elastic wave as a signal transmission medium that propagates along the surface of a flexible body such as a piezoelectric medium, and the propagation speed of the wave is approximately that of an electromagnetic wave. Since it is one-tenth the size, the element is small and lightweight, and can be driven and detected at any location on the substrate made of an elastic body through which waves propagate, and the propagation characteristics can be easily controlled from the outside. In particular, it is widely used as a delay element, and can also be used as an amplifier 9 waveform conversion element.

ところで、弾性表面波素子の特+Iを表示する指標とし
て、結合係数と温度係数とがある。結合係数は電気工ネ
ルキーが振動エネルギーに変換される効率を示す指標で
あり、弾性表面波素r−を構成する圧電媒体基材の表面
に金属層等が封着されずフリーの状態にある場合の表面
波の伝播速度をVf とし、−万、その表面に金属層等
が引着されて短絡されている状yハ、にある場合の表面
波の伝播速度をVsとした場合、結合係数には、k2 
:JL、Vf −vS 2 Vs として定義される。一方、温度係数ktは、圧電媒体基
材中を表面波が伝播する速度の温度に対する変化率であ
り、ある位相(H)において温度を△Tだけ変化した場
合に発生する位相変化をΔHどしだ場合、 kT −△H/H/ΔT と定義される。
Incidentally, there are a coupling coefficient and a temperature coefficient as indicators for indicating the characteristic +I of a surface acoustic wave element. The coupling coefficient is an index that indicates the efficiency with which electrical energy is converted into vibration energy, and it is an index that indicates the efficiency with which electric energy is converted into vibration energy. Let Vf be the propagation velocity of the surface wave at , and Vs be the propagation velocity of the surface wave when the surface is short-circuited by a metal layer, etc., being attracted to the surface. is k2
:JL, defined as Vf −vS 2 Vs. On the other hand, the temperature coefficient kt is the rate of change of the speed at which a surface wave propagates in the piezoelectric medium base material with respect to temperature, and the phase change that occurs when the temperature is changed by ΔT at a certain phase (H) is expressed as ΔH. If so, it is defined as kT −ΔH/H/ΔT.

弾性表面波素子として広く使用されている、リチュウト
ナイオベート(L+Nb03) 、リチウムタンタレー
ト(LiTa03) 、水晶等について、−にL記の結
合係数と温度係数とを表記するとそれぞれ1286ro
t Yカント(リチュウムナイオヘーI・)、Xカンl
−(リチウムタンタレート)1.STカント(水晶)の
場合、下記のようになる。
For lithium niobate (L+Nb03), lithium tantalate (LiTa03), quartz, etc., which are widely used as surface acoustic wave elements, when the coupling coefficient and temperature coefficient of L are written in -, each is 1286ro.
t Y cant (lithium naiohe I), X cant
-(Lithium tantalate)1. In the case of ST cant (crystal), it is as follows.

U 級イd組索 u」[勇 (%) (ppm/’C) リチュウムナイオペ−1−5,6−72リチュウムタン
クレート0.007 −20水晶 1.00 (3)従来技術と問題点 従来技術においては、代表的な圧電媒体基材としてリチ
ウムタンタレートを使用する場合はYカントとじ、リチ
ュムタンタレートを使用する場合はXカットとし、水晶
を使用する場合はS′FカッI・とじていた。
U class Id group u' [Improvement (%) (ppm/'C) Lithium Niope-1-5, 6-72 Lithium tank rate 0.007 -20 Crystal 1.00 (3) Conventional technology and problems In the conventional technology, Y cut is used when lithium tantalate is used as a typical piezoelectric medium base material, X cut is used when lithium tantalate is used, and S'F cut is used when quartz is used. It was closed.

その結果、リチウムタンタレートを使用する場合は温度
係数が劣り、リチュムタンタレートや水晶の場合は結合
係数が劣るという欠点かあった。
As a result, when lithium tantalate is used, the temperature coefficient is poor, and when lithium tantalate or quartz is used, the bonding coefficient is poor.

(4)発明のI−J的 本発明の[」的はこの欠点を解消することにあり、本来
温度係数のすぐれているリチュウ1、タンタレートを圧
電媒体)&材とし、しかも、結合係数の大きな弾性表面
波素子を提供することにめる。
(4) I-J aspect of the invention The purpose of the present invention is to eliminate this drawback. The Company aims to provide surface acoustic wave devices.

