JPS6041441B2 - thin film thermistor - Google Patents

thin film thermistor

Info

Publication number
JPS6041441B2
JPS6041441B2 JP55086937A JP8693780A JPS6041441B2 JP S6041441 B2 JPS6041441 B2 JP S6041441B2 JP 55086937 A JP55086937 A JP 55086937A JP 8693780 A JP8693780 A JP 8693780A JP S6041441 B2 JPS6041441 B2 JP S6041441B2
Authority
JP
Japan
Prior art keywords
temperature
film
thermistor
resistor
sensitive resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55086937A
Other languages
Japanese (ja)
Other versions
JPS5712505A (en
Inventor
彪 長井
一志 山本
郁夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55086937A priority Critical patent/JPS6041441B2/en
Publication of JPS5712505A publication Critical patent/JPS5712505A/en
Publication of JPS6041441B2 publication Critical patent/JPS6041441B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、サーミスタ、特に絶縁性基板上に電極膜と感
温抵抗体膜とを形成して成る薄膜サーミスタに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermistor, and particularly to a thin film thermistor comprising an electrode film and a temperature-sensitive resistor film formed on an insulating substrate.

従釆この種薄膜サーミスタには、W,SiあるいはFe
,Ni,Co,Mnなどの複合金属酸化物から成る感温
抵抗体膜が用いられてきた。
This type of thin film thermistor is made of W, Si or Fe.
Temperature-sensitive resistor films made of composite metal oxides such as , Ni, Co, and Mn have been used.

これらの感温抵抗体膜のサーミスタ定数(以下、単にB
定数と言う)は、前記複合酸化物の感温鱗結体から成る
バルクサーミスタと同様、温度によらずほぼ一定であっ
た。このため、この種サーミスタを、第1図に示す電気
回路の回路素子として用い、電気的に温度を検出する場
合、出力電圧が温度に対して直線的に変化しない、ある
いは検出感度が温度によって大中に変動するという欠点
があった。第1図において、1はサーミスタで、その抵
抗温度特性をR(T)で示す。2は抵抗値Ro(一定)
の固定抵抗器、3は電圧EaVの電源、4は出力電圧で
、その値をEgで示す。
Thermistor constants of these temperature-sensitive resistor films (hereinafter simply referred to as B
(referred to as a constant) was almost constant regardless of temperature, similar to the bulk thermistor made of temperature-sensitive scale aggregates of the composite oxide. Therefore, when this type of thermistor is used as a circuit element in the electric circuit shown in Figure 1 to electrically detect temperature, the output voltage does not vary linearly with temperature, or the detection sensitivity increases with temperature. The disadvantage was that it fluctuated. In FIG. 1, numeral 1 is a thermistor whose resistance-temperature characteristic is indicated by R(T). 2 is the resistance value Ro (constant)
3 is a power supply of voltage EaV, 4 is an output voltage, and its value is indicated by Eg.

これ等の間には、次式が成立する。Eg− Ro Ea一Ro+Rび) 以下では簡単化のためにEa=IVとして使うが、Ea
キIVの場合に本質的な相違が生じないことは明らかで
あろう。
The following equation holds true between these. Eg-Ro Ea-Ro+Rbi) Below, we will use Ea=IV for simplicity, but Ea
It will be clear that no essential difference arises in the case of Ki IV.

Roは、ある一定温度Toでのサ−ミスタ抵抗値R(T
o)と同じ値になるように選ばれる。Toは検出温度範
囲、出力電圧Egを電気的に処理する電気回路の特性な
どによって決められる。第2図、第3図に従来のサーミ
スタについて、代表的な出力電圧虫gと温度Tの関係、
検出感度過g/dTと温度Tの関係をTo=150℃と
した場合について示す。
Ro is the thermistor resistance value R(T
o) is selected to be the same value. To is determined by the detection temperature range, the characteristics of the electric circuit that electrically processes the output voltage Eg, etc. Figures 2 and 3 show the typical relationship between output voltage g and temperature T for conventional thermistors.
The relationship between detection sensitivity excess g/dT and temperature T is shown for the case where To=150°C.

