JPS6041545B2 - commutatorless motor - Google Patents
commutatorless motorInfo
- Publication number
- JPS6041545B2 JPS6041545B2 JP53098395A JP9839578A JPS6041545B2 JP S6041545 B2 JPS6041545 B2 JP S6041545B2 JP 53098395 A JP53098395 A JP 53098395A JP 9839578 A JP9839578 A JP 9839578A JP S6041545 B2 JPS6041545 B2 JP S6041545B2
- Authority
- JP
- Japan
- Prior art keywords
- field
- armature
- magnetic pole
- motor
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Brushless Motors (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Description
【発明の詳細な説明】
本発明は、円筒形回転界磁鉄心の磁極部とならない外周
に設けたスロット内に界磁巻線を樫込んでなる回転子の
該界磁巻線と矩形波電流が供給される電機子巻線への通
電位相関係が一定に設定されてなる無整流子電動機に関
するもので、特に矩形波電機子電流の転流余裕角を増大
せしめて転流特性を改善するための上記回転子購造の改
良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a field winding of a rotor in which a field winding is inserted into a slot provided on the outer periphery of a cylindrical rotating field core that does not become a magnetic pole part, and a rectangular wave current. This relates to a commutatorless motor in which the current phase relationship to the armature windings supplied with current is set constant, and in particular to improve the commutation characteristics by increasing the commutation margin angle of the square wave armature current. The present invention relates to an improvement in the above-mentioned rotor purchasing method.
従来、回転界滋形無整流子電動機の回転子構造としては
、一般的に同期機における二つの形式、すなわち、円筒
形回転子と突極形回転子のいずれかが使用されている。Conventionally, as a rotor structure of a rotary field type commutatorless motor, one of two types in a synchronous machine is generally used, namely, a cylindrical rotor and a salient pole rotor.
第1図aは従来の円筒形回転子形の無整流子電動機(4
極機の場合)の構成を示す縦断面図、第1図bは第1図
aのA−A線に沿って切断して示す断面図、第1図cは
第1図bのB部拡大図を示す。図において、1は外周表
面が一様な円形である界磁鉄心、2は界磁鉄心1のスロ
ット中に埋込まれた界滋コイル、3は界磁鉄心1のダン
パスロットに埋込まれたダソパ棒、4はダンパ棒3をそ
の両端部で電気的に短絡する短絡板、5は電機子鉄心、
6は電機子コイル、g‘,は界磁鉄心1と電機子鉄心5
との間の空隙長で全円周にわたって一様である。次に、
電動機のベクトル図を用いて動作を説明する。Figure 1a shows a conventional cylindrical rotor type commutatorless motor (4
Fig. 1b is a cross-sectional view taken along line A-A in Fig. 1a, and Fig. 1c is an enlarged view of section B in Fig. 1b. Show the diagram. In the figure, 1 is a field core with a uniform circular outer peripheral surface, 2 is a field coil embedded in a slot of field core 1, and 3 is a field core embedded in a damper slot of field core 1. 4 is a shorting plate that electrically shorts the damper rod 3 at both ends; 5 is an armature core;
6 is the armature coil, g' is the field core 1 and the armature core 5
The gap length between the two is uniform over the entire circumference. next,
The operation will be explained using a vector diagram of the electric motor.
