JPH0559850B2 - - Google Patents
Info
- Publication number
- JPH0559850B2 JPH0559850B2 JP747185A JP747185A JPH0559850B2 JP H0559850 B2 JPH0559850 B2 JP H0559850B2 JP 747185 A JP747185 A JP 747185A JP 747185 A JP747185 A JP 747185A JP H0559850 B2 JPH0559850 B2 JP H0559850B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- quartz
- deposit
- main component
- glass tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 239000000314 lubricant Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 238000000151 deposition Methods 0.000 claims description 18
- 239000010453 quartz Substances 0.000 claims description 15
- 229910052582 BN Inorganic materials 0.000 claims description 13
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 13
- 239000007858 starting material Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000008021 deposition Effects 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000012808 vapor phase Substances 0.000 claims description 4
- 238000007496 glass forming Methods 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 2
- 239000004071 soot Substances 0.000 description 44
- 235000012239 silicon dioxide Nutrition 0.000 description 12
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 208000005156 Dehydration Diseases 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
- C03B37/01493—Deposition substrates, e.g. targets, mandrels, start rods or tubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
(産業上の利用分野)
本発明は、含有水分量が少なく管内壁の平滑な
石英ガラスパイプの製造方法に関する。本発明に
依り得られる石英ガラスパイプは光フアイバ用母
材のクラツド用ガラスとして好適に用いることが
できる。さらには含有水分量として極めて低い量
が要求されるシングルモードフアイバのクラツド
用ガラスとして好適に用いることができる。
(従来の技術)
従来、石英系ガラス管或いは光フアイバ用母材
の製造方法として、特開昭48−73522号公報に示
されたような、いわゆる外付法がある。この方法
は回転するカーボン或いは石英系ガラス、アルミ
ナなどの耐火性出発材料(マンドレルと称する)
の外側にSiCl4などの原料の火炎加水分解反応に
より生成させたSiO2などの微粒子状ガラス(以
下スートと称する)を堆積させていき、所定量堆
積させたあと堆積をやめマンドレルを引き抜くと
いうものであり、得られたパイプ状スート体を高
温電気炉中で焼結して溶融ガラス化しパイプ状ガ
ラスを得ている。
(発明が解決しようとする問題点)
しかしながら上記の方法では、マンドレルを引
抜いたあとスート体内壁がきずつき易く焼結され
たガラス管内壁として平滑な面をもつものが得ら
れにくいという難点がある。また、スート体内壁
にキズがつきにくくなるよう、スートを堆積する
過程で火炎の温度を高く設定し、スート体のカサ
密度を上げてスートをマンドレル上に堆積させる
と、マンドレルは引抜きにくくなり、かつ、その
后の脱水処理も困難になる。
本発明は上記方法の改良に係るものであり以上
の欠点を克服しガラス管内壁が平滑でかつ水分含
有量の極めて低い石英系ガラス管の製造方法を提
供せんとするものである。
(問題点を解決するための手段)
本発明は気相ガラス形成原料の火炎加水分解反
応により生成させた微粒子状ガラスを出発材料上
に堆積させて堆積体とし、次いで該堆積体より上
記出発材料を引き抜きパイプ状としたのち、該パ
イプ状堆積体を加熱処理して透明ガラス管を得る
方法において、上記微粒子状ガラスの堆積前にあ
らかじめ窒化硼素を主成分とする潤滑剤を上記出
発材料表面に塗布しておくことを特徴とする石英
を主成分とするガラス管の製造方法である。
本発明の特に好ましい実施態様としては、微粒
子状ガラス(スート)堆積時マンドレル近傍約1
cm厚さの部分のカサ密度を0.2〜0.7g/cm3の範囲
で堆積する上記方法、堆積体(スート体)が実質
的に純粋な石英ガラス微粒子である上記方法およ
びパイプ状スート体の加熱処理を弗素を含む雰囲
気中で行いFを含んだ透明石英ガラス管を得る上
記方法が挙げられる。
さらに本発明は気相ガラス形成原料の火炎加水
分解反応により生成させた微粒子状ガラスを、あ
らかじめ窒化硼素を主成分とする潤滑剤を表面に
塗布した出発材料上に堆積させて堆積体とし、次
いで該堆積体より上記出発材料を引抜き、パイプ
状とした後該パイプ状堆積体を加熱処理して透明
な石英を主成分とするガラス管とし、該ガラス管
内に該ガラス管より高い屈折率を有する透明ガラ
ス棒を挿入し、一体化することを特徴とする光フ
アイバの母材用の石英を主成分とするガラスの製
造方法に関する。
本発明はいわゆる外付法において出発材料であ
