JPS6318892B2 - - Google Patents

Info

Publication number
JPS6318892B2
JPS6318892B2 JP14948380A JP14948380A JPS6318892B2 JP S6318892 B2 JPS6318892 B2 JP S6318892B2 JP 14948380 A JP14948380 A JP 14948380A JP 14948380 A JP14948380 A JP 14948380A JP S6318892 B2 JPS6318892 B2 JP S6318892B2
Authority
JP
Japan
Prior art keywords
surface acoustic
cut
crystal
acoustic wave
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14948380A
Other languages
Japanese (ja)
Other versions
JPS5773513A (en
Inventor
Yasutaka Shimizu
Taiji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14948380A priority Critical patent/JPS5773513A/en
Publication of JPS5773513A publication Critical patent/JPS5773513A/en
Publication of JPS6318892B2 publication Critical patent/JPS6318892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates

Description

【発明の詳細な説明】 本発明は圧電体として水晶を用いた弾性表面波
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device using crystal as a piezoelectric material.

従来より弾性表面波装置は、第1図に示すよう
に、圧電体基板1の上に2つのすだれ状電極2,
3を配置し、一方のすだれ状電極2に電気信号を
加えて弾性表面波に変換し、他方のすだれ状電極
3より電気信号を取出す構造が一般的となつてい
る。この場合、従来の弾性表面波装置の圧電体と
してLiNbo3,LiTaO3,水晶等が用いられてい
た。
Conventionally, a surface acoustic wave device has two interdigital electrodes 2 on a piezoelectric substrate 1, as shown in FIG.
3, an electric signal is applied to one interdigital electrode 2 and converted into a surface acoustic wave, and the electric signal is extracted from the other interdigital electrode 3. In this case, LiNbo 3 , LiTaO 3 , crystal, etc. have been used as piezoelectric materials in conventional surface acoustic wave devices.

しかし、これらの圧電体には温度特性の点で次
のような欠点があつた。すなわち、LiNbO3
LiTaO3は電気機械結合係数が大きいが、遅延時
間の温度係数が夫々80ppm/℃,20ppm/℃と大
きい。また、水晶は電気機械結合数が小さいとは
いえ、温度係数が小さく、特にSTカツト水晶は
第2図にその温度特性を示すように零温度係数を
もつものとして知られているが、同図からわかる
ように遅延時間変化率が10ppm以下となる温度幅
は約38℃で広くない。したがつて、最新の高信頼
性デバイスの要求を満足させ得ることができない
欠点があつた。
However, these piezoelectric materials have the following drawbacks in terms of temperature characteristics. That is, LiNbO 3 ,
LiTaO 3 has a large electromechanical coupling coefficient, but the temperature coefficient of delay time is large at 80 ppm/°C and 20 ppm/°C, respectively. In addition, although crystal has a small number of electromechanical couplings, it has a small temperature coefficient, and ST-cut crystal in particular is known to have a zero temperature coefficient, as shown in Figure 2, whose temperature characteristics are shown in Figure 2. As can be seen, the temperature range where the delay time change rate is 10 ppm or less is about 38°C, which is not wide. Therefore, it has the disadvantage that it cannot satisfy the requirements of the latest high reliability devices.

そこで、本発明はこれらの欠点を除去し、温度
特性の極めて良好な弾性表面波装置を提供しよう
とするものである。すなわち、本発明は弾性表面
波装置を構成する圧電体基板として水晶基板を用
い、遅延時間変化率が10ppm以下の温度幅が58℃
となる水晶基板のカツト方位並びに弾性表面波の
伝搬方向を与えるものである。
Therefore, the present invention aims to eliminate these drawbacks and provide a surface acoustic wave device with extremely good temperature characteristics. That is, the present invention uses a quartz crystal substrate as a piezoelectric substrate constituting a surface acoustic wave device, and has a temperature range of 58°C with a delay time change rate of 10 ppm or less.
This gives the cut orientation of the crystal substrate and the propagation direction of the surface acoustic waves.

以下、図面を用いて本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained using the drawings.