曲線5,7はB:200びK曲線6,8はB=500び
Kの場合である。曲線5,6に示すように、出力電圧E
gは温度Tに対して曲線的に変化する。また曲線7,8
に示すように、検出感度蛇g/dTは、温度Tに対して
大中に変動する。このような温度Tに対する出力電圧特
性、検出感度特性のために、出力電圧虫gを処理する電
子回路が複雑になる、回路設計も驚かし〈なるなどの欠
点が派生した。
Curves 5 and 7 are for B=200 and K curves 6 and 8 are for B=500 and K. As shown in curves 5 and 6, the output voltage E
g changes in a curve with respect to temperature T. Also curves 7 and 8
As shown in the figure, the detection sensitivity g/dT varies greatly with respect to the temperature T. Due to the output voltage characteristics and detection sensitivity characteristics with respect to the temperature T, disadvantages arise such as the electronic circuit for processing the output voltage g becoming complicated and the circuit design becoming unsatisfactory.

さらにサーミスタで度を検出し、それと設定温度とを比
較して熱源の発熱量を制御したい場合、通常、設定温度
は可変抵抗器の回転軸の回転角度に対応するように電気
回路が構成される。
Furthermore, if you want to control the amount of heat generated by a heat source by detecting degrees with a thermistor and comparing it with a set temperature, the electric circuit is usually configured so that the set temperature corresponds to the rotation angle of the rotary shaft of the variable resistor. .

この際、前述の如き出力電圧特性、検出感度特性のため
に、回転角度にして設定温度を直線的に決められないと
いう欠点があった。検出感度の小さな領域では、温度T
に対する出力温度Egの変化が平坦な領域であるので、
可変抵抗器の設定回転角度に微少な変化が発生した場合
、すなわち、設定出力電圧Egに微少な変化が発生した
場合、大きな温度変動が生じ、他方検出感度の大きな領
域では、逆のことが成り立つ。このように設定温度によ
って、設定温度精度がばらつくという欠点があつた。な
お、感温抵抗体膜にSIC抵抗体腰を用いた場合、その
B定数は温度依存性を有し、必ずしも、一定でない。
At this time, due to the output voltage characteristics and detection sensitivity characteristics as described above, there was a drawback that the set temperature could not be determined linearly based on the rotation angle. In the region of low detection sensitivity, the temperature T
Since the change in output temperature Eg is in a flat region,
If a slight change occurs in the set rotation angle of the variable resistor, that is, if a slight change occurs in the set output voltage Eg, a large temperature fluctuation will occur.On the other hand, in a region with high detection sensitivity, the opposite is true. . As described above, there is a drawback that the accuracy of the set temperature varies depending on the set temperature. Note that when a SIC resistor film is used as the temperature-sensitive resistor film, the B constant has temperature dependence and is not necessarily constant.

しかしこの場合にも、第2図第3図、曲線9,10に示
すように前述の欠点をまぬがれることはできなかった。
本発明はこれら従釆の欠点を除去した新規なサーミスタ
を提供するものである。本発明の要旨は、絶縁基板上に
電極膜と感温抵抗体膜とを形成して成る薄膜サーミスタ
において、少なくとも感温抵抗体膜が抵抗温度特性の異
なる抵抗体膜を複数個積層した膜である点にある。
However, even in this case, as shown in curves 9 and 10 in FIGS. 2 and 3, the above-mentioned drawbacks could not be avoided.
The present invention provides a new thermistor that eliminates the drawbacks of these conventional types. The gist of the present invention is a thin film thermistor comprising an electrode film and a temperature-sensitive resistor film formed on an insulating substrate, in which at least the temperature-sensitive resistor film is a laminated film of a plurality of resistor films having different resistance temperature characteristics. At a certain point.

本発明のサーミスタの断面図の一例を第4図に示す。An example of a cross-sectional view of the thermistor of the present invention is shown in FIG.

