JPS6041203A - Bonding magnet having excellent magnetic characteristic and manufacture thereof - Google Patents

Bonding magnet having excellent magnetic characteristic and manufacture thereof

Info

Publication number
JPS6041203A
JPS6041203A JP8896383A JP8896383A JPS6041203A JP S6041203 A JPS6041203 A JP S6041203A JP 8896383 A JP8896383 A JP 8896383A JP 8896383 A JP8896383 A JP 8896383A JP S6041203 A JPS6041203 A JP S6041203A
Authority
JP
Japan
Prior art keywords
magnetic
magnetization
major axis
ferrite
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8896383A
Other languages
Japanese (ja)
Inventor
Masao Iwata
雅夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8896383A priority Critical patent/JPS6041203A/en
Publication of JPS6041203A publication Critical patent/JPS6041203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a bonding magnet which assures grain orientation being convenient for magnetization pattern of multipole magnetization. CONSTITUTION:About 90wt% of strontium ferrite magnetic powder with average longer diameter of 1-10mum (desirably 2-4mum) and a thickness to longer diameter ratio of about 0.25-0.9 and about 10wt% of EVA resin are kneaded under a temperature of about 150 deg.C. This kneaded material is cracked into pellet. The material is then heated up to about 150 deg.C with an extruder with auger diameter of about 50mm.. Thereby the material is molded into a round bar in diameter of about 10.5mm.. Owing to this manufacturing method, anisotropic characteristic can be enhanced at the area near the surface of molded material but weakened at the center thereof and moreover the magnetic characteristic can also be improved.

Description

【発明の詳細な説明】 本発明は磁気特性に優れたボンド磁石とその製造方法、
さらに詳しくはハードフエライ1・磁石粉を用いて押し
出し加工により製造するボンド磁石ならびにその製造方
法に関する。
[Detailed Description of the Invention] The present invention provides a bonded magnet with excellent magnetic properties, a method for manufacturing the same,
More specifically, the present invention relates to a bonded magnet manufactured by extrusion using Hard Ferrite 1 magnet powder and a method for manufacturing the same.

ボンド磁石は、磁石粉末をゴム,プラスヂックなどのバ
インダーによって結合したものであり、バインダーを含
む分だけ磁石特性は低下するが、寸法精度ならびに加工
性が良いので小型,薄型。
Bonded magnets are made by bonding magnetic powder with a binder such as rubber or plastic. Although the magnetic properties deteriorate due to the amount of binder included, they have good dimensional accuracy and workability, so they are small and thin.

複雑形状品に適する利点を持ち近年その需要が増して来
ている。ボンド磁石の場合、製品の磁石特性はそれに用
いた磁石粉末の特性がそのまま反映されたものとなるの
で、磁石粉末が粉自体として優れた永久磁石特性を有し
ていなければならない。
It has the advantage of being suitable for complex-shaped products, and its demand has been increasing in recent years. In the case of bonded magnets, the magnetic properties of the product directly reflect the properties of the magnetic powder used therein, so the magnetic powder itself must have excellent permanent magnetic properties.

なお付言するならば、通常の製法では例えばフェライト
磁石をとってみた場合、磁石粉末をプレスした後それを
焼結することにより、結晶粒を成長させた状態で最終磁
石とするのであるから、粉末のままの状態では必ずしも
優れた永久磁石特性を示す必要はないのである。そのた
め、ボンド磁石用にはボンド磁石に適したフェライト磁
石粉を準備する必要がある。
It should be noted that in normal manufacturing methods, for example, when taking a ferrite magnet, the final magnet is produced by pressing magnet powder and then sintering it to grow crystal grains. It is not necessarily necessary to exhibit excellent permanent magnetic properties in the original state. Therefore, it is necessary to prepare ferrite magnet powder suitable for bonded magnets.