るマンドレル上にスートを堆積させる前にマンド
レル表面に窒化硼素を主成分とする潤滑剤を塗布
することによりスート堆積後のマンドレル引抜を
容易にし、かつスート体内壁を平滑にすることに
ある。
本発明の用いる潤滑剤としては、スート堆積時
の火炎による高温状態でも安定であることから無
機化合物を主成分とするものが望ましい。何故な
らば有機化合物を塗布してもスート堆積時の火炎
によりマンドレルは500〜700℃以上に加熱される
ため、有機化合物は分解揮散するからである。
本発明では窒化硼素を主成分とする潤滑剤を用
いるが、この理由は以下の通りである。無機化合
物を主成分とする潤滑剤としては、例えば窒化硼
素系、グラフアイト系、硫化モリブデン系等のも
のが比較的容易に入手できる。中でも窒化硼素
BNは昇華点が3000℃以上であり、高温状態でも
十分安定であり好ましい。一方、グラフアイト系
潤滑剤はスート堆積時火炎を形成する為の酸素及
び火炎による熱の為酸化しCO或いはCO2となつ
て揮散し易く、効果的でない場合がある。硫化モ
リブデン系潤滑剤は熱的には安定であり、単にマ
ンドレルを引抜き易くする目的だけに利用する為
には有効である。しかし得られるパイプ状スート
或いは透明石英パイプ内部への金属不純物の混入
が問題となる場合がある。窒化硼素は、以上の問
題がなく、好ましい潤滑剤である。
本発明を図を用いて具体的に説明する。第2図
はスートをマンドレル上に堆積させる方法の1例
を示す図であり、1は回転昇降装置のチヤツク、
2はマンドレルである。3は石英ガラス製スリー
ブであり後のマンドレル引抜時やパイプ状スート
体の加熱処理の際スート体を保持する為に用いら
れる。4は反応容器、6は酸水素バーナーであ
り、このバーナー6内にガラス合成用気相原料の
SiCl4、O2、H2などが導入される。火炎7、内に
スート8が生成し、マンドレル2上に堆積されて
ゆく、9はスートの堆積体でありマンドレル2が
チヤツク1により回転させられつつ上昇に徐々に
引上られていくことによりマンドレル上方部より
スート堆積体9が軸方向に形成されていく。
本発明では、マンドレル2上に潤滑剤をあらか
じめ塗布しておく。マンドレルの材質としては、
石英ガラス、炭化ケイ素、カーボン、アルミナ、
ジルコニア等耐熱性材料であれば良い。潤滑剤と
しては前述したように窒化硼素系のものが熱的に
安定でありかつ、金属不純物の製品への混入もな
く好ましい。中でも窒化硼素の微粉末をフレオン
ガスで分散させたスプレーによりマンドレル上に
欠きつけることにより、簡易に潤滑剤の塗布がで
きる。潤滑剤層の厚さは0.1mm以下程度で効果を
奏する。
この潤滑剤を塗布せしめたマンドレル上にスー
トを堆積させる際のスート体のカサ密度としては
0.2g/cm3以上であることが望ましい。ここでい
う。カサ密度とは、マンドル近傍部約1cm厚さの
層の平均的な値をさす。0.2g/cm3未満ではスー
トの堆積過程でのひび割れが発生し易くなるから
である。潤滑剤を用いることにより、マンドレル
の引抜きはスート体のカサ密度を0.2g/cm3以上
としスート堆積時のヒビ割れ発生を抑えさえすれ
ばごく簡単になる。ただし後の加熱処理に於いて
パイプ状スート体に残存するOH基或いは水分を
十分に除去するためには、カサ密度は0.7g/cm3
以下であることが望ましい。
なお、第1図にはこのようにして形成されたス
ート体の断面構造を示す。2はマンドレル9はス
ート体、10は潤滑剤の薄層である。スート体は
次いで脱水しさらに焼結することにより透明ガラ
ス管が得られる。該透明ガラス管の内壁の潤滑剤
層は例えばHF溶液中に浸漬し内面ガラス層を除
去しつつ、洗浄除去される。
なお、スート体の脱水、焼結のための加熱処理
を弗素雰囲中で行なえば、弗素添加された石英を
主成分とするガラス管が得られる。
あるいは中空部内にフツ素化合物ガスを流しつ
つ外部から加熱すると、管内壁がフツ素により気
相で研摩されるとともに、熱により粘性が下がり
平滑化する。該フツ素化合物ガスとしては例え
ば、CCl2F2、CF4、SF6等が用いられ、中でも
SF6はエツチング速度が速く望ましい。具体的方
法としては例えば得られた焼結体を1700℃の炉内
に挿入し、SF6を500c.c./分で15分間処理する等
である。
(実施例)
実施例 1
マンドレルとして外径20mmφ長さ600mmの石英
棒を準備し、これに窒化硼素微粒子をフレオンガ
スを用いたスプレーにより約50μm厚だけ塗布し
たのち、ダミー棒を介して、第2図に示す装置の
チヤツク1に把持した。該マンドレル2の上端部
に長さ150mm外径23mmφ肉厚1.45mmの石英ガラス
管をスリーブ3として固定し、該スリーブ管3の
部分に側方に設けたスート合成用バーナーによ
り、スートを堆積させ始めた。マンドレル2を
30rpmで回転させつつ上方に40mm/hrの速度で引
上げていくことによりマンドレル2に外径110mm
φのスート体9を形成した。この時、スート合成
用バーナー6には表1に示す原料を投入した。
(Industrial Application Field) The present invention relates to a method for manufacturing a quartz glass pipe with a low water content and a smooth inner wall. The quartz glass pipe obtained according to the present invention can be suitably used as a glass for cladding of an optical fiber base material. Furthermore, it can be suitably used as a cladding glass for a single mode fiber, which requires an extremely low water content. (Prior Art) Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called external method as disclosed in Japanese Patent Application Laid-open No. 73522/1983. This method uses a rotating refractory starting material (called a mandrel) such as carbon, quartz glass, or alumina.