11は絶縁性基板で、ァルミナ、ムラィト、ステアタィ
トなどのセラミック、石英、棚桂酸系硝子などの硝子が
用いられる。
Reference numeral 11 denotes an insulating substrate, which is made of ceramic such as alumina, mullite, or steatite, or glass such as quartz or citric acid glass.

12は電極膜で、Au−Pt,Ag−Pd,Au−Pd
,Agなどの厚膿電極膜、Cr−Au,Cr−Cu,C
r一Agなどの薄膜電極膜が用いられる。
12 is an electrode film, Au-Pt, Ag-Pd, Au-Pd
, Ag, etc., Cr-Au, Cr-Cu, C
A thin film electrode film such as r-Ag is used.

13と14は両者とも感温抵抗体膜であるが、それぞれ
の抵抗温度特性は異なる。
Both 13 and 14 are temperature-sensitive resistor films, but their resistance-temperature characteristics are different.

抵抗体膜の積層数は2層以上であればよい。第4図は積
層数2層場合についてサーミスタ構造の断面を図示した
ものである。実施例 1 棚桂酸系硝子基板1 1の一方の表面にCr4Au,薄
膜電極板12を形成した。
The number of laminated resistor films may be two or more. FIG. 4 shows a cross section of the thermistor structure in the case of two layers. Example 1 A Cr4Au thin film electrode plate 12 was formed on one surface of a shelf citric acid glass substrate 11.

次に夏空蒸着装直を用い、真空度5×10‐6ton以
下、基板温度300℃、蒸発源温度1400〜1500
00、蒸発速度20〜5船o/sec、蒸着時間100
〜20$ecの条件でGe感温抵抗体膜13(約20ム
m)を前記基板上に形成した。この後、さらに高周波ス
パッタ装置を用い、ターゲットSIC競結体、基板温度
300oo、スパッタ圧力(〜ガス)2×10‐2to
rr、高周波電力がW、スパッタ時間か岱.の条件でS
IC感温抵抗体膜14を約2一m形成した。このように
して形成したサーミスタの出力電圧Eg、検出感度舵g
/dTと温度Tの関係を第2,3図曲線15、曲線16
に示す。同図で明らかなように出力電圧Egは0〜24
0qoの広い温度範囲にわたり直線的に変化した。また
同じ温度範囲では検出感度岬g/dTは、1,91土0
.13hV/℃/Vであり、ほぼ一定であった。Q感温
抵抗体膜は50qoでの比抵抗約800・肌、B定数約
460ぴK(一定)、またSIC感温抵抗体膜は同温度
で約30・肌、B定数は温度依存性を有し、低温域B定
数(50〜140qo)で約1000K、高温城B定数
(140〜230qC)で約150びKであった。
Next, using a summer air evaporation equipment, the degree of vacuum was 5 x 10-6 tons or less, the substrate temperature was 300°C, and the evaporation source temperature was 1400 to 1500.
00, evaporation rate 20-5 o/sec, deposition time 100
A Ge temperature sensitive resistor film 13 (approximately 20 mm) was formed on the substrate under conditions of ~20 $ec. After this, using a high-frequency sputtering device, the target SIC composite body, the substrate temperature was 300 oo, and the sputtering pressure (~gas) was 2×10-2 to
rr, high frequency power is W, sputtering time is d. S under the condition of
The IC temperature sensitive resistor film 14 was formed to a length of about 21 m. Output voltage Eg of the thermistor formed in this way, detection sensitivity rudder g
The relationship between /dT and temperature T is shown in Figures 2 and 3, curve 15 and curve 16.
Shown below. As is clear from the figure, the output voltage Eg is 0 to 24
It varied linearly over a wide temperature range of 0 qo. In addition, in the same temperature range, the detection sensitivity g/dT is 1.91 soil 0.
.. It was 13 hV/°C/V, which was almost constant. The Q temperature sensitive resistor film has a specific resistance of approximately 800 pK (constant) at 50 qo, and the B constant has a temperature dependence of approximately 30 pK (constant) at the same temperature. The B constant in the low temperature range (50 to 140 qC) was approximately 1000 K, and the B constant in the high temperature range (140 to 230 qC) was approximately 150 K.

