JPS6041710A - Compound superconductive wire material - Google Patents

Compound superconductive wire material

Info

Publication number
JPS6041710A
JPS6041710A JP58149905A JP14990583A JPS6041710A JP S6041710 A JPS6041710 A JP S6041710A JP 58149905 A JP58149905 A JP 58149905A JP 14990583 A JP14990583 A JP 14990583A JP S6041710 A JPS6041710 A JP S6041710A
Authority
JP
Japan
Prior art keywords
compound
wire
core
superconducting
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58149905A
Other languages
Japanese (ja)
Inventor
英純 森合
野口 弘二
梅沢 正
稲葉 彰司
雅宏 清藤
修二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP58149905A priority Critical patent/JPS6041710A/en
Publication of JPS6041710A publication Critical patent/JPS6041710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1) 発明の背景と目的 本発明は耐歪性を向上させた極細多心化合物系超電導線
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Background and Objectives of the Invention The present invention relates to an ultrafine multicore compound superconducting wire with improved strain resistance.

Nb3 Sn 、 (NbTi )3 Sn 、 V3
Ga等の化合物系超電導線は高磁界での超電導特性が良
好であるため近年多く用いられている。一方、これらの
化合物系超電導材は機械的に非常に脆い性質を有してい
るので、その使用に当っては歪を0.8%以下に抑える
必要がある等の制限があり、その対策として従来は超電
導コイル巻線径に合せて線材寸法を小さくする゛等の方
法が採られている。しかし、このような対策は根本的な
対策とは言えず、耐歪性すなわち使用可能な歪限度を上
げることが最も重要であると考えられる。
Nb3 Sn, (NbTi)3 Sn, V3
Compound-based superconducting wires such as Ga have been widely used in recent years because of their good superconducting properties in high magnetic fields. On the other hand, these compound-based superconducting materials have very mechanically brittle properties, so there are restrictions when using them, such as the need to suppress strain to 0.8% or less. Conventionally, methods such as reducing the wire size to match the superconducting coil winding diameter have been adopted. However, such countermeasures cannot be said to be fundamental countermeasures, and it is considered that the most important thing is to increase the distortion resistance, that is, the usable distortion limit.

ところで、化合物系超電導線の製作方法は主として化合
物の構成要素を加工し易い状態で複合加工した後に化合
物生成のだめの熱処理を行なって各構成要素界面で拡散
反応を起させ化合物相を生成させるものである。この方
法についてNb3Sn’i例にとって具体的に説り」す
ると、第1図に示す如く多数本のNb心線1、Cu5n
合金マトリックス2、拡散バリア3、安定化Cu4の中
に埋設した構成のものを製作する。この段階ではNI)
心線、Cu5n合金、拡散バリア、安定化Cu等はいず
れも加工硬化を取り除く程度の中間焼鈍等を行なえば加
工し易い構成要素となシ且つ加工に十分耐えろものであ
る。かかる構成で最終使用形状まで減面、成型加工を行
なった複合線材は超電導特性を伺与するために例えば7
50℃、100時間の化合物生成熱処理を行なってNb
とCu5n中のSnを拡散反応させNb心線表面に超電
導化合物Nb、+Sn層を生成させる。化合物生成熱処
理後の線材断面を示す第2 図から明らかなように、拡
散反応はNb心線の表面で行なわれるのでN b 3 
S n層はNb心線の表面にのみ生成し、心線中心部に
は未反応のNbが残留する。このようにして作製された
Nb3 Sn化合物系超電導線材に引張歪を加えつつ超
電導臨界電流を測定すると、第3図に示す如く歪を加え
るに従って臨界電流値は増加し、極太値を示した後急激
に低下する。臨界電流値が歪によって極大値を示す理由
は各構成材の熱膨張係数の差によると考えられている。
By the way, the method of manufacturing compound-based superconducting wires is mainly to perform compound processing on the compound components in a state that is easy to process, and then perform heat treatment to prevent the formation of the compound, causing a diffusion reaction at the interface of each component to generate a compound phase. be. This method will be specifically explained using the example of Nb3Sn'i. As shown in FIG.
An alloy matrix 2, a diffusion barrier 3, and a configuration embedded in stabilized Cu4 are fabricated. At this stage, NI)
The core wire, the Cu5n alloy, the diffusion barrier, the stabilized Cu, and the like are all components that are easy to process and can withstand processing sufficiently if intermediate annealing is performed to remove work hardening. Composite wires with such a configuration are subjected to area reduction and molding processing to the final use shape, and in order to obtain superconducting properties, for example,
Nb
and Sn in Cu5n undergo a diffusion reaction to form a superconducting compound Nb,+Sn layer on the surface of the Nb core wire. As is clear from Figure 2, which shows the cross section of the wire after the heat treatment for compound formation, the diffusion reaction takes place on the surface of the Nb core wire, so that Nb3
The Sn layer is generated only on the surface of the Nb core, and unreacted Nb remains in the center of the core. When the superconducting critical current is measured while applying tensile strain to the Nb3Sn compound superconducting wire produced in this way, as shown in Figure 3, the critical current value increases as the strain is applied, and after reaching a very thick value, it suddenly decreases. decreases to The reason why the critical current value shows a maximum value due to strain is thought to be due to the difference in the coefficient of thermal expansion of each constituent material.

