JPS6041626B2 - Manufacturing method of fiber base material for optical communication - Google Patents

Manufacturing method of fiber base material for optical communication

Info

Publication number
JPS6041626B2
JPS6041626B2 JP11210279A JP11210279A JPS6041626B2 JP S6041626 B2 JPS6041626 B2 JP S6041626B2 JP 11210279 A JP11210279 A JP 11210279A JP 11210279 A JP11210279 A JP 11210279A JP S6041626 B2 JPS6041626 B2 JP S6041626B2
Authority
JP
Japan
Prior art keywords
glass
manufacturing
optical communication
starting member
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11210279A
Other languages
Japanese (ja)
Other versions
JPS5637242A (en
Inventor
伸夫 稲垣
四郎 黒崎
稔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11210279A priority Critical patent/JPS6041626B2/en
Publication of JPS5637242A publication Critical patent/JPS5637242A/en
Publication of JPS6041626B2 publication Critical patent/JPS6041626B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は外付け法による光通信用ファイバ母材の製造方
法に関し、特に出発部材の処理方法に特徴を持つものて
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a fiber preform for optical communications by an external attachment method, and is particularly characterized by a method of processing a starting member.

外付け法による光通信用ファイバ母材の製造方法は第1
図に示すように1 出発部材11上にガラス微粉末12
を付着たい積させる工程2 出発部材11を除去する工
程 3 ガラス微粉末12を透明ガラス化する工程とからな
る。
The first method for manufacturing fiber base material for optical communication using the external attachment method is
As shown in the figure, 1 fine glass powder 12 is placed on the starting member 11.
Step 2 of depositing the starting member 11; Step 3 of removing the starting member 11; and Step 3 of converting the fine glass powder 12 into transparent vitrification.

2の出発部材除去工程を3の透明ガラス化工程後にする
場合は、出発部材11をつけたままガラス微粉末体12
を透明ガラス化させるので、透明化したガラスが出発部
材11に密着する。
If the starting material removal step 2 is performed after the transparent vitrification step 3, the fine glass powder 12 is removed with the starting material 11 still attached.
Since the glass is made into transparent glass, the transparent glass comes into close contact with the starting member 11.

そして出発部材11との熱膨張係数の違いにより応力割
れを起すことが多い。また透明ガラス化の前に出発部材
11を除去しようとすると、まだガラス微粉末体12が
固まつていないので作業が難しい。
Stress cracks often occur due to the difference in thermal expansion coefficient between the starting member 11 and the starting member 11. Furthermore, if it is attempted to remove the starting member 11 before transparent vitrification, the work is difficult because the glass fine powder 12 has not yet solidified.

本発明の目的はガラス微粉末体12ならびにその透明ガ
ラス化したものに悪い影響を与えることなく出発部材1
1をガラス状にしてしまい一部揮発させ、必要に応じ後
で残つた部分をフッ酸でエッチングして除去する方法を
提供するところにある。
An object of the present invention is to provide a starting member 1 without having any adverse effect on the glass fine powder 12 or its transparent vitrified product.
The purpose of the present invention is to provide a method in which 1 is made into a glassy state, a portion of the material is volatilized, and the remaining portion is removed by etching with hydrofluoric acid if necessary.

本発明の概要を述べる。An overview of the present invention will be described.

J 出発部材11の材料として、たとえはB又はB−S
i、、B−P)B−Geのような合金、又はそれらの化
合物BN又はB、Coのようにガラス微粉末体を透明ガ
ラス化させる温度付近の温度で燃焼酸化しガラス状とな
るものを用いる。
J As the material of the starting member 11, for example, B or B-S
i, B-P) Alloys such as B-Ge, or compounds thereof such as BN, B, and Co, which become glass-like when burned and oxidized at a temperature close to the temperature at which fine glass powder becomes transparent vitrification. use

またこれをバイブ状にして使用する。そしてその上に従
来同様にガラス微粉末体12を形成する。出発部材をガ
ラス化するときは、その内部に02ガスを流しながら加
熱し、これを酸化しガラス化する。このガラスを蒸発さ
せるかフッ酸でエッチングし除去する。たとえばB..
BN,.B4C3等は1200℃の02ガス中では酸化
してB2O3等の酸化物ガラスが出来だし蒸発も生じだ
す。
This can also be used in the form of a vibrator. Then, a glass fine powder body 12 is formed thereon in a conventional manner. When vitrifying the starting member, it is heated while flowing 02 gas inside it to oxidize and vitrify it. This glass is removed by evaporation or etching with hydrofluoric acid. For example, B. ..
BN,. B4C3 and the like are oxidized in 02 gas at 1200°C to form oxide glasses such as B2O3 and evaporate.

通常、ガラス微粉末体12の透明ガラス化は約1300
℃くらいで行なう。
Usually, the transparent vitrification of the glass fine powder body 12 is about 1300
Do it at around ℃.

それ故透明ガラス化工程中に、同時に基材11のガラス
化蒸発を行うこともできる。次に第2図にてより詳しく
説明する。
Therefore, the vitrification and evaporation of the substrate 11 can also be carried out simultaneously during the transparent vitrification step. Next, a more detailed explanation will be given with reference to FIG.