このように抵抗温度特性の異なる抵抗体際を積層するこ
とにより、広い温度範囲にわたり、温度Tに対して、出
力電圧Egを直線的に変化でき、また、検出感度曲g/
dTを一定に保つことができる。なお、本実施例では検
出感度約1.9hV/。
By stacking resistors with different resistance-temperature characteristics in this way, the output voltage Eg can be varied linearly with respect to the temperature T over a wide temperature range, and the detection sensitivity curve g/
dT can be kept constant. In this example, the detection sensitivity was approximately 1.9 hV/.

0で、比較的小さな値であるが、実用上この程度であれ
ば電気的に容易に検出できる範囲である。
0, which is a relatively small value, but in practice this level is within a range that can be easily detected electrically.

また本実施例では、Q感温抵抗体膜とSIC感温抵抗体
膜とを用いて説明した。
Furthermore, this embodiment has been described using a Q temperature-sensitive resistor film and a SIC temperature-sensitive resistor film.

しかし本発明の感溢抵抗体膜は、Q,Sj,SICある
いは金属酸化物、たとえば、Fe,Nj,Co,Mnな
どの複合金属酸化物もしくはNj,Zn,Cu.Fe,
Sn,Baなどの単体金属酸化物、の群から選ばれた抵
抗体膜を複数個横層した抵抗体膜で良いことは明らかで
あるつ。また本実施例の如くSIC以外の感温抵抗体腰
、たとえばe感温抵抗体膜13、とSIC感温抵抗体、
膜14とを順次積した抵抗体膜の場合、次の如き利点も
生じる。
However, the overflow sensitive resistor film of the present invention is made of Q, Sj, SIC or metal oxides, such as composite metal oxides such as Fe, Nj, Co, Mn, or Nj, Zn, Cu. Fe,
It is clear that a resistor film in which a plurality of resistor films selected from the group of elemental metal oxides such as Sn and Ba are layered laterally may be used. In addition, as in this embodiment, there are temperature-sensitive resistors other than SIC, such as the e-temperature-sensitive resistor film 13 and the SIC temperature-sensitive resistor.
In the case of a resistor film in which the film 14 and the film 14 are sequentially laminated, the following advantages also occur.

すなわち種々の感温抵抗体膜のなかでもSIC感温抵抗
体腰は、熱的安定性が優れているのみならず化学的にも
極めて安定である。従って本実施例に示したように、快
感温抵抗体膜13とSIC感温抵抗体膜14とを、この
順序で順次積層することによって、SIC感温抵抗体膜
14をQ感温抵抗体膜13の保護膜として作用せしめる
ことができる。たとえば、感温抵抗体膜13,14を形
成したのちに感温抵抗体、14の全面にCr−Au薄膜
電極膜12を形成し、こののちにCr−Au薄膜函極膜
12を適当な形状に成形する為に、不必要なCr−Au
薄膜電極膜1 2を化的に腐食して取り除く場合がある
。Auの化学的腐食液は王水がよく用いられる。しかし
王水は同時に戊をも腐食するので、好ましくない。他方
Sicは王水に対して化学的に安定である。従って本実
施例のようにSIC感温抵抗体膜14が快感温抵抗体膜
13を保護している場合、前述の如き化学処理に対して
も極めて安全であった。実施例 2 アルミナ基板11の一方の表面にAu−Pt厚膜電極膜
12を形成した。
That is, among various temperature-sensitive resistor films, SIC temperature-sensitive resistor films not only have excellent thermal stability but also are extremely chemically stable. Therefore, as shown in this embodiment, by sequentially laminating the Pleasant Temperature Resistor Film 13 and the SIC Temperature Resistor Film 14 in this order, the SIC Temperature Resistor Film 14 can be replaced with the Q Temperature Resistor Film 14. It can be made to act as a protective film for 13. For example, after forming the temperature sensitive resistor films 13 and 14, the Cr-Au thin film electrode film 12 is formed on the entire surface of the temperature sensitive resistor 14, and then the Cr-Au thin film box electrode film 12 is formed into an appropriate shape. Unnecessary Cr-Au
The thin film electrode films 1 and 2 may be chemically corroded and removed. Aqua regia is often used as a chemical etchant for Au. However, aqua regia also corrodes the axle, so it is not desirable. On the other hand, Sic is chemically stable to aqua regia. Therefore, when the SIC temperature-sensitive resistor film 14 protects the pleasurable temperature-sensitive resistor film 13 as in this embodiment, it is extremely safe even against the chemical treatment described above. Example 2 An Au--Pt thick film electrode film 12 was formed on one surface of an alumina substrate 11.