Fine particulate glass (hereinafter referred to as soot) such as SiO 2 produced by flame hydrolysis reaction of raw materials such as SiCl 4 is deposited on the outside of the mandrel, and after a predetermined amount has been deposited, the deposition is stopped and the mandrel is pulled out. The obtained pipe-shaped soot body is sintered in a high-temperature electric furnace to melt and vitrify it to obtain pipe-shaped glass. (Problems to be Solved by the Invention) However, the above method has the disadvantage that the inner wall of the soot is easily scratched after the mandrel is pulled out, and it is difficult to obtain a smooth inner wall of the sintered glass tube. . In addition, in order to prevent the soot internal wall from being scratched, the temperature of the flame is set high during the soot deposition process, increasing the bulk density of the soot body and depositing soot on the mandrel, which makes it difficult to pull out the mandrel. Moreover, subsequent dehydration treatment becomes difficult. The present invention relates to an improvement of the above-mentioned method, and aims to overcome the above-mentioned drawbacks and provide a method for producing a quartz-based glass tube having a smooth inner wall and an extremely low water content. (Means for Solving the Problems) The present invention involves depositing fine particulate glass produced by a flame hydrolysis reaction of a vapor phase glass forming raw material on a starting material to form a deposit, and then depositing the starting material from the deposit. In the method of obtaining a transparent glass tube by drawing out a pipe-shaped deposited body and heat-treating the pipe-shaped deposited body, a lubricant containing boron nitride as a main component is applied to the surface of the starting material before depositing the fine-grained glass. This is a method for manufacturing a glass tube whose main component is quartz, which is characterized by applying a coating. In a particularly preferred embodiment of the present invention, about 1
The above method in which the bulk density of the cm-thick part is deposited in the range of 0.2 to 0.7 g/ cm3 , the above method in which the deposited body (soot body) is substantially pure silica glass fine particles, and the heating of the pipe-shaped soot body Examples include the above-mentioned method for obtaining a transparent quartz glass tube containing F by carrying out the treatment in an atmosphere containing fluorine. Furthermore, the present invention involves depositing fine particulate glass produced by flame hydrolysis reaction of vapor phase glass forming raw materials onto a starting material whose surface has been previously coated with a lubricant containing boron nitride as a main