まず、水晶のように異方性をもつ基板に対する
特性を議論する場合、オイラー角がよく用いられ
る。このオイーラ角には右手糸と左手糸の表示が
あるが、ここでは第3図に示すように右手糸のオ
イーラ角には右手糸と左手糸の表示があるが、こ
こでは第3図に示すように右手糸のオイラー角
(φ,θ,Ψ)を用いる。この図において、X,
Y,Z軸は水晶の結晶軸である。また、角度φは
第1回転角で、X軸から回転した角度であり、第
2回転角θはZ軸よりカツト面を回転した角度で
ある。さらに、第3回転角Ψは切り出した水晶基
板表面での弾性表面波の伝搬方向を示す角度であ
る。したがつて、これらの3つの角度φ,θ,Ψ
を用いることによつて、任意のカツト方位の水晶
基板で任意の方向に進む弾性表面波の特性を議論
することができる。
First, Euler angles are often used when discussing the characteristics of anisotropic substrates such as quartz. This Euler angle has indications for right-handed thread and left-handed thread, as shown in Figure 3. The Euler angles (φ, θ, Ψ) of the right-handed thread are used as follows. In this figure, X,
The Y and Z axes are the crystal axes of the crystal. Further, the angle φ is the first rotation angle, which is the angle of rotation from the X axis, and the second rotation angle θ is the angle of rotation of the cut surface from the Z axis. Further, the third rotation angle Ψ is an angle indicating the propagation direction of the surface acoustic wave on the cut out surface of the crystal substrate. Therefore, these three angles φ, θ, Ψ
By using , it is possible to discuss the characteristics of surface acoustic waves propagating in any direction on a crystal substrate with any cut orientation.

ところで、水晶の材料定数は既に求められてい
るので、オイラー角φ,θ,Ψを与えれば、弾性
表面波に対する伝搬速度、電気機械結合係数、温
度特性などを理論的に計算することができる。こ
こでθ=0゜の場合について、温度が20℃において
弾性表面波の遅延時間温度係数が零となる角度θ
とΨの関係を求めると、第4図に示す曲線の如く
なる。この図で点STは従来から用いられている
STカツト水晶を示す点である。この図からわか
るように20℃で零温度係数を示すカツトは多く存
在する。しかし、例え20℃において零温度係数を
示しても、広い温度範囲にわたつて温度特性が優
れているかは、この図からは不明である。この点
については別に理論的に検討した。更に、基板の
選定に際しては、電気機械結合係数の大きさ、及
びパワーフロー角(位相速度とエネルギー速度の
違いを示す角)も重要な要因である。そこで、こ
れら全てを総合的に検討した結果、第4図におけ
る点A付近の水晶基板によつてSTカツト水晶に
比べて極めて優れた温度特性をもち、電気機械結
合係数も同程度となることが明らかとなつた。ま
た、同図において、点A′は水晶の対称性により
点Aと全く同一の特性を示す点である。
Incidentally, since the material constants of the crystal have already been determined, by giving the Euler angles φ, θ, and Ψ, it is possible to theoretically calculate the propagation velocity, electromechanical coupling coefficient, temperature characteristics, etc. for surface acoustic waves. Here, for the case of θ = 0°, the angle θ at which the temperature coefficient of delay time of the surface acoustic wave becomes zero at a temperature of 20°C
When the relationship between Ψ and Ψ is determined, the curve shown in FIG. In this figure, point ST is traditionally used.
This is the point that indicates ST cut crystal. As can be seen from this figure, there are many cuts that exhibit a zero temperature coefficient at 20°C. However, even if it shows a zero temperature coefficient at 20°C, it is unclear from this figure whether the temperature characteristics are excellent over a wide temperature range. This point was discussed theoretically separately. Furthermore, when selecting a substrate, the magnitude of the electromechanical coupling coefficient and the power flow angle (the angle indicating the difference between phase velocity and energy velocity) are also important factors. Therefore, as a result of comprehensively considering all of these, we found that the crystal substrate near point A in Figure 4 has extremely superior temperature characteristics compared to ST-cut crystal, and the electromechanical coupling coefficient is also about the same. It became clear. Further, in the figure, point A' exhibits exactly the same characteristics as point A due to the symmetry of the crystal.