第2図は第1図の従来の無整流子電動機の電圧、電流、
起磁力の基本波成分に関する公知のベクトル図である。
図において、直軸(d軸)は界滋磁極の方向、機軸(q
軸)は界磁磁極と直交する方向を示す。界磁コイル2に
界磁電流IFを通電すれば、直軸方向に界磁起磁力AT
Fが生じる。電機子コイル6に電機子電流を通電すれば
、その基本波成分laにより電機子反作用起磁力ATa
が生じ、その方向は、図示の如く、界磁起磁力ATFよ
りも電気角で(BO−妻側)欧雌み位相をもつ。ここに
角度8oは無整流子電動機の矩形波電機子電流の通電開
始位相を表わすもので、無整流子電動機の分配器(図示
せず)の設定制御進み角である。また、角度uは無整流
子電動機の負荷転流重なり角を示す。次に、電動機内の
起磁力と磁束との関係に注目する。界磁起磁力ATFに
よって生ずる界磁磁束■FはATFと同一方向に発生す
る。他方、電機子反作用起磁力ATaによって生ずる電
機子反作用磁束■aも、回転子の界磁鉄心の外周表面が
一様な円で、電動機の空隙長g,が全円周にわたって一
様であるので、直軸磁気回路の磁気抵抗と横軸磁気回路
の磁気抵抗は等しく、そのため、ATaと同一方向に発
生する。その結果、電動機の空隙長g.には、■Fと■
aのベクトル合成磁束■gが存在してこの■gと電動機
の回転速度とに比例した誘起起電力Eaが発生し、その
方向は■gよりも電気角90度だけ進み位相である。電
動機の端子電圧Vtは誘起起電力Eaと電機子漏洩イン
ピーダンス(ra+i×)による電圧降下(ra+k,
)laのベクトル合成値である。また、電動機のトルク
は電機子電流laと空隙磁束■gの相互作用によって生
ずる。然るに、無整流子電動機では、矩形波電機子電流
の転流が完了する位相、即ち、界磁蓬磁力ATFよりも
(8。Figure 2 shows the voltage and current of the conventional non-commutator motor shown in Figure 1.
FIG. 2 is a known vector diagram regarding the fundamental wave component of magnetomotive force.
In the figure, the direct axis (d axis) is the direction of the field magnetic pole, and the machine axis (q
The axis) indicates the direction perpendicular to the field magnetic pole. When the field current IF is applied to the field coil 2, the field magnetomotive force AT is generated in the vertical direction.
F occurs. When armature current is passed through the armature coil 6, the armature reaction magnetomotive force ATa is generated by its fundamental wave component la.
occurs, and its direction has an electrical angle (BO-wife side) phase relative to the field magnetomotive force ATF, as shown in the figure. Here, the angle 8o represents the starting phase of the rectangular wave armature current of the commutatorless motor, and is the setting control advance angle of the distributor (not shown) of the commutatorless motor. Further, the angle u indicates the load commutation overlap angle of the commutatorless motor. Next, we will focus on the relationship between magnetomotive force and magnetic flux within the motor. The field magnetic flux ■F generated by the field magnetomotive force ATF is generated in the same direction as the ATF. On the other hand, the armature reaction magnetic flux ■a generated by the armature reaction magnetomotive force ATa is also generated because the outer peripheral surface of the field core of the rotor is a uniform circle and the air gap length g of the motor is uniform over the entire circumference. , the magnetic reluctance of the vertical axis magnetic circuit and the magnetic resistance of the horizontal axis magnetic circuit are equal and therefore occur in the same direction as ATa. As a result, the air gap length g. ,■F and■
There is a vector composite magnetic flux ■g of a, and an induced electromotive force Ea proportional to this ■g and the rotational speed of the motor is generated, and its direction is ahead of ■g by 90 electrical degrees and in phase. The terminal voltage Vt of the motor is determined by the voltage drop (ra+k,
) la is the vector composite value. Further, the torque of the electric motor is generated by the interaction between the armature current la and the air gap magnetic flux g. However, in a non-commutator motor, the phase at which the commutation of the square wave armature current is completed is (8) than the field magnetic force ATF.