component, and then forming a deposit. After drawing out the starting material from the deposit and forming it into a pipe, the pipe-shaped deposit is heat-treated to form a transparent glass tube mainly composed of quartz, and the inside of the glass tube has a higher refractive index than that of the glass tube. The present invention relates to a method for producing glass containing quartz as a main component for an optical fiber base material, which is characterized by inserting and integrating a transparent glass rod. The present invention makes it easier to pull out the mandrel after soot deposition by applying a lubricant containing boron nitride as a main component to the surface of the mandrel before depositing soot on the mandrel, which is a starting material, in the so-called external deposition method. Its purpose is to smooth the internal walls of the body. The lubricant used in the present invention is preferably one containing an inorganic compound as a main component because it is stable even under high temperature conditions caused by the flame during soot deposition. This is because even if an organic compound is applied, the mandrel is heated to 500 to 700° C. or higher by the flame during soot deposition, so the organic compound is decomposed and volatilized. In the present invention, a lubricant containing boron nitride as a main component is used for the following reasons. As lubricants containing inorganic compounds as a main component, for example, boron nitride-based, graphite-based, molybdenum sulfide-based lubricants, etc. are relatively easily available. Among them, boron nitride
BN is preferable because it has a sublimation point of 3000°C or higher and is sufficiently stable even at high temperatures. On the other hand, graphite-based lubricants tend to oxidize due to the oxygen and heat generated by the flame during soot deposition and become CO or CO 2 and easily volatilize, and may not be effective. Molybdenum sulfide lubricants are thermally stable and are effective when used solely for the purpose of making it easier to pull out the mandrel. However, the contamination of metal impurities into the resulting pipe-shaped soot or transparent quartz pipe may pose a problem. Boron nitride does not suffer from the above problems and is a preferred lubricant. The present invention will be specifically explained using figures. FIG. 2 is a diagram showing an example of a method for depositing soot on a mandrel, in which 1 is a chuck of a rotary lifting device;
2 is a mandrel. Reference numeral 3 denotes a quartz glass sleeve which is used to hold the soot body during subsequent drawing of the mandrel or heat treatment of the pipe-shaped soot body. 4 is a reaction vessel, 6 is an oxyhydrogen burner, and gas phase raw materials for glass synthesis are stored in this burner 6.