次に高周波スパッタ装置用い、ターゲットSIC競結体
、基板温度70000、スパッタ圧力(〜ガス)2×1
0‐2ton、高周波電力次Wの条件で、はじめのがr
s.は低比抵抗・低B定数SIC感温抵抗体膜1 3を
形成し、次いで更に水rs.高比抵抗・高B定数SIC
感縞抵抗体膜14を形成した。SIC感温抵抗体膜13
,14の全膜厚は、約4仏mであった。このようにして
形成したサーミスタの出力電圧Eg、検出感度dEg/
dTと温度Tの関係を第2,3図曲線17、曲線18に
示す。同図で明らかなように出力圧Egは0〜2470
の広い温度範囲にわたり直線的に変化した。また同じ温
度範囲で検出感度は、1.89十0.1跡V/℃/Vで
あり、こぼ一定であった。なお、低比抵抗・低B定数S
IC感温抵抗体膜13は、50ooでの比抵抗約30一
肌、B定数は温度依存性を有し、低温度領域(50〜1
40CO)で約100ぴK、高温度領域(140〜23
0午0)で約150びK、他方高比抵抗・高B定数SI
C感温抵抗体腰1 4は、同温度で比抵抗約1300−
の、B定数は温度依存性を有し、同低温度領域で約23
0ぴK、同高温領域で約290ぴKであった。また低比
抵抗・低B定数SIC感温抵抗体膜13と高比抵抗・高
B定数SIC感温抵抗体膜14とを積層するとき、その
順序を本実施例と逆の順序で穣層してもようことは当然
である。実施例の場合、同一組成で抵抗温度特性の異な
る感温抵抗体を積層しているので、サーミスタ製造が容
易であるという利点を有する。
Next, using a high frequency sputtering device, target SIC composite body, substrate temperature 70000, sputtering pressure (~ gas) 2 × 1
Under the conditions of 0-2 tons and high frequency power W, the first one is r.
s. to form a low resistivity/low B constant SIC temperature sensitive resistor film 13, and then further water rs. High resistivity/high B constant SIC
A fringe-sensitive resistor film 14 was formed. SIC temperature sensitive resistor film 13
, 14 had a total film thickness of approximately 4 mm. Output voltage Eg and detection sensitivity dEg/of the thermistor formed in this way
The relationship between dT and temperature T is shown in curves 17 and 18 in Figures 2 and 3. As is clear from the figure, the output pressure Eg is 0 to 2470.
varied linearly over a wide temperature range. Moreover, the detection sensitivity was 1.89-0.1 traces V/°C/V in the same temperature range, and was constant. In addition, low resistivity and low B constant S
The IC temperature-sensitive resistor film 13 has a specific resistance of about 30 mm at 50 mm, and a B constant that is temperature dependent, and has a specific resistance of about 30 mm at 50 mm.
40 CO) and approximately 100 piK, high temperature range (140 to 23
150 K at 0:00), while high resistivity and high B constant SI
C temperature-sensitive resistor waist 14 has a specific resistance of about 1300- at the same temperature.
The B constant has temperature dependence, and is about 23 in the same low temperature region.
0 pK, and about 290 pK in the same high temperature range. Furthermore, when laminating the low resistivity/low B constant SIC temperature sensitive resistor film 13 and the high specific resistance/high B constant SIC temperature sensitive resistor film 14, the order is reversed to that of this embodiment. Of course, this is the case. In the case of the embodiment, since temperature-sensitive resistors having the same composition and different resistance-temperature characteristics are laminated, the thermistor has the advantage of being easy to manufacture.