−u十9び )だけ進み位相にある線○Pが端子電圧
Vtの位相よりも最小限必要な転流余裕角以上に進み位
相であることが転流上不可欠であるが、従来の円筒形回
転子の界磁鉄心は上述の様に外周表面が一様な円で、電
動機の空隙長が全円周にわたって一様であるために直藤
磁気回路の磁気抵抗と機軸磁気回路の磁気抵抗が相等し
く、その結果、電機子反作用磁束■aが電機子反作用起
磁力ATaと同一方向に生じて、負荷トルクの増加に伴
ない端子電圧Vtと線○Pとの角度ッの減少傾向が著し
く、無整流子爵動機の小形軽量化を妨げる原因となって
いた。本発明は上記のような従来のものの欠点を除去す
るためになされたもので、円筒形回転界滋鉄心の外周表
面を不均等にし、電機子反作用の影響を軽減せしめるこ
とにより小形軽量化された無整流子電動機を提供するこ
とを目的としている。It is essential for commutation that the line ○P, which is in phase advanced by -u19 and ), is in phase advanced by more than the minimum necessary commutation margin angle than the phase of terminal voltage Vt. As mentioned above, the field core of the rotor is a circle with a uniform outer peripheral surface, and since the air gap length of the motor is uniform over the entire circumference, the magnetic resistance of the Naoto magnetic circuit and the magnetic resistance of the machine shaft magnetic circuit are As a result, the armature reaction magnetic flux ■a is generated in the same direction as the armature reaction magnetomotive force ATa, and as the load torque increases, the angle between the terminal voltage Vt and the line ○P tends to decrease significantly. This was a hindrance to reducing the size and weight of the non-commutated Viscount motive. The present invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the outer peripheral surface of the cylindrical rotating field iron core is made uneven to reduce the influence of armature reaction, thereby reducing the size and weight. The purpose is to provide a commutatorless motor.
以下、本発明の一実施例を図に基いて説明する。第3図
aは本発明による無整流子電動機の構成を示す縦断面図
であり、第3図bは第3図aのA−A線に沿って切断し
て示す断面図である。また、第3図cは第3図bのB部
の拡大図を示している。図において、1は界磁コイル用
スロットが存在する部分の円弧の半径が界磁コイル用ス
ロットが存在しない磁極部の円弧の半径よりも小さくな
るように、外周表面が不均等に加工された界磁鉄心、2
は界磁鉄心1のスロットに埋込まれる界磁コイル、3は
界磁鉄心1のダンパスロツトに埋込まれるダンパ綾、4
はダンパ棒8をその両端部で電気的に短絡する短絡板、
5は電機子鉄心、6は電機子コイルである。次に動作を
説明する。An embodiment of the present invention will be described below with reference to the drawings. FIG. 3a is a longitudinal sectional view showing the structure of a commutatorless motor according to the present invention, and FIG. 3b is a sectional view taken along line A--A in FIG. 3a. Further, FIG. 3c shows an enlarged view of section B in FIG. 3b. In the figure, 1 is a field whose outer peripheral surface is processed unevenly so that the radius of the arc in the part where the field coil slot exists is smaller than the radius of the arc in the magnetic pole part where the field coil slot does not exist. Magnetic core, 2
3 is a field coil embedded in a slot of field core 1, 3 is a damper twill embedded in a damper slot of field core 1, and 4 is a field coil embedded in a slot of field core 1.
is a short-circuit plate that electrically short-circuits the damper rod 8 at both ends thereof;
5 is an armature core, and 6 is an armature coil. Next, the operation will be explained.