次に、これらの特性を図によつて示すと、第5
図は第4図の点A付近の水晶基板について、面内
回転角Ψを変えた場合の温度特性の理論値と、実
際に水晶基板をθ=118℃,Ψ=42.3゜及び42.7゜に
切断して第1図に示すような弾性表面波装置を製
作して測定した実験値とを示すものである。本発
明によるこの図と、従来のSTカツトの特性を示
す第2図を比較して容易にわかるように、本発明
による水晶基板の温度特性は従来の特性に比べて
非常に優れている。例えば遅延時間変化率の温度
特性が10ppm以下となる温度幅で比較すると、従
来のものが38℃に対して、本発明のものは58℃で
ある。また、このカツトの水晶基板の電気機械結
合係数は0.0018(実験値)、パワーフロー角は2゜
(理論値)である。
Next, if these characteristics are shown graphically, the fifth
The figure shows the theoretical value of temperature characteristics when the in-plane rotation angle Ψ is changed for the crystal substrate near point A in Figure 4, and the actual temperature characteristics when the crystal substrate is cut at θ = 118°C, Ψ = 42.3° and 42.7°. The experimental values obtained by manufacturing and measuring a surface acoustic wave device as shown in FIG. 1 are shown. As can be easily seen by comparing this figure according to the present invention with Figure 2 showing the characteristics of the conventional ST cut, the temperature characteristics of the crystal substrate according to the present invention are extremely superior to the conventional characteristics. For example, when comparing the temperature range in which the temperature characteristic of the rate of change in delay time is 10 ppm or less, the conventional one is 38°C, while the inventive one is 58°C. The electromechanical coupling coefficient of this cut crystal substrate is 0.0018 (experimental value), and the power flow angle is 2° (theoretical value).

第6図は製作した弾性表面波装置の挿入損失周
波数特性の一例である。この図からわかるよう
に、このカツトによる水晶基板を用いた装置はス
プリアス信号も小さく良好な特性が得られてい
る。
FIG. 6 shows an example of the insertion loss frequency characteristics of the manufactured surface acoustic wave device. As can be seen from this figure, the device using this cut crystal substrate has good characteristics with small spurious signals.

さらに、各種の検討によれば、角度θが118゜±
5゜、角度Ψが±(43゜±3゜)の範囲であれば、従来
のSTカツトの特性よりも優れていることが確認
された。
Furthermore, according to various studies, the angle θ is 118°±
It was confirmed that if the angle Ψ is within the range of ±(43°±3°), the characteristics are superior to those of the conventional ST cut.

なお、ここでは第3図に示すオイラー角(φ,
θ,Ψ)によつて水晶のカツト方位及び伝搬方向
を指定したが、これを別の表現で示すと、本発明
は次のように言い換えることができる。すなわ
ち、28゜±5゜の回転Yカツト水晶基板において、
X軸から±(43゜±3゜)の方向に弾性表面波を伝搬
させることを特徴とする弾性表面波装置である。
In addition, here, the Euler angles (φ,
The cut orientation and propagation direction of the crystal are specified by θ, Ψ), but if this is expressed in another way, the present invention can be rephrased as follows. In other words, in a rotated Y-cut crystal substrate of 28° ± 5°,
This is a surface acoustic wave device characterized by propagating surface acoustic waves in directions ±(43°±3°) from the X-axis.

以上の説明から明らかなように、本発明によれ
ば、従来のものよりも優れた温度特性を有する弾
性表面波装置が実現できるので実施して効果が大
きい。
As is clear from the above description, according to the present invention, it is possible to realize a surface acoustic wave device having better temperature characteristics than the conventional one, and therefore the present invention is highly effective when implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に用いる本発明の基本と
なる弾性表面波装置の一例を示す斜視図、第2図
は従来のSTカツト水晶基板による温度特性を示
すグラフ、第3図は水晶の任意の方位角を表現す
る右手系のオイラー角の定義を示す説明図、第4
図は本発明の弾性表面波装置で用いる水晶のカツ
トを示すための零温度係数カツトの軌跡を示すグ
ラフ、第5図は本発明による弾性表面波装置の温
度特性の理論値と実験値とを示すグラフ、第6図
は本発明の弾性表面波装置の挿入損失の周波数特
性の一例を示すグラフである。 1……圧電体基板、2,3……すだれ状電極。
Fig. 1 is a perspective view showing an example of a surface acoustic wave device which is the basis of the present invention used to explain the present invention, Fig. 2 is a graph showing the temperature characteristics of a conventional ST cut crystal substrate, and Fig. 3 is a graph showing the temperature characteristics of a conventional ST cut crystal substrate. Explanatory diagram showing the definition of right-handed Euler angles expressing arbitrary azimuth angles, Part 4
The figure is a graph showing the locus of the zero temperature coefficient cut to show the cut of the crystal used in the surface acoustic wave device of the present invention, and Figure 5 shows the theoretical and experimental values of the temperature characteristics of the surface acoustic wave device of the present invention. The graph shown in FIG. 6 is a graph showing an example of the frequency characteristic of insertion loss of the surface acoustic wave device of the present invention. 1... Piezoelectric substrate, 2, 3... Interdigital electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 回転Yカツト水晶であつて、その回転角をY
軸から28゜±5゜とし、弾性表面波の伝搬方向をX
軸から±(43゜±3゜)に設定した水晶を圧電体とし
て用いることを特徴とする弾性表面波装置。
1 Rotation Y-cut crystal whose rotation angle is Y
The direction of propagation of surface acoustic waves is set at 28°±5° from the axis.
A surface acoustic wave device characterized by using a crystal set at ±(43°±3°) from the axis as a piezoelectric body.
JP14948380A 1980-10-27 1980-10-27 Surface acoustic wave device Granted JPS5773513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14948380A JPS5773513A (en) 1980-10-27 1980-10-27 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14948380A JPS5773513A (en) 1980-10-27 1980-10-27 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS5773513A JPS5773513A (en) 1982-05-08
JPS6318892B2 true JPS6318892B2 (en) 1988-04-20