なお、SIC感温抵抗体が化学的に安定であるという利
点は、本実施例でも充分発揮されるのは自明であろう。
以上に述べた如く、本発明のサーミス外ま従来の欠点を
解消できることは明らかである。また以上の説明は、実
施例1,2を通して詳述したが、本発明の要旨を越えな
い範囲内で、他組成の感温抵抗体腹を用いても良いこと
は当然である。
Note that it is obvious that the advantage that the SIC temperature-sensitive resistor is chemically stable is fully exhibited in this example as well.
As described above, it is clear that the thermist according to the present invention can overcome the drawbacks of the prior art. Furthermore, although the above description has been made in detail through Examples 1 and 2, it is of course possible to use temperature-sensitive resistor elements having other compositions within the scope of the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーミスタを用い、電気的に温度を検出する電
気回路の一例を示す回路図、第2図は第1図に示した電
気回路の温度と出力との関係を示す特性図、第3図は同
じ電気回路の温度と検出感度との関係を示す特性図、第
4図は本発明の薄膜サーミスタの断面図である。 11…絶縁性基板、12・・・電極膜、13と14・・
・互いに抵抗温度特性の異なる感温抵抗体膜。 第1図第2図 第3図 第4図
Figure 1 is a circuit diagram showing an example of an electric circuit that electrically detects temperature using a thermistor, Figure 2 is a characteristic diagram showing the relationship between temperature and output of the electric circuit shown in Figure 1, and Figure 3 is a diagram showing the relationship between temperature and output of the electric circuit shown in Figure 1. The figure is a characteristic diagram showing the relationship between temperature and detection sensitivity of the same electric circuit, and FIG. 4 is a sectional view of the thin film thermistor of the present invention. 11... Insulating substrate, 12... Electrode film, 13 and 14...
- Temperature-sensitive resistor films with different resistance-temperature characteristics. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 絶縁基板上に電極膜と感温抵抗体膜とを形成して成
る薄膜サーミスタにおいて、少なくとも感温抵抗膜が抵
抗温度特性の異なる抵抗体膜を複数個積層したであるこ
とを特徴とする薄膜サーミスタ。 2 少なくとも、感温抵抗体膜がGe,Si,SiCお
よび金属酸化物の群から選ばれた抵抗体膜を複数個積層
した膜であることを特徴とする特許請求の範囲第1項記
載の薄膜サーミスタ。 3 少はくとも、感温抵抗体膜がGe,Si,金属酸化
物の群から選ばれた1種もしくは2種以上の複合抵抗体
膜とSiC抵抗体膜とを順次積層した抵抗体膜であるこ
とを特徴とする特許請求の範囲第1項記載の薄膜サーミ
スタ。 4 少なくとも、感温抵抗体膜が、低比抵抗・低サーミ
スタ定数のSiC抵抗体膜と高比抵抗・高サーミスタ定
数のSiC抵抗体膜とを順次もしくは逆の順序で積層し
た抵抗体膜であることを特徴とする特許請求の範囲第1
項記載の薄膜サーミスタ。
[Claims] 1. A thin film thermistor comprising an electrode film and a temperature-sensitive resistor film formed on an insulating substrate, in which at least the temperature-sensitive resistor film is formed by laminating a plurality of resistor films having different resistance temperature characteristics. A thin film thermistor characterized by: 2. The thin film according to claim 1, wherein at least the temperature-sensitive resistor film is a laminated film of a plurality of resistor films selected from the group of Ge, Si, SiC, and metal oxides. thermistor. 3 At least, the temperature-sensitive resistor film is a resistor film in which one or more composite resistor films selected from the group of Ge, Si, and metal oxides and a SiC resistor film are sequentially laminated. A thin film thermistor according to claim 1, characterized in that: 4 At least, the temperature-sensitive resistor film is a resistor film in which a SiC resistor film with low resistivity and low thermistor constant and a SiC resistor film with high resistivity and high thermistor constant are laminated in sequence or in reverse order. Claim 1 characterized in that
Thin film thermistor described in Section 1.
JP55086937A 1980-06-25 1980-06-25 thin film thermistor Expired JPS6041441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55086937A JPS6041441B2 (en) 1980-06-25 1980-06-25 thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55086937A JPS6041441B2 (en) 1980-06-25 1980-06-25 thin film thermistor