一方、ボンド磁石の成型にあたり、樹脂混合物を圧延も
しくは押出しすることにより、フエライI・粒子を機械
的に配向し、異方性ボンド磁石を得ることが公知である
。この場合、フェライト粒子が平板状であればあるほど
成形物の表面から、より深い部分まで粒子が揃い、異方
性化する。このような例を押出し加工による異方性の場
合を例にとって第1図(a )に示す。矢印の方向が磁
化容易方向である。なお、異方性化した場合には当然な
がらそれに垂直な方向、すなわち磁化困難方向の磁気特
性は、等方性の場合よりもむしろ劣る。
On the other hand, in molding a bonded magnet, it is known to mechanically orient Ferray I particles by rolling or extruding a resin mixture to obtain an anisotropic bonded magnet. In this case, the more tabular the ferrite particles are, the more aligned the particles are from the surface of the molded article to the deeper part, and the more anisotropic it becomes. An example of this is shown in FIG. 1(a), taking the case of anisotropy caused by extrusion processing as an example. The direction of the arrow is the direction of easy magnetization. Note that when the material is anisotropic, the magnetic properties in the direction perpendicular thereto, that is, the direction in which magnetization is difficult, are of course inferior to those in the case of isotropy.

また、粒子の平板性があまり強くない場合には、粒子が
揃って異方性化する領域はもつと表面近くの部分のみに
限られるようになる。
Furthermore, if the tabularity of the grains is not very strong, the region where the grains become uniform and anisotropic is limited to only the portion near the surface.

この例を第1図(b)に示した。An example of this is shown in FIG. 1(b).

さて、実用上のボンド磁石においては、例えば複写機用
のマグネッ1−ロールにぞの典型を見るように、マグネ
ット・表面上2円周方向にそって多極の着磁を行なって
使用する例が多い。
Now, in practical bonded magnets, for example, a typical case is seen in a magnet roll for a copying machine, in which multi-pole magnetization is performed along two circumferential directions on the surface of the magnet. There are many.

このとき、マグネット・内部では、磁歪の流れは第1図
(C)に示す如くとなる。第1図(C)から明らかな如
く、表面付近では磁束は半径方向に向い、第1図(a 
) (b )の磁化容易方向と一致する。しかし、内部
に行くど磁束の流れは円周方向に変わり、第1図(a 
)ではもはや磁束の流れは、磁化容易方向どは一致せず
磁化困難軸ど一致するようになる。したがって磁路がイ
こで断ち切られてしまい磁気回路的に非常に不利どなる
。これに対して第1図(b)の場合には内部において、
磁束の流れの方向が磁化容易軸ではないものの、磁化困
難軸ではないので第1図(a)の場合より有利である。
At this time, the flow of magnetostriction inside the magnet is as shown in FIG. 1(C). As is clear from Fig. 1(C), near the surface the magnetic flux is oriented in the radial direction;
) Coincides with the easy magnetization direction in (b). However, as it goes inside, the flow of magnetic flux changes in the circumferential direction, as shown in Figure 1 (a
), the flow of magnetic flux no longer coincides with the easy magnetization direction, but with the hard magnetization axis. Therefore, the magnetic path is cut off at this point, which is extremely disadvantageous in terms of the magnetic circuit. On the other hand, in the case of FIG. 1(b), inside,
Although the direction of magnetic flux flow is not along the axis of easy magnetization, it is not along the axis of hard magnetization, which is more advantageous than the case shown in FIG. 1(a).

(第1図(b)ではこの部分は等方性のように描いであ
るが、後述するように実験結果によると、成型体の軸方
向すなわち第1図(b)で紙面に垂直な方向が磁化困難
方向となることがわかったので、ある意味でこの部分は
半径方向と円周方向の両方向が容易方向であることにな
り、磁気回路上、等方性よりざらに有利となる。)この
ような異方性の実現のためには、実験の結果によれば、
フェライト粒子の厚さ/長径(以下、 −3− これをt/’dと略記する)の比が0.25を越え0.
9以下であるときに広範囲の押出し比の加工において好
結果が得られることがわかった。t/dがQ 、 5以
下であると、とくに押出し比が大(80%)以上の場合
においては成型体内部の方まで異方化されてしまい好ま
しくない。t/dが0.25以下では押出し比50%の
場合でも内部が異方性化されてしまう。一方、[/′d
が大ぎくなると逆に異方性のつき方が弱くなる。t/d
が0.95程度でも表面部分で貸方性の効果が得られる
が、その度合いは通常不充分である。表面部分において
顕著な異方性効果を得るためには、t/dが0.9以下
の粉を選ぶことが望ましい。
(In Fig. 1(b), this part is drawn as if it is isotropic, but as described later, according to the experimental results, the axial direction of the molded body, that is, the direction perpendicular to the plane of the paper in Fig. 1(b) Since it was found that the direction of magnetization is difficult, in a sense, both the radial direction and the circumferential direction are easy directions in this part, which is more advantageous than isotropy in terms of the magnetic circuit.) According to experimental results, in order to achieve such anisotropy,
The ratio of thickness/major axis (hereinafter -3- is abbreviated as t/'d) of the ferrite particles exceeds 0.25 and 0.
It has been found that good results are obtained in processing over a wide range of extrusion ratios when the extrusion ratio is 9 or less. If t/d is Q, 5 or less, the anisotropy will occur even to the inside of the molded body, which is not preferable, especially when the extrusion ratio is large (80%) or more. When t/d is 0.25 or less, the interior becomes anisotropic even when the extrusion ratio is 50%. On the other hand, [/'d
On the contrary, as the value becomes larger, the anisotropy becomes weaker. t/d
Although a creditability effect can be obtained in the surface portion even when the value is about 0.95, the degree of the effect is usually insufficient. In order to obtain a significant anisotropic effect in the surface area, it is desirable to select a powder with a t/d of 0.9 or less.