SiCl 4 , O 2 , H 2 , etc. are introduced. Soot 8 is generated within the flame 7 and is deposited on the mandrel 2. 9 is a soot deposit body, and the mandrel 2 is gradually pulled up while being rotated by the chuck 1. A soot deposit 9 is formed in the axial direction from the upper part. In the present invention, a lubricant is applied on the mandrel 2 in advance. The material of the mandrel is
quartz glass, silicon carbide, carbon, alumina,
Any heat-resistant material such as zirconia may be used. As mentioned above, a boron nitride-based lubricant is preferable because it is thermally stable and does not introduce metal impurities into the product. Among these, the lubricant can be easily applied by spraying a fine powder of boron nitride dispersed with Freon gas to form a chip on the mandrel. It is effective when the thickness of the lubricant layer is about 0.1 mm or less. When soot is deposited on a mandrel coated with this lubricant, the bulk density of the soot body is
It is desirable that it be 0.2 g/cm 3 or more. Here. The bulk density refers to the average value of a layer approximately 1 cm thick near the mandle. This is because if it is less than 0.2 g/cm 3 , cracks are likely to occur during the soot deposition process. By using a lubricant, the mandrel can be easily pulled out as long as the bulk density of the soot body is set to 0.2 g/cm 3 or more and the occurrence of cracks during soot deposition is suppressed. However, in order to sufficiently remove the OH groups or moisture remaining in the pipe-shaped soot body during the subsequent heat treatment, the bulk density must be 0.7 g/cm 3
The following is desirable. Note that FIG. 1 shows the cross-sectional structure of the soot body formed in this manner. 2 is a mandrel 9 is a soot body, and 10 is a thin layer of lubricant. The soot body is then dehydrated and further sintered to obtain a transparent glass tube. The lubricant layer on the inner wall of the transparent glass tube is washed away, for example, by immersing it in an HF solution and removing the inner glass layer. Note that if the heat treatment for dehydration and sintering of the soot body is performed in a fluorine atmosphere, a glass tube whose main component is fluorine-doped quartz can be obtained. Alternatively, by heating from the outside while flowing a fluorine compound gas into the hollow part, the inner wall of the tube is polished by the fluorine in the gas phase, and the viscosity is reduced by the heat, making it smooth. As the fluorine compound gas, for example, CCl 2 F 2 , CF 4 , SF 6 etc. are used, among which
SF 6 is desirable because of its high etching speed. A specific method is, for example, inserting the obtained sintered body into a furnace at 1700° C. and treating it with SF 6 at 500 c.c./min for 15 minutes. (Example) Example 1 A quartz rod with an outer diameter of 20 mm and a length of 600 mm was prepared as a mandrel, and boron nitride fine particles were applied to this by a thickness of approximately 50 μm by spraying using Freon gas, and then a second It was held in chuck 1 of the device shown in the figure. A quartz glass tube with a length of 150 mm, an outer diameter of 23 mm, and a wall thickness of 1.45 mm was fixed to the upper end of the mandrel 2 as a sleeve 3, and soot was deposited using a burner for soot synthesis installed on the side of the sleeve tube 3. I started. mandrel 2
By rotating at 30 rpm and pulling upward at a speed of 40 mm/hr, the outer diameter of the mandrel 2 is 110 mm.
A soot body 9 having a diameter of φ was formed. At this time, the raw materials shown in Table 1 were charged into the soot synthesis burner 6.
【表】
スート体9の長さが550mmとなつたところで原
料を停止させ室温で約1時間放置したのちにマン
ドレル2と石英ガラススリーブ管3の間に力を加
えることにより、マンドレルを引き抜いた。この
スート体のカサ密度は平均0.3g/cm3であつた。
得られたパイプ状スート体を電気炉中で表2に示
す雰囲気条件で脱水しさらに焼結することで透明
ガラス管を得た。[Table] When the length of the soot body 9 reached 550 mm, the raw material was stopped and left at room temperature for about 1 hour, and then the mandrel was pulled out by applying force between the mandrel 2 and the quartz glass sleeve tube 3. The average bulk density of this soot body was 0.3 g/cm 3 .
The obtained pipe-shaped soot body was dehydrated in an electric furnace under the atmospheric conditions shown in Table 2 and further sintered to obtain a transparent glass tube.
【表】
このガラス管を赤外分光光度計を用いて2.7μm
の吸光度を測定することにより残留OH量測定を
行つたころ0.1ppm以下と装置の検出感度以下の
量であつた。得られたガラス管をHF25%溶液に
約3時間浸し、内面のガラス層を約10μm程度除
去しつつ内面の潤滑剤を洗浄除去することにより
内面のキズのない外径48mmφ、内径10mmφ、長さ
20cmの純粋石英ガラス管を得た。該純粋石英ガラ
ス管内に別途VAD法にて作製したGeO2を4重量
%含有する3mmφの石英ガラス棒を挿入し、加熱
溶融して合体させたところ、第3図に示す屈折率
分布を持つ、単一モードフアイバ用プリフオーム
を得た。n0は純粋石英ガラスの屈折率であり、n1
とn0の比屈折率差は0.3%、またaとbはそれぞ
れ長さ3mm、45mmであつた。該プリフオームを外
径125mmφに線引し、波長1.38μmにおけるOH吸
収損失増を測定したところ5dB/Kmであり、また
1.3μm、1.55μm各々での伝送損失が0.55dB/Km、
0.28dB/Kmと比較的損失であつた。
実施例 2
実施例1と同様の方法でパイプ状スート体を作
製したのち、表3に示す条件にて脱水したのちさ
らに透明化した。[Table] This glass tube was measured at 2.7 μm using an infrared spectrophotometer.