まず装置を述べる。First, let's talk about the equipment.

21はたとえばBNのバイブからなる基材で、たとえば
外径が20Tm1n1肉厚が2?くらいのものを用いる
21 is a base material made of a vibrator made of BN, for example, and has an outer diameter of 20Tm1n1 and a wall thickness of 2? Use something like that.

22はその外側に従来公知の方法でたい積させたガラス
微粉末体である。
22 is a glass fine powder body deposited on the outside by a conventionally known method.

ガラス微粉末体22の上端に適当な長さの石英製の支持
バイブ23を、たとえばネジで連結する。支持バイブ2
3の途中に02ガスの入力24を設ける。支持バイブ2
3の上端を公知の昇降装置の回転するチャック25には
さみ、加熱炉27内に吊り下げる。
A support vibe 23 made of quartz and having an appropriate length is connected to the upper end of the glass fine powder body 22 by, for example, a screw. Support vibe 2
An input 24 for 02 gas is provided in the middle of 3. Support vibe 2
The upper end of 3 is held between a rotating chuck 25 of a known lifting device and suspended in a heating furnace 27.

28はヒータである。28 is a heater.

次に作用を述べる。Next, we will discuss the effect.

ヒータ28でガラス微粉末体22の透明ガラス化温度(
約1300゜C)に加熱し、入口24から02ガスを入
れて支持バイブ23および基材21の内部を通じて流し
ながら昇温装置26で支持バイブ23を徐々に下降させ
る。するとガラス微粉末体22は下端から順次透明ガラ
ス29になる。同時に基材21は燃焼しガラスしてB2
O3になソー部蒸発しだす。このようにして全体のガラ
ス微粉末22が透明ガラス29になつたとき、出発部材
21は完全に消滅又はガラスとして残存する。
The transparent vitrification temperature of the glass fine powder body 22 is controlled by the heater 28 (
1300° C.), and while 02 gas is introduced from the inlet 24 and flows through the inside of the support vibe 23 and the base material 21, the support vibe 23 is gradually lowered using the temperature raising device 26. Then, the glass fine powder body 22 becomes transparent glass 29 sequentially from the lower end. At the same time, the base material 21 burns and becomes glass.
The saw part begins to evaporate in O3. When the entire glass fine powder 22 becomes transparent glass 29 in this way, the starting member 21 completely disappears or remains as glass.

透明ガラス29は出発部材21からの応力を全く受けな
い。この蒸発しない残つたガラスは後でフッ酸によつて
除去することも出来る。実施例を以下に示す。
The transparent glass 29 is not subjected to any stress from the starting member 21. This remaining glass that does not evaporate can be removed later with hydrofluoric acid. Examples are shown below.

出発部材として外径12?φ、内径10TWLφ、長さ
20hのBNのバイブを使用し、その上に長さ180?
にわたつて、P2O5(10%)−SiO2(83%)
一CeO2(7%)のコア用ガラス微粉末焼結体22を
厚さ8.5T1nに、またその上にSiO2(82%)
−B,O3(18%)のクラッド用ガラス微粉末焼結体
22(割合は重量%)を厚さ8.―にたい積させて、全
体の外径を44T!r!nとした。
Outer diameter 12 as a starting material? φ, inner diameter 10TWLφ, length 20h using a BN vibrator, and a length 180mm on top of it.
Over P2O5 (10%) - SiO2 (83%)
-CeO2 (7%) glass fine powder sintered body 22 for the core has a thickness of 8.5T1n, and on top of that is SiO2 (82%).
-B, O3 (18%) glass fine powder sintered body 22 for cladding (ratio is weight%) to a thickness of 8. -The total outer diameter is 44T! r! It was set as n.

これを1WLの支持バイブ24の下端に連結して加熱炉
27内に吊るし、1280℃に加熱し、同時に02をL
Uminの割合で流し、ガラス微粉末体22を順次透明
ガラス29にすると同時に基材21を燃焼ガラス化させ
、内径9W$L1外径13種、長さ120瓢の透明ガラ
ス29を、何ら破損させることなく得ることができた。
この後出来たバイブの内面をHFで洗浄し、内面の八0
3ガラスを除去した。この発明の効果を述べる。
This is connected to the lower end of the 1WL support vibe 24, suspended in the heating furnace 27, heated to 1280°C, and at the same time the 02
Flow at a rate of Umin, and at the same time turn the glass fine powder 22 into transparent glass 29, the base material 21 is burned and vitrified, and the transparent glass 29 with an inner diameter of 9W$L1, an outer diameter of 13 types, and a length of 120 gourds is not damaged in any way. I was able to get it without any problems.
After this, clean the inner surface of the vibrator with HF, and
3 glasses were removed. The effects of this invention will be described.

(1)ガラス微粉末体22の透明ガラス化と同時に基材
21の除去ができる。
(1) The base material 21 can be removed at the same time as the glass fine powder body 22 becomes transparent vitrified.