さて、磁力の強さは、磁粉の充填率すなわちボンド磁石
全体積中に占める磁粉の量に比例するから磁気特性の優
れたボンド磁石を得るためには、磁粉の充填率をできる
だけ高めなければならない。
Now, the strength of the magnetic force is proportional to the magnetic powder filling ratio, that is, the amount of magnetic powder occupying the total volume of the bonded magnet, so in order to obtain a bonded magnet with excellent magnetic properties, the magnetic powder filling ratio must be as high as possible. .

このことについて実験した結果、磁粉の粒度が細かすぎ
る場合には充填率を上げられぬことがわかった。この理
由は粒度が細かいと、同一重量の粉・−4・− でも粒度の粗い粉に比して粉体表面積が相対的に大きく
なるために、完全な混線すなわち、磁粉表面をバインダ
で完全にコートするためには、より多くのバインダを必
要とするようになるためであると考えられる。このため
には、磁粉の平均長径は少なくとも1μ以上、好ましく
は2μ以上であることが望ましい。一方、粒度が和すざ
ると、重要な磁気特性の1つである保磁力11cの値が
低下すると共に、ボンド磁石としての表面肌がわるくな
る。平均長径が10μ以上では表面肌が極めて悪くなる
ので、通常の場合には、ボンド磁石として好ましくない
。この点から、より好ましくは4μ以下の磁粉を選ぶこ
とが望ましい。
As a result of experiments on this matter, it was found that the filling rate could not be increased if the particle size of the magnetic powder was too fine. The reason for this is that when the particle size is fine, the surface area of the powder becomes relatively larger than that of coarse-grained powder, even for the same weight of powder. This is thought to be because more binder is required for coating. For this purpose, it is desirable that the average major axis of the magnetic particles be at least 1 μ or more, preferably 2 μ or more. On the other hand, if the particle size is not balanced, the value of coercive force 11c, which is one of the important magnetic properties, decreases and the surface texture as a bonded magnet deteriorates. If the average major axis is 10 μm or more, the surface texture becomes extremely poor, so it is usually not preferred as a bonded magnet. From this point of view, it is more desirable to select magnetic particles with a diameter of 4 μm or less.

また、粒度が同一であっても磁粉の形状が平たい、すな
わち前)本のt/dが小さいほど充填率を上げられぬこ
とがわかった。この理由も前)ホと同様t/dが小さい
場合には同一粒度の粉でもt/dの大きい粉に比べて粉
体表面積が相対的に大きくなるために、完全な混練には
より多くのバインダを必要とするようになるためである
と考えられる。とくにこの点からt/dが0.25を越
えるような磁粉、このましくはこの値が0.5以上であ
るような磁粉を選ぶことが望ましい。
Furthermore, it was found that even if the particle size is the same, the flatter the shape of the magnetic powder, that is, the smaller the t/d of the front), the more difficult it is to increase the filling rate. The reason for this is similar to (previously), when t/d is small, the powder surface area becomes relatively larger compared to powder with large t/d even if the powder has the same particle size, so it takes more to mix thoroughly. This is thought to be because a binder is required. In particular, from this point of view, it is desirable to select magnetic particles whose t/d value exceeds 0.25, preferably, whose value is 0.5 or more.

t /d : 0.1で平均長径−1,7μの磁粉の場
合には、磁粉の充填率55va1%以下でしか完全な混
練ができなかったが、t /d = 0.3で平均長径
−2,3μの磁粉では61vo1%まで、またt/d″
、0.6で平均長径2.7μの磁粉では69vo1%ま
で混練可能であった。さらに、t/d−0,8で平均長
径4.5μの磁粉では72%まで混練可能であった。
In the case of magnetic powder with t /d = 0.1 and an average major axis of -1.7μ, complete kneading was possible only at a magnetic powder filling rate of 55va1% or less, but with t /d = 0.3 and an average major axis - 2.3μ magnetic powder up to 61vo1%, and t/d″
, 0.6 and an average major axis of 2.7μ, it was possible to knead up to 69vol%. Furthermore, it was possible to knead up to 72% of magnetic powder with a t/d-0.8 and an average major axis of 4.5μ.