Family

ID=15476131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14948380A Granted JPS5773513A (en) 1980-10-27 1980-10-27 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS5773513A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895996A (en) * 1994-09-29 1999-04-20 Seiko Epson Corporation Saw device
FR2785473B1 (en) * 1998-10-30 2001-01-26 Thomson Csf LOW LOSS FILTER WITH SURFACE ACOUSTIC WAVES ON OPTIMIZED QUARTZ SUBSTRATE
US6972508B2 (en) 2000-04-28 2005-12-06 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP3622202B2 (en) 2001-08-29 2005-02-23 セイコーエプソン株式会社 Method for adjusting temperature characteristics of surface acoustic wave device
JP2004274696A (en) 2002-10-04 2004-09-30 Seiko Epson Corp Surface acoustic wave device and temperature characteristic adjustment method of surface acoustic wave device
JP4059152B2 (en) 2002-10-16 2008-03-12 セイコーエプソン株式会社 Surface acoustic wave resonator
JP4569447B2 (en) * 2005-11-18 2010-10-27 エプソントヨコム株式会社 Surface acoustic wave element and surface acoustic wave device
JPWO2010029762A1 (en) * 2008-09-12 2012-02-02 国立大学法人山梨大学 Lamb wave type elastic wave device

Also Published As

Publication number Publication date
JPS5773513A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
JP3339350B2 (en) Surface acoustic wave device
US4159435A (en) Acoustic wave devices employing surface skimming bulk waves
US4489250A (en) Temperature compensated surface acoustic wave device
JPH027525B2 (en)
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
US6031315A (en) Optimal cut for saw devices on quartz
JPS6318892B2 (en)
US4109172A (en) High piezoelectric coupling-temperature compensated berlinite substrate member for surface acoustic wave devices
US5081389A (en) Crystal cut angles for lithium tantalate crystal for novel surface acoustic wave devices
US5302877A (en) Surface acoustic wave device
US4670681A (en) Singly rotated orientation of quartz crystals for novel surface acoustic wave devices
US3995240A (en) Temperature compensated surface wave device
US4670680A (en) Doubly rotated orientations of cut angles for quartz crystal for novel surface acoustic wave devices
US4247835A (en) Surface acoustic wave devices
US4109173A (en) High piezoelectric coupling, low diffraction loss, temperature compensated berlinite substrate members for surface acoustic wave devices
JP2021093570A (en) Surface acoustic wave resonator, filter, and multiplexer
US4323809A (en) Surface acoustic wave substrate having orthogonal temperature compensated propagation directions and device applications
JP2006203839A (en) Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
JPS5941602B2 (en) surface acoustic wave device
JPS5930332B2 (en) surface acoustic wave device
US4707631A (en) Isotropic acoustic wave substrate
WO2021210551A1 (en) Elastic wave device
Tanaka Suppression of bulk-wave responses in SAW devices using the difference of power flow angles
JPS6184105A (en) Surface acoustic wave device
JPS6262608A (en) Saw device utilizing angular difference of power flow