第4図は第2図と同様に、直軸(d軸)を界磁磁極の方
向、横軸(q軸)を界磁磁極と直交する方向として電圧
、電流、起磁力の基本波成分に関するベクトル図を示す
。図において、界磁電流IF、界磁起磁力ATF、電機
子電流の基本波成分la及び電機子反作用起磁力ATa
の関係は第2図と同様である。次に、電動機内の起磁力
と磁束との関係に注目する。界磁起磁力ATFによって
生ずる界磁磁束■FはATFと同一方向に発生する。然
るに、電機子反作用起磁力ATaによって生ずる電機子
反作用磁束■aはATaと同一方向には発生しない。す
なわち、電機子反作用起磁力ATaは界磁起磁力ATF
よりも(8。−芸+90)度の進み位相の電気角を有す
るが、電機子反作用磁束■aは電機子反作用起磁力より
もさらに進み位相となる。何故ならば、第3図において
実線で示されている直軸磁気回路Dの磁気抵抗はその空
隙部分の長さ2xg,により定まり、この空隙部分の長
さ2×g,が横軸磁気回路Qの空隙部分の長さ2×&よ
りも4・さいため藤軸磁気回路Qの磁気抵抗より小さい
値を示す。したがって、磁気抵抗の大きい機軸方向に生
ずる電機子反作用磁束の成分がかなり抑制されるためで
ある。さらに、電動機の空隙には上記界磁磁束■Fと上
記電機子反作用磁束■aのベクトル合成磁束■gが存在
し、この合成磁束■gと電動機の回転速度に比例した誘
起起電力Eaが合成磁束■gよりも90度進み位相の電
気角の位置に発生する。電動機端子電圧Vtは上記誘起
起電力Eaと電機子漏洩インピーダンス(ra+ix,
)による電圧降下(ra+戊,)laのベクトル合成値
となり、電動機のトルクは電機子電流laと空隙磁束■
gの電磁作用によって発生する。本発明の実施例におい
て、著しい特長は、電機子反作用磁束の機軸成分の発生
がかなり抑制されるために、負荷トルクの増大すなわち
電機子電流laの増大に伴なう誘起起電力Eaの位相の
変化が軽減されることである。このため、矩形波電機子
電流の転流が完了する位相(第4図の線○P)と電動機
端子電圧Vの位相との間の角度yの負荷トルクの増大に
伴なう減少の割合は小さくなり、したがって、無整流子
電動機が安定に運転しうる負荷トルク限界が大きくなる
。以上のように本発明によ机ま、円筒形回転界磁鉄○の
磁極部とならない外周に設けたスロット内に界磁巻線を
埋込んでなる回転子の該界磁巻線と矩形波電流が供給さ
れる電機子巻線への通電位相関係が一定に設定されてな
る無整流子電動機において、上記円筒形回転界磁鉄心に
おける磁極部となる部分の円弧の半径を磁極部とならな
い部分の円弧の半径より大きくしてその外周表面を不均
等に加工したので、電機子反作用磁束を電機子反作用起
磁力よりも進み位相とすることができ、矩形波電機子爵
流の転流余裕角を増大せしめて転流特性を改善すること
ができる。Figure 4, similar to Figure 2, shows the fundamental wave components of voltage, current, and magnetomotive force, with the direct axis (d-axis) in the direction of the field magnetic pole and the horizontal axis (q-axis) in the direction perpendicular to the field magnetic pole. Shows a vector diagram. In the figure, field current IF, field magnetomotive force ATF, fundamental wave component la of armature current, and armature reaction magnetomotive force ATa
The relationship is the same as in FIG. Next, we will focus on the relationship between magnetomotive force and magnetic flux within the motor. The field magnetic flux ■F generated by the field magnetomotive force ATF is generated in the same direction as the ATF. However, the armature reaction magnetic flux 1a generated by the armature reaction magnetomotive force ATa is not generated in the same direction as ATa. That is, the armature reaction magnetomotive force ATa is the field magnetomotive force ATF
The armature reaction magnetic flux (a) has an electrical angle that is (8.-90) degrees more advanced in phase than the armature reaction magnetomotive force. This is because the magnetic resistance of the vertical magnetic circuit D shown by the solid line in FIG. Since the length of the air gap is 2×&, which is 4×, it shows a value smaller than the magnetic resistance of the wisteria shaft magnetic circuit Q. Therefore, the component of the armature reaction magnetic flux generated in the machine axis direction where the magnetic resistance is large is considerably suppressed. Furthermore, in the air gap of the motor, there is a vector composite magnetic flux g of the field magnetic flux F and the armature reaction magnetic flux a, and this composite magnetic flux g and the induced electromotive force Ea proportional to the rotational speed of the motor are combined. The magnetic flux ■ is generated at an electrical angle position that is 90 degrees ahead of the phase g. The motor terminal voltage Vt is determined by the above induced electromotive force Ea and the armature leakage impedance (ra+ix,