以」ニに詳述したことを整理すると、フェライト磁粉と
バインダとからなる混線物を押出し成型することにより
、実用に即した優れたボンド磁石を得るためには異方性
のつぎ方、磁粉の充填率の両面から考えて、磁粉として
は平均長径が1ないし10μ、好ましくは2μを越え4
μ以下で、厚さ/長径の比が0.25を越え0.95以
下好ましくは0.5以上0.9以下であるようなフェラ
イト粒子を選べはよいことがわかる。
To summarize what has been explained in detail below, in order to obtain an excellent bonded magnet suitable for practical use by extrusion molding a mixed material consisting of ferrite magnetic powder and a binder, it is necessary to Considering both the filling rate and the magnetic powder, the average major axis is 1 to 10 μ, preferably more than 2 μ.
It is understood that ferrite particles should be selected whose thickness/major axis ratio is greater than 0.25 and less than 0.95, preferably greater than 0.5 and less than 0.9.

以下実施例により説明する。This will be explained below using examples.

実施例1 平均長径2.7μで厚さ/長径の比がほぼ0.4である
ようなストロンチウムフエライ[・磁粉90重量%とE
VA樹脂10重量%とを150℃でJ:<混線した。こ
れは、体積%に換算するとフェライト磁粉61vo1%
に相当するが、SEM観察の結果完全に混練されている
ことが確認された。この混線物をペレット状に粉砕した
後、オーガ径50mn+の押出し機(加熱温度150℃
)用いて、直径10.5miの丸棒に押出し成型した。
Example 1 Strontium ferrite with an average major axis of 2.7μ and a thickness/major axis ratio of approximately 0.4.
10% by weight of VA resin was cross-wired at 150°C. This is 61vo1% of ferrite magnetic powder when converted to volume%.
However, as a result of SEM observation, it was confirmed that the mixture was completely kneaded. After pulverizing this mixed material into pellets, an extruder with an auger diameter of 50 mm+ (heating temperature 150 ° C.
) was extruded into a round bar with a diameter of 10.5 mm.

この丸棒の10011IIIlを切り取って、パルス着
磁器により軸方向対称4極の着磁を行ない、表面磁束密
度BOを測定したところ830Gであった。また、この
丸棒の表面から中心に向って、順次約2mm角の立方体
試料を切出して、これら3ケの試料について各々の磁気
特性を径方向(R)9円周方向(φ)、軸方向(Z)の
3方向についてVSM (試料振動型磁力計)により測
定した。この結果を第2図(a >に示す。第2図(b
)は試料の位置と測定方向を説明する図である。第2図
(a)の中でγはγ=(Br(え)−“百1)・−1− /′旧の値を100分率で表わしたものである。ただし
、Br(L)とは問題にしている方向(R,φ。
This round bar 10011IIIl was cut out and magnetized into four axially symmetrical poles using a pulse magnetizer, and the surface magnetic flux density BO was measured and found to be 830G. In addition, cubic samples approximately 2 mm square were sequentially cut out from the surface of this round bar toward the center, and the magnetic properties of each of these three samples were measured in the radial direction (R), circumferential direction (φ), and axial direction. Measurements were made in three directions (Z) using a VSM (sample vibrating magnetometer). The results are shown in Figure 2 (a). Figure 2 (b
) is a diagram illustrating the position of the sample and the measurement direction. In Figure 2 (a), γ is the old value expressed as 100% of γ=(Br(E)−“101)・−1−/′.However, Br(L) and is the direction in question (R, φ.

Z方向のいずれか)で測定された3rの値、Srとは3
方向の13r測゛定値の平均値、すなわち13r= (
Br(12)+Br”+Br”)/ 3のことである。
The value of 3r measured in either Z direction), Sr is 3
The average value of the 13r measurements in the direction, i.e. 13r= (
Br(12)+Br"+Br")/3.