When the amount of residual OH was measured by measuring the absorbance of OH, the amount was less than 0.1 ppm, which was below the detection sensitivity of the device. The resulting glass tube is immersed in a 25% HF solution for about 3 hours, removing about 10 μm of the glass layer on the inner surface and washing off the lubricant on the inner surface, resulting in an outer diameter of 48 mmφ, inner diameter of 10 mmφ, and length with no scratches on the inner surface.
A 20 cm pure quartz glass tube was obtained. A 3 mmφ quartz glass rod containing 4% by weight of GeO 2 prepared separately by the VAD method was inserted into the pure quartz glass tube, and when heated and melted to coalesce, a refractive index distribution as shown in FIG. 3 was obtained. A preform for single mode fiber was obtained. n 0 is the refractive index of pure silica glass, n 1
The relative refractive index difference between and n 0 was 0.3%, and the lengths of a and b were 3 mm and 45 mm, respectively. The preform was drawn to have an outer diameter of 125 mmφ, and the increase in OH absorption loss at a wavelength of 1.38 μm was 5 dB/Km.
Transmission loss at 1.3μm and 1.55μm is 0.55dB/Km,
The loss was relatively low at 0.28dB/Km. Example 2 A pipe-shaped soot body was prepared in the same manner as in Example 1, dehydrated under the conditions shown in Table 3, and further made transparent.
【表】
このとき、SF6はパイプ状スート内の残留OH
基の除去の効果とともにFがガラスに添加され屈
折率を下げる効果がある。表2の条件ではFが約
1重量%添加され、屈折率は純粋石英に比べ0.3
%低下する。このようにして得られたガラス管の
残OH基は赤外分光光度計で測定した結果実施例
1と同様、0.1ppm以下と検出限界以下であつた。
得られたガラス管のサイズは実施例1と同等であ
つた。このガラス管を実施例1と同様のHF処理
をしたのち、別途VAD法により作製して純粋石
英ガラス棒を挿入し加熱溶融して第4図に示す屈
折率分布を有する単一モードフアイバ用プリフオ
ームを得た。n2とn0の比屈折率差は0.3%、また
aは3mm、bは45mmであつた。該プリフオームを
外径125mmφに線引し1.38μmのOH損失増を測定
したところ4.5dB/Kmであり、1.3μm、1.55μmで
の伝送損失が各々0.48dB/Km、0.24dB/Kmと低
損失なものであつた。
(発明の効果)
本発明は、スート堆積前にマンドレル表面に窒
化硼素を主成分とする潤滑剤を塗布することによ
り、スート堆積後のマンドレル引抜きが容易であ
るため生産性が向上するに加え、得られるガラス
管内壁は平滑かつ水分含有量の低い高品位ガラス
管を得られるので、ガラスフアイバ用プリフオー
ムの製造に用いれば優れた光フアイバ、シングル
モード光フアイバが得られる。[Table] At this time, SF 6 is the residual OH in the pipe-shaped soot.
In addition to the effect of removing groups, F is added to the glass and has the effect of lowering the refractive index. Under the conditions in Table 2, approximately 1% by weight of F is added, and the refractive index is 0.3 compared to pure quartz.
%descend. The residual OH groups in the glass tube thus obtained were measured using an infrared spectrophotometer and were found to be 0.1 ppm or less, which was below the detection limit, as in Example 1.