(2)ガラス微粉末体22が透明ガラス化するとき応力
割れを起すことがなくなる。
(2) Stress cracking will not occur when the glass fine powder body 22 becomes transparent vitrified.

(3)基材20はバイブ状になつているので02ガスの
接触面積が広く、また反応ガスが容易に流出できる。
(3) Since the base material 20 is in the shape of a vibrator, the contact area for the 02 gas is large, and the reaction gas can easily flow out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造工程途中の説明図、第2図はこの発
明の製造方法のある途中の状態を模型的に示した説明図
である。 21:出発部材、22:ガラス微粉末体、3:支持バイ
ブ、24:入口、25:チヤツク、26:昇降装置、2
7:加熱炉、28:ヒータ、29:透明ガラス。
FIG. 1 is an explanatory diagram showing a conventional manufacturing process in the middle, and FIG. 2 is an explanatory diagram schematically showing a state in the middle of the manufacturing method of the present invention. 21: Starting member, 22: Fine glass powder, 3: Support vibe, 24: Inlet, 25: Chuck, 26: Lifting device, 2
7: Heating furnace, 28: Heater, 29: Transparent glass.

Claims (1)

【特許請求の範囲】 1 出発部材上にガラス微粉末を付着たい積させる工程
と前記ガラス微粉末たい積を透明ガラス化する工程とを
含む光通信用ファイバ母材の製造方法において、ガラス
微粉末体を透明ガラス化させる温度付近の温度で燃焼酸
化しガラスとなる材料をパイプ状にしたものを前記出発
部材として用い、これをその内側にO_2を流しながら
加熱して酸化しガラス化し揮発させることを特徴とする
光通信用ファイバ母材の製造方法。 2 前記出発部材として、蒸発し易いガラスとなる金属
Bを主体とし、P、Ge、Siをドープした合金又はそ
れらの炭化物、又は窒化物よりなる材料を用いることを
特徴とする特許請求の範囲第1項記載の光通信用ファイ
バ母材の製造方法。
[Scope of Claims] 1. A method for manufacturing a fiber preform for optical communication, which includes the steps of depositing fine glass powder on a starting member and converting the pile of fine glass powder into transparent vitrification, which comprises: A pipe-shaped material that undergoes combustion oxidation to become glass at a temperature close to the temperature at which it becomes transparent vitrification is used as the starting member, and is heated while flowing O_2 inside it to oxidize, vitrify, and volatilize it. A method for manufacturing a fiber base material for optical communication. 2. Claim 2, characterized in that the starting member is a material consisting mainly of metal B, which becomes glass that easily evaporates, and an alloy doped with P, Ge, and Si, or their carbides or nitrides. 2. A method for manufacturing a fiber preform for optical communication according to item 1.
JP11210279A 1979-08-31 1979-08-31 Manufacturing method of fiber base material for optical communication Expired JPS6041626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11210279A JPS6041626B2 (en) 1979-08-31 1979-08-31 Manufacturing method of fiber base material for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11210279A JPS6041626B2 (en) 1979-08-31 1979-08-31 Manufacturing method of fiber base material for optical communication

Publications (2)

Publication Number Publication Date
JPS5637242A JPS5637242A (en) 1981-04-10
JPS6041626B2 true JPS6041626B2 (en) 1985-09-18

Family

ID=14578175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11210279A Expired JPS6041626B2 (en) 1979-08-31 1979-08-31 Manufacturing method of fiber base material for optical communication

Country Status (1)

Country Link
JP (1) JPS6041626B2 (en)

Also Published As

Publication number Publication date
JPS5637242A (en) 1981-04-10

Similar Documents

Publication Publication Date Title
JP2690106B2 (en) Optical fiber manufacturing method
GB1430682A (en) Method for producing high quality fused silica
GB1424694A (en) Forming of articles having radially varying compositions
US3576932A (en) Sintering vapor deposited silica on a mandrel designed to reduce shrinkage
CA1043185A (en) Flame hydrolysis mandrel and method of using
JPS61219729A (en) Manufacture of optical waveguide tube
US5685889A (en) Method for flame abrasion of glass preform
JP5046753B2 (en) Optical fiber preform manufacturing method and apparatus
JPS6041626B2 (en) Manufacturing method of fiber base material for optical communication
JPS5915091B2 (en) Manufacturing method of fiber base material for optical communication
JP2640746B2 (en) Manufacturing method of intermediate product for optical fiber
JPH1171125A (en) Production of preform for optical fiber
JPH0559850B2 (en)
JPH0436100B2 (en)
JP2561103B2 (en) Method for manufacturing glass article
JPS63147840A (en) Production of quartz glass material
JPS61101429A (en) Production of glass tube
JPS5818331B2 (en) Glass manufacturing method
JP2640745B2 (en) Method for manufacturing opaque glass preform
JP3400180B2 (en) Silica glass jig
JP2820212B2 (en) Manufacturing method of preform for optical fiber
JPH0477691B2 (en)
JPH03109224A (en) Quartz glass and production thereof
JPH0536372B2 (en)
JP3067860B2 (en) How to make a silica-based optical waveguide