Brは第1株的にはその方向が容易方向となっている磁
化の量を表わすものであると考えられるから、従って正
のγ値は、その方向へ他の2方向へ変化してぎた磁化の
量を示す目安、負のγ値はその方向から他の2方向へ変
化した磁化の量を示す目安であるといえる。
Since Br is considered to represent the amount of magnetization in which that direction is the easy direction, a positive γ value indicates the amount of magnetization that has changed from that direction to the other two directions. It can be said that a negative γ value is a measure of the amount of magnetization that has changed from that direction to the other two directions.

第2図(a)から明らかな如く、表面部(イ)ではφ、
Z方向からR方向へ磁化が向きなおり、R方向が容易方
向となっている。
As is clear from Fig. 2(a), in the surface part (a), φ,
The magnetization is directed from the Z direction to the R direction, and the R direction is the easy direction.

表面と中心との中間部(ロ)ではZ方向の磁化がR方向
に変化して、等方性の場合よりもR方向のBrを増して
いる。中心部(ハ)ではR1φ方向の特性が等しくなる
のは当然であるが、これらは磁化が7方向からの磁化が
変化してきて完全な等方性の場合よりもB「が増してい
るといえる。
In the intermediate part (b) between the surface and the center, the magnetization in the Z direction changes to the R direction, increasing Br in the R direction than in the isotropic case. It is natural that the characteristics in the R1φ direction are the same in the center (c), but it can be said that the magnetization from these seven directions has changed, and B' has increased compared to the case of complete isotropy. .

・ −8− このように表面部ではR方向のみに異方性がつき、特性
向上しているが、内部にいくにしたがい磁化容易方向は
しだいにφ方向へも分散するようになり、先に述べたよ
うな(第1図(C))多極着磁の磁化パターンにとって
まことに好都合な粒子配向となっていることがわかる。
・ -8- In this way, the surface part has anisotropy only in the R direction, and the characteristics are improved, but as you go inside, the direction of easy magnetization gradually becomes dispersed in the φ direction, and the It can be seen that the grain orientation is very convenient for the magnetization pattern of multipolar magnetization as described (FIG. 1(C)).

しかも、内部においてはこの例のように、着磁パターン
上、全く利用されない7方向は磁化困難方向となってお
り、イの分、R1φ方向の磁気特性が向上させられてい
る点も好都合な点である。
Moreover, internally, as shown in this example, the 7 directions that are not used at all in the magnetization pattern are difficult to magnetize directions, and the magnetic properties in the R1φ direction are improved by that amount, which is also a good point. It is.

比較例1 平均長径1.7μで厚さ/直径の比がほぼ0.1である
Srフエライ]・磁粉90重量%とEVA樹脂10重量
%とを150℃で混練した。しかし、この磁粉は粒子表
面積が大ぎいためど考えられるが、この樹脂量では満足
な混線が不可能であり、さらに樹脂を追加した。混線可
能な最大磁粉量は87.5重量%であった。この混練物
を実施例1と同様に押出し加工して直径10.5111
11の丸棒を得た。しかし、この丸棒を実施例1と同様
にして測定したBoの値は710Gにしかすぎなかった
。また、実施例1と同様、表面からの位置による磁気特
性の変化を測定した結果を第3図に示す。
Comparative Example 1 90% by weight of Sr ferrite having an average major axis of 1.7 μm and a thickness/diameter ratio of approximately 0.1] magnetic powder and 10% by weight of EVA resin were kneaded at 150°C. However, this may be because the magnetic powder has a large particle surface area, but it was not possible to achieve satisfactory crosstalk with this amount of resin, so more resin was added. The maximum amount of magnetic particles that could be crossed was 87.5% by weight. This kneaded material was extruded in the same manner as in Example 1, and the diameter was 10.5111 mm.
Eleven round bars were obtained. However, when this round bar was measured in the same manner as in Example 1, the Bo value was only 710G. Further, as in Example 1, the results of measuring changes in magnetic properties depending on the position from the surface are shown in FIG.