すなわちN b B S n層よりもCu 、 Cu5
n合金の熱膨張係数が太きいため、化合物生成熱処理温
度から超電導線利使用温度42K(−269,8℃)ま
での冷却によシN b 3 S n層に圧縮歪が加わっ
ており、引張歪を加えることによって圧縮歪が緩和され
て臨界電流値が増加する(本来の値に回復する)もので
ある。引張歪がさらに大きくなると臨界電流値は劣化す
る。臨界電流値が歪を加える的の値とほぼ同じになるの
が0.80i)の歪であり、N l) 3 S n線材
の使用限度とされる値である。
That is, Cu, Cu5 than the N b B S n layer
Since the coefficient of thermal expansion of the n-alloy is large, compressive strain is applied to the N b 3 S n layer during cooling from the compound formation heat treatment temperature to the superconducting wire utilization temperature of 42 K (-269.8 °C), resulting in tensile stress. By applying strain, the compressive strain is relaxed and the critical current value increases (recovers to its original value). As the tensile strain increases further, the critical current value deteriorates. A strain of 0.80i) causes the critical current value to be almost the same as the value of the target for applying strain, which is the value considered to be the limit of use of the Nl)3Sn wire.

本発明は上記の点に鑑みてなされたもので、前記した従
来技術の欠点を解消し、化合物系超電導線材の耐歪性を
向上させた極細多心化合物系超電導線材の提供を目的と
するものである。
The present invention has been made in view of the above points, and aims to provide an ultrafine multi-core compound superconducting wire that eliminates the drawbacks of the prior art described above and improves the strain resistance of the compound superconducting wire. It is.

(2)発明の概要 すなわち、本発明の要旨とするところは、化合物系超電
導線材の心材に熱膨張係数の大きい金属材料を複合した
ことにある。ここで、複合する金属材料の熱膨張係数は
超電導性化合物のそれよりも大きいことが好ましく、壕
だ該金属材料は個々の心線の内部に複合されることが好
1、しい。
(2) Summary of the Invention In other words, the gist of the present invention resides in that the core material of a compound-based superconducting wire is composited with a metal material having a large coefficient of thermal expansion. Here, it is preferable that the coefficient of thermal expansion of the composite metal material is larger than that of the superconducting compound, and it is preferable that the metal material is composited inside each core wire.

上記のように心材に熱膨張係数の大きい金属材料を用い
ることにより、化合物生成熱処理θ1j冒圧から超電導
線材として使用する温度まで冷却する間に化合物層は内
側及び外側から圧縮歪を受けるため均一に且つより大き
く歪む。従ってこれに引張歪を加えた場合、従来構成の
化合物線材と比較してより大きな圧縮歪に対応する引張
正寸で耐え得るものである。
As mentioned above, by using a metal material with a large coefficient of thermal expansion for the core material, the compound layer is subjected to compressive strain from the inside and outside during cooling from the compound generation heat treatment θ1j to the temperature used as a superconducting wire, so that it can be uniformly strained. And it becomes more distorted. Therefore, when a tensile strain is applied to this wire, it can withstand a tensile size corresponding to a larger compressive strain than a conventional compound wire rod.