(5)発明の構成 本発明の構成は、(イ)リチュウムタンタレーi−弔結
晶のX軸方向を直交座標の第1軸とし、Y軸方向を第2
軸とし、X軸方向を第3 @l+とじ、(ロ)前記第1
111bを回転軸として前記第2軸と第3 @I+とを
反時計方向に約40°回転して、この方位におけるY軸
方向とX軸方向とをそれぞれ第4軸と第5軸とし、(ハ
)該第5軸を回転軸として前記第1 +libと第4 
jiltとを反時計方向に約3°回転して、この方位に
おけるX軸方向とZ 1lif+方向とをそれぞれ第6
611と第7軸とし、(ニ)該第7軸を回転−1111
として前記第6軸を反時計方向に僅かに回転して、この
力位におけるX軸方向を第8軸とし、(ホ)前記第7軸
の方向を面方位どし前記第8軸のめ向を弾性表面波の伝
播方向としてなす弾性表+rti波素子にある。
(5) Structure of the Invention The structure of the present invention is as follows: (a) The X-axis direction of the lithium tantalate i-mourning crystal is the first axis of the orthogonal coordinates, and the Y-axis direction is the second axis.
axis, and the X-axis direction is the third @l+ binding, (b) the first
111b as the rotation axis, the second axis and the third @I+ are rotated approximately 40 degrees counterclockwise, and the Y-axis direction and the X-axis direction in this direction are respectively made the fourth axis and the fifth axis, ( c) The first +lib and the fourth axis with the fifth axis as the rotational axis.
jilt counterclockwise by approximately 3 degrees, and the X-axis direction and Z1lif+ direction in this direction are respectively
611 and the seventh axis, (d) Rotate the seventh axis -1111
, the sixth axis is slightly rotated counterclockwise, the X-axis direction at this force position is set as the eighth axis, and (e) the direction of the seventh axis is changed from the plane orientation to the direction of the eighth axis In the elastic table + RTI wave element, where is the propagation direction of the surface acoustic wave.

本発明はりチュムタンタレーI・の結合係数や温度係数
等の特性かそのしJり出し方向に大きく依イfするとい
う性質を利用し、切り出し方向を異にするjjjF数に
多くの試料を試作して実験を繰り返して、結合係数が4
.6%と大きく、しかも、温度係数が−29p p m
 / ”Cと小さくなるりJり出し方向を発見し、この
方向に切り出した圧゛市媒体基椴を利用して弾性表面波
素子を製造することとしたものである。なお、この9J
り出し方向でりJり出した圧電媒体基板の、フリーの状
態と短絡された状態との位相変化対温度変化の関係を示
すグラフを第1図に示す。図において、Aは短節された
状態の場合を示し、Bはフリーの場合を示す。そして、
曲者の温度係数は一29ppm/°Cであり、後者の温
度係数は一43ppm/°0であり、温度係数が極めて
小さいことが明らかである。また、このときの結合係数
は4.6%であり、音速は4,200 m/秒であった
。なお、この試験に使用されたサンプルは第2図に示す
ように、ピンチ44ルm、交叉幅2IoII+、25対
のダブル゛i[z模型I・ランスデューサを右するもの
であり、リチュムタンタレー1 rp結晶をL記に記す
ように9ノリ出したものである。なお、図において、C
は交叉幅であり、Dは入出力!・ランスデューサ間距#
(5mm)であり、■は基板であり、2はトランステユ
ーサであり、3は短絡用金属板である。
In the present invention, we make use of the property that the characteristics such as the coupling coefficient and temperature coefficient of the beam chum tantare I greatly depend on the direction in which they are cut out, and we prototype a large number of samples with different cutting directions. After repeating the experiment, the coupling coefficient was 4.
.. It is as large as 6%, and the temperature coefficient is -29ppm
We discovered the direction in which C and J protrude, and decided to manufacture a surface acoustic wave element by using the pressed media base cut in this direction.In addition, this 9J
FIG. 1 shows a graph showing the relationship between the phase change and the temperature change in the free state and the short-circuited state of the piezoelectric medium substrate extended in the extending direction. In the figure, A shows the case where the string is shortened, and B shows the case where it is free. and,
The temperature coefficient of the bender is -29 ppm/°C, and the temperature coefficient of the latter is -43 ppm/°0, and it is clear that the temperature coefficient is extremely small. Further, the coupling coefficient at this time was 4.6%, and the sound speed was 4,200 m/sec. The sample used in this test, as shown in Figure 2, has a pinch of 44 m, a cross width of 2 IoII+, 25 pairs of double ゛i[z model I transducer, and a lithium tandem transducer. Tare 1 RP crystal is made into 9 pieces as shown in L. In addition, in the figure, C
is the crossover width, and D is the input and output!・Transducer distance #
(5 mm), ■ is a substrate, 2 is a transducer, and 3 is a shorting metal plate.