第3図において、表面部(イ)ではR方向に異方性がつ
いている点は、実施例1の場合と同様であるが、中間部
(ロ)においてもR方向への異方性が強い点は、実施例
1とは大きく異なる。王のためにこの部分ではφ方向は
むしろ磁化困難方向となり、第1図(C)のような@磁
パターンにとって不利となる。このことが、実施例1と
比較例1とで表面部でのR方向Brはほぼ等しいにもか
かわらず、実用上価値のある表面磁束密度BOの値は比
較例1では低い値が得られない理由と考えられる。
In Figure 3, the surface part (a) has anisotropy in the R direction, which is the same as in Example 1, but the middle part (b) also has strong anisotropy in the R direction. This point is significantly different from Example 1. Because of this, the φ direction becomes a direction in which magnetization is rather difficult in this part, which is disadvantageous for the @magnetic pattern as shown in FIG. 1(C). This means that although the R direction Br at the surface portion of Example 1 and Comparative Example 1 is almost the same, Comparative Example 1 cannot obtain a low value of the surface magnetic flux density BO, which is of practical value. This is considered to be the reason.

比較例2 平均粒径2.15μで厚さ/直径の比はほぼ1.0であ
る粒状の3rフ工ライト磁粉90重量%とEVA樹脂1
0重量%どを150℃でよく混練した。この混練物を実
施例1と同様に押出し加工して直径1105Il1の丸
棒を得た。この丸棒を実施例1と同様にして測定したB
Oの値は730Gにしかずぎなかった。
Comparative Example 2 90% by weight of granular 3R ferrite magnetic powder with an average particle size of 2.15μ and a thickness/diameter ratio of approximately 1.0 and EVA resin 1
0% by weight was thoroughly kneaded at 150°C. This kneaded product was extruded in the same manner as in Example 1 to obtain a round bar with a diameter of 1105Il1. This round bar was measured in the same manner as in Example 1.
The value of O was only 730G.

また、実施例1と同様、表面からの位置による磁気特性
の変化を測定した結果を第4図に示す。
Further, as in Example 1, the results of measuring changes in magnetic properties depending on the position from the surface are shown in FIG.