(3)実施例 以下、本発明による一実施例について第4〜6図と共に
説明する。第4図は本発明による化合物系超電導線材の
化合物生成熱処理前の断面図であり、Nb心線として予
めNb、eイノ6と熱膨張係数の大きい金属材料、例え
ばCu7を糾合ぜたものをCu Snマトリックス2、
Nbノ々リア3、安定化材4の中に埋設したものである
。第5図は750℃、100時間の化合物生成熱処理後
の線材断面を示し、Nb心線6の表面でNbとCu S
 n中のSnとが拡散反応しNbB Snn層が生成し
ている。Nb3Sn層8はNb心線の表面にのみ生成す
るが、その層厚はNl)心線径、Cu5nとNb の断
面積比、熱処理条件によって一定となる。従って未反応
Nb層6を少し残した心線内部がCu7になるようにN
bの厚さを予め決定することができる。
(3) Example Hereinafter, an example according to the present invention will be described with reference to FIGS. 4 to 6. FIG. 4 is a cross-sectional view of the compound-based superconducting wire according to the present invention before heat treatment for compound formation. Sn matrix 2,
It is embedded in Nb Nonoria 3 and stabilizing material 4. FIG. 5 shows a cross section of the wire after heat treatment for compound formation at 750°C for 100 hours.
A diffusion reaction occurs with Sn in n to form an NbB Snn layer. The Nb3Sn layer 8 is formed only on the surface of the Nb core, and its thickness is constant depending on the diameter of the Nb core, the cross-sectional area ratio of Cu5n and Nb, and the heat treatment conditions. Therefore, the inside of the core wire with a little unreacted Nb layer 6 remaining becomes Cu7.
The thickness of b can be determined in advance.

本発明の実施例では化合物生成熱処理前のNb心線は5
μmであり、その中心部に2μmの無酸素銅が入った構
成とし、750℃、100時間の化合物生成熱処理後、
Nb心線の表面に厚さ 08〜1μm のNb3Sn層
が生成し/こが、N b 3 S n層と無酸素銅との
間には未反応のNb層(厚さ05〜07μm)が残留し
た。かかる線材に引張歪を加えて超電導臨界電流を測定
した結果、第6図に示す如〈従来構成のNb3 Snに
対し11倍の耐歪性を示し、088係まで而tえること
が半1」つた。
In the example of the present invention, the Nb core wire before heat treatment for compound formation was 5
μm, with 2 μm of oxygen-free copper in the center, and after heat treatment at 750°C for 100 hours to form a compound,
An Nb3Sn layer with a thickness of 08-1 μm is formed on the surface of the Nb core wire, but an unreacted Nb layer (05-07 μm thick) remains between the Nb3Sn layer and the oxygen-free copper. did. As a result of measuring the superconducting critical current by applying tensile strain to such a wire, as shown in Fig. 6, the strain resistance was 11 times higher than that of the conventional Nb3Sn structure, and the resistance up to 088 was half that. Ivy.

以上、本発明の理解を容易にするためにNb3Snを例
にとって説明したが、本発明はV3Ga 。
Although the present invention has been explained using Nb3Sn as an example in order to facilitate understanding of the present invention, the present invention applies to V3Ga.

(NbTi)3sn等の極細多心化合物系超電Q線にも
勿論適用でき、寸だ心線中に配する金属月相としては大
きい熱膨張係数を示すものであれ(rf、’ Cu 。
Of course, it can also be applied to ultrafine multi-core compound-based superelectric Q-rays such as (NbTi)3sn, which exhibits a large coefficient of thermal expansion as a metal moon phase placed in a thin core wire (rf, 'Cu.

At等の純金属に限られるものではなく、Cu合金。It is not limited to pure metals such as At, but also Cu alloys.

A4合金等を使用することもできる。A4 alloy or the like may also be used.