) is the vector composite value of the voltage drop (ra + 戊, )la, and the motor torque is the armature current la and the air gap magnetic flux ■
It is generated by the electromagnetic action of g. A remarkable feature of the embodiments of the present invention is that the generation of the axis component of the armature reaction magnetic flux is considerably suppressed, so that the phase of the induced electromotive force Ea that accompanies an increase in load torque, that is, an increase in armature current la, is significantly suppressed. Changes are reduced. Therefore, the rate of decrease of the angle y between the phase at which commutation of the square wave armature current is completed (line ○P in Figure 4) and the phase of the motor terminal voltage V as the load torque increases is Therefore, the load torque limit at which the commutatorless motor can operate stably increases. As described above, according to the present invention, the field winding of the rotor is formed by embedding the field winding in the slot provided on the outer periphery of the cylindrical rotating field iron which does not become the magnetic pole part, and the rectangular wave. In a commutatorless motor in which the energization phase relationship to the armature windings to which current is supplied is set constant, the radius of the arc of the portion of the cylindrical rotating field iron core that becomes the magnetic pole portion is defined as the portion that does not become the magnetic pole portion. Since the radius of the arc is larger than that of the arc and its outer peripheral surface is processed unevenly, the armature reaction magnetic flux can be made to have a phase leading than the armature reaction magnetomotive force, and the commutation margin angle of the rectangular wave electric machine viscous current can be It can be increased to improve commutation characteristics.
かくするにつき、無整流子電動機の負荷トルク限界が伸
び、電動機の小形軽量化が容易になる。This increases the load torque limit of the commutatorless motor, making it easier to reduce the size and weight of the motor.
【図面の簡単な説明】
第1図aは従来の無整流子電動機の構成を示す縦断面図
、第1図bは第1図aのA−A線に沿って切断して示す
断面図、第1図cは第1図bのB部の拡大図、第2図は
第1図の電圧、電流及び起磁力のベクトル図、第3図a
は本発明の無整流子電動機の構成を示す縦断面図、第3
図bは第3図aのA−A線に沿って切断して示す断面図
、第3図cは第3図bのB部の拡大図、第4図は第3図
の電圧、電流及び起磁力のベクトル図を示す図である。
1・・・・・・界磁鉄心、2・・・・・・界滋コイル、
g,,g2・・・・・・空隙なお、図中、同一符号は同
一、又は相当部分を示す。第1図
第2図
第4図
第3図[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1a is a longitudinal sectional view showing the configuration of a conventional non-commutator motor, FIG. 1b is a sectional view taken along line A-A in FIG. 1a, Figure 1c is an enlarged view of section B in Figure 1b, Figure 2 is a vector diagram of voltage, current and magnetomotive force in Figure 1, Figure 3a is
3 is a vertical cross-sectional view showing the configuration of the commutatorless motor of the present invention.