Publications (2)

Publication Number Publication Date
JPS5712505A JPS5712505A (en) 1982-01-22
JPS6041441B2 true JPS6041441B2 (en) 1985-09-17

Family

ID=13900777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55086937A Expired JPS6041441B2 (en) 1980-06-25 1980-06-25 thin film thermistor

Country Status (1)

Country Link
JP (1) JPS6041441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389049U (en) * 1986-11-29 1988-06-09
JPH0633119Y2 (en) * 1988-07-08 1994-08-31 株式会社竹中工務店 Floating formwork support

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104301A (en) * 1986-10-21 1988-05-09 松下電器産業株式会社 Manufacture of temperature-sensitive resistor
JPH03101805U (en) * 1990-02-05 1991-10-23
JP2002231508A (en) * 2001-01-31 2002-08-16 Oizumi Seisakusho:Kk Linearized thermistor
CN105784183B (en) * 2016-05-06 2018-08-31 中国工程物理研究院激光聚变研究中心 A kind of patch type temperature sensor and its preparation process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4115465Y1 (en) * 1965-06-25 1966-07-20
JPS4823929B1 (en) * 1967-11-20 1973-07-17
JPS4944254A (en) * 1972-09-04 1974-04-25
JPS5011585A (en) * 1973-05-31 1975-02-06
JPS5220670A (en) * 1975-08-11 1977-02-16 Hitachi Ltd Joints for electric vacuum cleaner
JPS5363552A (en) * 1976-11-18 1978-06-07 Matsushita Electric Ind Co Ltd Thermistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823929U (en) * 1971-07-27 1973-03-19

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4115465Y1 (en) * 1965-06-25 1966-07-20
JPS4823929B1 (en) * 1967-11-20 1973-07-17
JPS4944254A (en) * 1972-09-04 1974-04-25
JPS5011585A (en) * 1973-05-31 1975-02-06
JPS5220670A (en) * 1975-08-11 1977-02-16 Hitachi Ltd Joints for electric vacuum cleaner
JPS5363552A (en) * 1976-11-18 1978-06-07 Matsushita Electric Ind Co Ltd Thermistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389049U (en) * 1986-11-29 1988-06-09
JPH0633119Y2 (en) * 1988-07-08 1994-08-31 株式会社竹中工務店 Floating formwork support

Also Published As

Publication number Publication date
JPS5712505A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
TWI599763B (en) Temperature sensor
CN104169699B (en) Temperature sensor and its manufacture method
TWI545830B (en) With the temperature regulation function of the battery
GB1501959A (en) Resistors for resistance thermometers
KR101972201B1 (en) Temperature sensor
EP2894447A1 (en) Temperature sensor
KR100324098B1 (en) NTC Thermistors and NTC Thermistor Chips
JPS6041441B2 (en) thin film thermistor
US4968964A (en) High temperature SiC thin film thermistor
CN104969046A (en) Temperature sensor
TW201439543A (en) Airflow sensor
JP2014178137A (en) Humidity sensor
JPS6018125B2 (en) thin film thermistor
JP4136755B2 (en) PTC thermistor made of ternary alloy material
SU1037084A1 (en) Temperature-sensitive resistor
JPS60170201A (en) Temperature sensor
JPS6044801B2 (en) thin film thermistor
JPS60208803A (en) Method of producing thin film thermistor
JPH0369161B2 (en)
JPH0258304A (en) Thin film platinum temperature sensor
JPS61235725A (en) Flow rate sensor
JP3288241B2 (en) Resistive material and resistive material thin film
JPH03214031A (en) Temperature sensor comprising platinum thin film
JPH0258303A (en) Thin film platinum temperature sensor
SU361471A1 (en) METHOD OF MAKING THIN-FILM THERMORESISTORS