(4)発明の効果 上述した如く、本発明によれ1ハ、個々の心線中に熱膨
張係数の大きい金属4A別を複合することによシ、冷却
時に超電導性化合物に大きな圧縮歪を加え、それに対応
する犬き々引張歪に捷で耐え得る極細多心化合物系超電
導線を提供することができる。
(4) Effects of the Invention As mentioned above, according to the present invention, 1) a large compressive strain is applied to the superconducting compound during cooling by compounding metal 4A with a large coefficient of thermal expansion into each core wire; Therefore, it is possible to provide an ultra-fine multi-core compound superconducting wire that can withstand the corresponding tensile strain when twisted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の化合物系超電導線材の熱処理前の断面図
、第2図はそれの熱処理後の断面図、第3図は従来の化
合物系超電導線材における引張歪と臨界電流値の関係を
示すグラフ、第4図は本発明による化合物系超電導線材
の熱処理前の断面図、第5図はそれの熱処理後の断面図
、第6図は本発明による化合物系超電導線材における引
張歪と臨界電流値の関係を示すグラフである。 1・・・・・Nb心線、2・、・・・・・Cu5nマト
リツクス、3・・・・・Nbバリア、4・・・・・Cu
、5・・・・・・Nb3Sn層、6・・・・・・Nb、
7・・・・・・Cu、8・・・・・・N b 3 S 
n 。 算 30 第3図 苑 411 児 6121
Figure 1 is a cross-sectional view of a conventional compound-based superconducting wire before heat treatment, Figure 2 is a cross-sectional view of it after heat treatment, and Figure 3 shows the relationship between tensile strain and critical current value in a conventional compound-based superconducting wire. Graph, FIG. 4 is a cross-sectional view of the compound-based superconducting wire according to the present invention before heat treatment, FIG. 5 is a cross-sectional view after heat treatment, and FIG. 6 is the tensile strain and critical current value in the compound-based superconducting wire according to the present invention. It is a graph showing the relationship between. 1...Nb core wire, 2...Cu5n matrix, 3...Nb barrier, 4...Cu
, 5...Nb3Sn layer, 6...Nb,
7...Cu, 8...Nb3S
n. Mathematics 30 3rd Picture Garden 411 Children 6121

Claims (3)

【特許請求の範囲】[Claims] (1)個々の心線に熱膨張係数の犬°きい金属材料を複
合してなることを特徴とする極細多心化合物系超電導線
材。
(1) An ultra-fine multi-core compound superconducting wire material, which is characterized in that each core wire is made of a composite of a metal material with a coefficient of thermal expansion that is extremely high.
(2)複合する金属材料の熱膨張係数が超電導性化合物
のそれよりも大きいことを特徴とする前項(1)記載の
極細多心化合物系超電導線材。
(2) The ultrafine multicore compound-based superconducting wire according to item (1) above, wherein the thermal expansion coefficient of the composite metal material is larger than that of the superconducting compound.
(3)前記金属材料を個々の心線の内部に複合すること
を特徴とする前項(1)又は(2)記載の極細多心化合
物加導線材。
(3) The ultra-fine multicore compound conductive wire according to item (1) or (2) above, wherein the metal material is composited inside each core wire.
JP58149905A 1983-08-17 1983-08-17 Compound superconductive wire material Pending JPS6041710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149905A JPS6041710A (en) 1983-08-17 1983-08-17 Compound superconductive wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149905A JPS6041710A (en) 1983-08-17 1983-08-17 Compound superconductive wire material

Publications (1)

Publication Number Publication Date
JPS6041710A true JPS6041710A (en) 1985-03-05

Family

ID=15485159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149905A Pending JPS6041710A (en) 1983-08-17 1983-08-17 Compound superconductive wire material

Country Status (1)

Country Link
JP (1) JPS6041710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214305A (en) * 1985-03-19 1986-09-24 工業技術院長 Superconducting composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214305A (en) * 1985-03-19 1986-09-24 工業技術院長 Superconducting composite material

Similar Documents

Publication Publication Date Title
US5075285A (en) Silver alloy sheathing material for ceramic superconducting wires
US4435228A (en) Process for producing NB3 SN superconducting wires
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPS6041710A (en) Compound superconductive wire material
Gregory et al. High strength Nb/sub 3/Sn conductors for high magnetic field applications
JPH0570888B2 (en)
JP4652938B2 (en) Powder method Nb3Sn superconducting wire manufacturing method
Dietderich et al. Cable R&D for the LHC accelerator research program
JP3753346B2 (en) Aluminum stabilized superconducting wire
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JP2003045247A (en) Superconductive cable
JP3428771B2 (en) Nb3Sn compound superconducting wire
JPS59209210A (en) Nb3sn compound superconductive wire and production thereof
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPS5994307A (en) Method of producing compound superconductive wire
JPH0514402B2 (en)
JP3603565B2 (en) Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same
JPH10321060A (en) Alminum-stabilized superconducting wire
JPS60101811A (en) Method of improving critical current value of nb3sn superconductive wire
JPS6166313A (en) Method of improving critical current value of compound superconductive wire
JPS61201766A (en) Manufacture of cu-stabilized nb-ti superconducting wire
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JPS59111204A (en) Method of producing superconductive wire
JPS6333244B2 (en)