(6)発明の実施例 以下、図面を参照しつつ本発明の実施例に係る弾性表面
波素子(フィルターとレゾネータ)について更に説明す
る。
(6) Embodiments of the Invention Hereinafter, surface acoustic wave elements (filters and resonators) according to embodiments of the present invention will be further described with reference to the drawings.

リチュムタンクレート単結晶を上記の構成に示すように
切り出した基板を使用してマルチストす、プカブラーを
イ1する中間周波数フィルターを試作した。製造工程は
公知であるから記載を省略する。特性を比較するため、
同一のマスクを使用して製造した40°rot Y−リ
チュウムナイオヘーI・フィルターも試作し、その特性
も11111定し、両者の特性曲線を第3図に示す。カ
ーブEが本発明の実施例に係るフィルターの特性であり
、カーブFかりチュウムナイオベートフィルターの特性
であるか双方とも結合係数は殆ど回−である。
Using a substrate cut out from a single crystal Lithumtan crystal as shown in the above structure, we prototyped an intermediate frequency filter that uses a multi-channel filter to improve the pukablur. Since the manufacturing process is well known, the description thereof will be omitted. To compare the characteristics,
A 40 DEG rot Y-Lithium Niohe I filter was also produced using the same mask, and its characteristics were also determined, and the characteristic curves of both are shown in FIG. The curve E is the characteristic of the filter according to the embodiment of the present invention, and the curve F is the characteristic of the Tuumniobate filter.The coupling coefficients of both curves are almost the same.

リチュムタンタレート単結晶を」−記の構成に示すよう
にすJり出した基板を使用してレゾネータを試作した。
A resonator was prototyped using a substrate with a lithum tantalate single crystal as shown in the configuration shown in the following.

製造工程は公知であるから記載を省略する。特性を比較
するため回−のマスクを使用して製造した40°rot
 Y−リチュムタンタレートレゾネータも試作し、その
特性も測定し、両者の特性曲線を第4図に示す。カーブ
Gか本発明の実施例に係るレゾネータの特性であり、カ
ーフ11か40°rot Y−リチュムタンタレーI・
レゾネータの特性であり、本発明の効果が明らかである
Since the manufacturing process is well known, the description thereof will be omitted. 40°rot manufactured using a circular mask to compare characteristics.
A prototype Y-lithum tantalate resonator was also manufactured and its characteristics were measured, and the characteristic curves of both are shown in FIG. The curve G is the characteristic of the resonator according to the embodiment of the present invention, and the curve G is the characteristic of the resonator according to the embodiment of the present invention.
This is a characteristic of the resonator, and the effects of the present invention are clear.

(7)発明の効果 以」−説明せるとおり、本発明によれば、本来温度係数
のすぐれているリチュウムタンタレ−1・をJJ: ’
f[媒体系材とし、しかも、結合係数の大きな弾性表面
波素子を提供することができる。
(7) Effects of the invention - As explained, according to the present invention, lithium tantalate 1.
It is possible to provide a surface acoustic wave element using a medium-based material and having a large coupling coefficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の効果確認の試験のテスl’ #+’i
果を示すグラフであり、第2図はその試験に使用された
ザンプルの平面図である。第3図、第4図は本発明の実
施例に係る、それぞれ、フィルターとレゾネータの特性
を比較するグラフである。 A・・・短絡状態の結果、 B・・・フリー状jハ。
Figure 1 shows test l'#+'i of the test for confirming the effectiveness of the present invention.
2 is a graph showing the results, and FIG. 2 is a plan view of the sample used in the test. FIGS. 3 and 4 are graphs comparing the characteristics of a filter and a resonator, respectively, according to an embodiment of the present invention. A... As a result of short circuit condition, B... Free condition.