The size of the glass tube obtained was the same as in Example 1. This glass tube was subjected to the same HF treatment as in Example 1, and then a pure silica glass rod was inserted into the glass tube, which was separately produced by the VAD method, and then heated and melted to form a single mode fiber preform having the refractive index distribution shown in Figure 4. I got it. The relative refractive index difference between n 2 and n 0 was 0.3%, and a was 3 mm and b was 45 mm. The preform was drawn to have an outer diameter of 125 mmφ, and the increase in OH loss at 1.38 μm was measured to be 4.5 dB/Km, and the transmission loss at 1.3 μm and 1.55 μm was 0.48 dB/Km and 0.24 dB/Km, respectively. It was something. (Effects of the Invention) In the present invention, by applying a lubricant containing boron nitride as a main component to the mandrel surface before soot deposition, the mandrel can be easily pulled out after soot deposition, which improves productivity. Since the resulting glass tube inner wall is smooth and has a low moisture content, a high-quality glass tube can be obtained, and if used for manufacturing a glass fiber preform, an excellent optical fiber or single mode optical fiber can be obtained.
第1図は本発明の方法により得られたスート体
の断面図、第2図は本発明の実施態様を説明する
図、第3図は本発明の実施例1で得た単一モード
フアイバ用プリフオームの屈折率分布を示す図、
第4図は本発明の実施例2で得た単一モードフア
イバ用プリフームの屈折率分布を示す図である。
Fig. 1 is a sectional view of a soot body obtained by the method of the present invention, Fig. 2 is a diagram illustrating an embodiment of the present invention, and Fig. 3 is a cross-sectional view of a soot body obtained by the method of the present invention. A diagram showing the refractive index distribution of the preform,
FIG. 4 is a diagram showing the refractive index distribution of the single mode fiber preform obtained in Example 2 of the present invention.
Claims (1)
り生成させた微粒子状ガラスを出発材料上に堆積
させて堆積体とし、次いで該堆積体より上記出発
材料を引き抜きパイプ状としたのち、該パイプ状
堆積体を加熱処理して透明ガラス管を得る方法に
おいて、上記微粒子状ガラスの堆積前にあらかじ
め窒化硼素を主成分とする潤滑剤を上記出発材料
表面に塗布しておくことを特徴とする石英を主成
分とするガラス管の製造方法。 2 微粒子状ガラスの堆積は、堆積体の出発材料
近傍部約1cm厚さの部分のカサ密度が0.2g/cm3
以上0.7g/cm3以下の範囲とする特許請求の範囲
第1項記載の石英を主成分とするガラス管の製造
方法。 3 堆積体が実質的に純粋な微粒子状石英ガラス
からなる特許請求の範囲第1項または第2項記載
の石英を主成分とするガラス管の製造方法。 4 パイプ状堆積体の加熱処理は弗素を含む雰囲
気中で行い、弗素を含んだ透明石英ガラス管を得
る特許請求の範囲第1項ないし第3項のいずれか
に記載の石英を主成分とするガラス管の製造方
法。 5 気相ガラス形成原料の火炎加水分解反応によ
り生成された微粒子状ガラスを、あらかじめ窒化
硼素を主成分とする潤滑剤を表面に塗布した出発
材料上に堆積させて堆積体とし、次いで該堆積体
より上記出発材料を引抜き、パイプ状とした後該
パイプ状堆積体を加熱処理して透明な石英を主成
分とするガラス管とし、該ガラス管内に該ガラス
管より高い屈折率を有する透明ガラス棒を挿入
し、一体化することを特徴とする光フアイバの母
材用の石英を主成分とするガラスの製造方法。[Scope of Claims] 1. Particulate glass produced by flame hydrolysis reaction of a raw material for forming a vapor phase glass is deposited on a starting material to form a deposit, and then the starting material is drawn from the deposit to form a pipe shape. Later, in the method of heat-treating the pipe-shaped deposit to obtain a transparent glass tube, it is preferable to apply a lubricant containing boron nitride as a main component to the surface of the starting material before depositing the particulate glass. A method for manufacturing glass tubes whose main component is quartz. 2 The deposition of fine particulate glass has a bulk density of 0.2 g/cm 3 in the approximately 1 cm thick part of the deposit near the starting material.