Figure b is a cross-sectional view taken along line A-A in Figure 3a, Figure 3c is an enlarged view of section B in Figure 3b, and Figure 4 is the voltage, current and FIG. 3 is a diagram showing a vector diagram of magnetomotive force. 1...Field iron core, 2...Field coil,
g,, g2...Gap In the drawings, the same reference numerals indicate the same or corresponding parts. Figure 1 Figure 2 Figure 4 Figure 3
Claims (1)
にのみ設けたスロツトに両端を短絡板で相互に短絡させ
たダンパ棒を埋込むとともに、磁極とならない部分の外
周近傍にのみ設けたスロツトには界磁巻線を埋込んで構
成された回転子の該界磁巻線と矩形波電流が供給される
電機子巻線への通電位相関係が一定に設定されてなる無
整流子電動機において、上記円筒形回転界磁鉄心におけ
る磁極部となる部分の円弧の半径を磁極部とならない部
分の円弧の半径より大きくして電機子反作用磁束を電機
子反作用起磁力よりも進み位相とすることにより、矩形
波電機子電流の転流余裕角を増大せしめて負荷トルク限
界を大きくしたことを特徴とする無整流子電動機。1 A damper rod with both ends short-circuited with a short-circuit plate is embedded in a slot provided only near the outer periphery of the portion that will become the magnetic pole of a cylindrical rotating field core, and a damper rod is provided only near the outer periphery of the portion that will not become the magnetic pole. A commutatorless motor in which a field winding of a rotor is constructed by embedding a field winding in a slot, and the energization phase relationship between the field winding of the rotor and the armature winding to which a square wave current is supplied is set constant. In the cylindrical rotating field iron core, the radius of the circular arc of the part that becomes the magnetic pole part is made larger than the radius of the circular arc of the part that does not become the magnetic pole part, so that the armature reaction magnetic flux has a phase leading than the armature reaction magnetomotive force. A commutatorless motor characterized by increasing the commutation margin angle of the square wave armature current and increasing the load torque limit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53098395A JPS6041545B2 (en) | 1978-08-11 | 1978-08-11 | commutatorless motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53098395A JPS6041545B2 (en) | 1978-08-11 | 1978-08-11 | commutatorless motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5526043A JPS5526043A (en) | 1980-02-25 |
JPS6041545B2 true JPS6041545B2 (en) | 1985-09-17 |
Family
ID=14218640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53098395A Expired JPS6041545B2 (en) | 1978-08-11 | 1978-08-11 | commutatorless motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6041545B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6269050U (en) * | 1985-10-21 | 1987-04-30 |
-
1978
- 1978-08-11 JP JP53098395A patent/JPS6041545B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6269050U (en) * | 1985-10-21 | 1987-04-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS5526043A (en) | 1980-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575628B2 (en) | Brushless motor | |
US5631512A (en) | Synchronous motor having magnetic poles of permanent magnet and magnetic poles of a soft magnetic material | |
US5844346A (en) | Low torque ripple switched reluctance motor | |
JP2594922B2 (en) | Operating method of permanent magnet field type motor | |
JP4619179B2 (en) | Rotating electric machine | |
JPS60226759A (en) | Brushless motor | |
JP2004096850A (en) | Rotor for induction start type synchronous dynamo-electric machine | |
JPS61280744A (en) | Rotor with permanent magnet | |
US3433987A (en) | Rotor without sticking moment | |
JPS61180019A (en) | Magnetic bearing | |
JP4577068B2 (en) | Rotating electric machine | |
JP2960128B2 (en) | Reluctance rotating machine | |
JPH05236714A (en) | Permanent magnet type synchronous motor | |
US3448310A (en) | Dynamo-electric machines of the reluctance type | |
US3353046A (en) | Quiet-running electric motor | |
JP3422643B2 (en) | Synchronous motor | |
JPS6041545B2 (en) | commutatorless motor | |
JPH037046A (en) | Electrically rectified dc motor | |
JP2002078260A (en) | Permanent magnet motor | |
JP2000156945A (en) | Permanent magnet electric rotating machine and permanent magnet induction synchronous motor | |
JP2002034182A (en) | Motor rotor and manufacturing method therefor, induction motor, and synchronous motor | |
JPH084371B2 (en) | Armature of rotating electric machine | |
JPH1198737A (en) | Permanent magnet motor | |
JP3630991B2 (en) | Armature structure of toroidal winding electric machine | |
JP3681842B2 (en) | Permanent magnet type rotating electric machine |