Claims (1)

【特許請求の範囲】[Claims] (イ)リチュウムタンクレート単結晶のX軸方向を直交
座標の第1611とし、Y軸方向を第2軸とし、X軸方
向を第3軸とし、(ロ)前記第1軸を回転軸として前記
第2軸と第3軸とを反時計方向に約40°回転して、こ
の方位におけるY軸方向とZ 4:bブJ向とをそれぞ
れ第4軸と第5軸とし、(ハ)該第5軸を回転軸として
前記第1軸と第4輔とを反時計方向に約3°回転して、
この方位におけるX軸方向と2軸方向とをそれぞれ第6
軸と第7111+とじ、(ニ)該第7軸を回転軸として
前記第611jl+を反時計方向に僅かに回転して、こ
の方位におけるX軸方向を第8軸とし、(ホ)前記fJ
、 711111の方向を面方位とし前記第8軸の方向
を弾性表+f+i波の伝線方向としてなす弾性表面波素
子。
(b) The X-axis direction of the lithium tank crate single crystal is the 1611th orthogonal coordinate, the Y-axis direction is the second axis, and the X-axis direction is the third axis, (b) the first axis is the rotation axis, and the The second and third axes are rotated approximately 40 degrees counterclockwise, and the Y-axis direction and Z4:bJ direction in this direction are respectively made the fourth and fifth axes, and (c) the corresponding Rotating the first shaft and the fourth shaft approximately 3 degrees counterclockwise using the fifth shaft as the rotation axis,
The X-axis direction and the second axis direction in this direction are respectively
(d) Slightly rotate the 611jl+ counterclockwise using the 7th axis as the rotation axis, and make the X-axis direction in this direction the 8th axis; (e) the fJ
, 711111 is the surface orientation, and the direction of the eighth axis is the propagation direction of the elastic table +f+i waves.
JP14984883A 1983-08-17 1983-08-17 Surface acoustic wave element Granted JPS6041808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14984883A JPS6041808A (en) 1983-08-17 1983-08-17 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14984883A JPS6041808A (en) 1983-08-17 1983-08-17 Surface acoustic wave element

Publications (2)

Publication Number Publication Date
JPS6041808A true JPS6041808A (en) 1985-03-05
JPH0347771B2 JPH0347771B2 (en) 1991-07-22

Family

ID=15483971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14984883A Granted JPS6041808A (en) 1983-08-17 1983-08-17 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPS6041808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155640A (en) * 1985-12-27 1987-07-10 Nec Corp Timing extraction circuit
US6317015B1 (en) 1995-10-13 2001-11-13 Fujitsu Limited Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155640A (en) * 1985-12-27 1987-07-10 Nec Corp Timing extraction circuit
US6317015B1 (en) 1995-10-13 2001-11-13 Fujitsu Limited Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate

Also Published As

Publication number Publication date
JPH0347771B2 (en) 1991-07-22

Similar Documents

Publication Publication Date Title
CN1902817B (en) Boundary acoustic wave device
WO2007046236A1 (en) Lamb wave device
JP6963423B2 (en) Manufacturing method of bonded substrate, surface acoustic wave element and bonded substrate
JPH0336326B2 (en)
JPS62149210A (en) Sonic wave apparatus
EP0513267B1 (en) Crystal cut angles for lithium tantalate crystal for novel surface acoustic wave devices
JP3485833B2 (en) Surface acoustic wave device
JPH09205337A (en) Surface acoustic wave device
US4670680A (en) Doubly rotated orientations of cut angles for quartz crystal for novel surface acoustic wave devices
JP2000278087A (en) Surface acoustic wave device
JPH05259802A (en) Surface acoustic wave device
JPS6041808A (en) Surface acoustic wave element
US4670681A (en) Singly rotated orientation of quartz crystals for novel surface acoustic wave devices
JPH08316781A (en) Surface acoustic wave element
JPH10178331A (en) Surface acoustic wave element
JPS6318892B2 (en)
US4707631A (en) Isotropic acoustic wave substrate
JP3276826B2 (en) Surface acoustic wave device
JPH08316779A (en) Surface acoustic wave element
JPS6340044B2 (en)
CA1263473A (en) Isotropic acoustic wave substrate
JPH09130192A (en) Surface wave device
JPS60259011A (en) Surface acoustic wave device
JPS6346605B2 (en)
JPH10126208A (en) Surface acoustic wave device