The method for manufacturing a glass tube containing quartz as a main component according to claim 1, wherein the amount is in the range of 0.7 g/cm 3 or less. 3. A method for producing a glass tube containing quartz as a main component according to claim 1 or 2, wherein the deposited body is made of substantially pure particulate quartz glass. 4. The pipe-shaped deposit is heated in an atmosphere containing fluorine to obtain a transparent quartz glass tube containing fluorine, the main component of which is quartz according to any one of claims 1 to 3. Method of manufacturing glass tubes. 5 Fine particulate glass produced by a flame hydrolysis reaction of a vapor phase glass forming raw material is deposited on a starting material whose surface has been previously coated with a lubricant containing boron nitride as a main component to form a deposit, and then the deposit is After drawing out the above starting material and making it into a pipe shape, the pipe-shaped deposit is heat-treated to form a transparent glass tube mainly composed of quartz, and a transparent glass rod having a higher refractive index than the glass tube is placed inside the glass tube. 1. A method for producing glass containing quartz as a main component for use as a base material of optical fiber, which comprises inserting and integrating glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP747185A JPS61168544A (en) | 1985-01-21 | 1985-01-21 | Production of glass tube mainly composed of quartz |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP747185A JPS61168544A (en) | 1985-01-21 | 1985-01-21 | Production of glass tube mainly composed of quartz |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61168544A JPS61168544A (en) | 1986-07-30 |
JPH0559850B2 true JPH0559850B2 (en) | 1993-09-01 |
Family
ID=11666702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP747185A Granted JPS61168544A (en) | 1985-01-21 | 1985-01-21 | Production of glass tube mainly composed of quartz |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61168544A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0717390B2 (en) * | 1985-06-04 | 1995-03-01 | 住友電気工業株式会社 | Method for manufacturing glass particulate deposit |
DE102009052308B3 (en) * | 2009-11-09 | 2011-02-10 | Heraeus Quarzglas Gmbh & Co. Kg | Method for producing a quartz glass cylinder and carrier for carrying out the method |
DE102011008954B4 (en) | 2011-01-19 | 2013-01-17 | Heraeus Quarzglas Gmbh & Co. Kg | Method for producing a quartz glass cylinder and carrier for carrying out the method |
-
1985
- 1985-01-21 JP JP747185A patent/JPS61168544A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61168544A (en) | 1986-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4263031A (en) | Method of producing glass optical filaments | |
US4650511A (en) | Method for the preparation of a dehydrated quartz glass material for light transmission | |
US4125388A (en) | Method of making optical waveguides | |
KR900002263B1 (en) | Method for preparing optical-fiber preform | |
EP0139348B1 (en) | Optical fiber and method for its production | |
US3933454A (en) | Method of making optical waveguides | |
CA1260684A (en) | Optical waveguide manufacture | |
US3933453A (en) | Flame hydrolysis mandrel and method of using | |
CA2366451A1 (en) | Method of controlling fluorine doping in soot preforms | |
JPH0425210B2 (en) | ||
EP0629590B1 (en) | Process for producing glass preform for optical fiber | |
CA1263807A (en) | Optical waveguide manufacture | |
JPH05350B2 (en) | ||
JP2808857B2 (en) | Heating furnace and manufacturing method of glass preform for optical fiber | |
JP2002053337A (en) | Optical fiber perform and process for manufacturing the same | |
JPH0559850B2 (en) | ||
JPH051221B2 (en) | ||
CN1367764A (en) | Method of making glass preform | |
EP1270522B1 (en) | Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration | |
JPH0324415B2 (en) | ||
US20230286851A1 (en) | Method for manufacturing optical fiber preform | |
US20240360025A1 (en) | Method of manufacturing a porous glass body to lower attenuation of optical fiber made therefrom | |
JPH0436100B2 (en) | ||
JPS6183639A (en) | Production of quartz pipe of high purity | |
JPS6119575B2 (en) |