第4図においても、表面部(イ)ではR方向への異方性
がついていることがわかる。この理由は、写真観察から
はほぼ粒状、すなわち厚さ/直径の比はほぼ1.0と見
えるけれども、やはり3rフ工ライト本来の(0001
)面へき開性があり、押出し加工により表面部ではある
程度粒子が配向するためと考えられる。しかし、異方性
化の度合いを見ると実施例1がγ=44%、比較例1が
γ=50%であるのに対してγ=21%と低い値でしか
ない。したがって表面部(イ)でのBrも低い値となっ
ている。しかしながら、表面磁束密度BOのj直は実施
例1にははるかに及ばないものの比較例1の場合よりは
むしろ大きなっており、このことは内部での異方性のつ
ぎ方が、着磁パターンにとって右利であるためと考えら
れる。このれ例からも実用上は、着磁パターンに沿う異
方性の付与がたいへ、−:11− ん重要であることが理解される。
Also in FIG. 4, it can be seen that the surface portion (A) has anisotropy in the R direction. The reason for this is that although it appears almost granular from photographic observation, that is, the thickness/diameter ratio is approximately 1.0, it is still the original (0001
) It is thought that this is because the particles have plane cleavage properties, and the particles are oriented to some extent on the surface due to extrusion processing. However, looking at the degree of anisotropy, Example 1 has γ=44% and Comparative Example 1 has γ=50%, whereas γ=21%, which is a low value. Therefore, the Br value at the surface portion (A) is also low. However, although the j-direction of the surface magnetic flux density BO is far lower than that of Example 1, it is rather larger than that of Comparative Example 1, which indicates that the internal anisotropy is different from the magnetization pattern. This is thought to be because he is right-handed. From these examples, it can be understood that in practical terms, imparting anisotropy along the magnetization pattern is extremely important.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a )は平板度の強いフェライト粒子を押出し
加工した場合の異方性のつき方を説明する図、第1図(
b)は平板度の強くないフェライト粒子を押出し加工し
た場合の異方性のつぎ方を説明する図、第1図(0)は
マグネットロールの着磁におけるマグネット内部での磁
束の流れを説明する図、第2図ないし第4図は押出し加
工したボンド磁石の磁気特性の表面からの深さ方向依存
性を測定した結果を表わす図である。 ・ −・12− (a) rb) (C) 第 l 図 (屹V究1 (xツノ (5す4g (外) (中間) (芯) 第 3 図 第4図 手続補正化 昭和58 年8 月18 日 事1′1の表示 昭和58年 特許願 第88963号 発明の名称 磁気特性に優れたボンド磁石ならびにぞの
製造方法 補正をする者 事件どの関係 特許出願人 住所 東京都千代81区丸ノ内二丁目1番2号名称 (
508)日立金属株式会社 明細書の「発明の詳細な説明」の欄。 補正の内容 1、明m山の「発明の詳細な説明」の欄の記載を下記の
通り訂正する。 記 (1)明細書第3頁末行の「磁歪」を「磁束」に訂正す
る。 (2)同書第5頁第4行から第5行の「(80%)以上
」を「(80%以−に)」に訂正する。 (3)同書第9頁第3行のrBr Jを「B「」に訂正
する。 (4)同用同頁第4行のr13r Jをr[3r Jに
訂正する。 (5)同書同頁第8行の12方向へ」を「2方向から」
に訂正する。 (6)同書同頁第19行の「磁化が」を削除する占(7
)同書第11頁第13行の1低い値が」を1低い値しか
」に訂正する。 (8)同門同頁第19行から第20行の[105mm 
Jを「10.5mll1」に訂正する。 (9)同書第12行第19行の「このれ」の[れ−。 を削除する。 以−L ・ −1− 手続補正化 59、9.17′ 特許庁長官殿 “fl@l ’f−II +1発 Jl
 cn 名f4 磁、特性、優。え、21.12〜.。 、わぉ。製、方法補正をする者 特許出願人 二 住 I有 東京都千代111区丸の内分丁目1番2号名
 4* (5081日立金属株式会社代入者河野 典夫 代 理 人 補正の対象 昭和58年8月18日付提出手続補正書の「補正の内容
」の亀
Figure 1 (a) is a diagram explaining how anisotropy is created when ferrite particles with strong tabularity are extruded.
b) is a diagram explaining how to obtain anisotropy when extruding ferrite particles with low flatness, and Figure 1 (0) is a diagram explaining the flow of magnetic flux inside the magnet during magnetization of a magnet roll. 2 to 4 are diagrams showing the results of measuring the dependence of the magnetic properties of extruded bonded magnets in the depth direction from the surface.・ -・12- (a) rb) (C) Figure l (屹V 1 (xhorn (5th 4g (outside) (middle) (core) Figure 3 Figure 4 Procedure revised 1988 Month 18 Date 1'1 Indication 1982 Patent Application No. 88963 Title of the invention Bonded magnet with excellent magnetic properties and its manufacturing method Case related to the case Patent applicant address Marunouchi 2, Chiyo 81-ku, Tokyo Chome 1-2 name (
508) "Detailed description of the invention" column of Hitachi Metals, Ltd. specification. Contents of amendment 1: The statement in the "Detailed description of the invention" column of Akiyama is corrected as follows. (1) "Magnetostriction" at the end of page 3 of the specification is corrected to "magnetic flux." (2) In the same book, page 5, lines 4 to 5, "(80% or more)" is corrected to "(more than 80%)." (3) Correct rBr J on page 9, line 3 of the same book to "B". (4) Correct r13r J on the 4th line of the same page to r[3r J. (5) In line 8 of the same page of the same book, ``toward 12 directions'' was changed to ``from 2 directions.''
Correct. (6) The word “magnetization” in line 19 of the same page of the same book is deleted (7)
) In the same book, page 11, line 13, ``the value that is 1 lower is corrected'' to ``only the value that is 1 lower.'' (8) Lines 19 to 20 of the same page [105mm]
Correct J to "10.5ml1". (9) “Kore” in line 12, line 19 of the same book. Delete. -L・-1- Procedural amendment 59, 9.17' Mr. Commissioner of the Japan Patent Office "fl@l 'f-II +1 shot Jl
cn name f4 magnetic, characteristic, excellent. Eh, 21.12~. . , Wow. Patent applicant for amendments to the manufacturing process and method Iyu Nisumi 1-2 Marunouchi-bun-chome, 111-ku, Chiyo, Tokyo Name 4* (5081 Hitachi Metals Co., Ltd. Substitute Norio Kono Managing Director Subject of amendment August 1982) Summary of “Contents of amendment” of the written amendment for submission procedures dated 18th

Claims (1)

【特許請求の範囲】 1、平均長径が1ないし10μで、厚さ/長径の比が0
.25を越え0.9以下であるマグネ]−プランバイ(
・型穴方晶形スi・ロンチウムフェライトもしくはバリ
ウムフエライ[・の平板状粒子50〜12容量%、残部
は結合剤より成る組成物を所望の断面形状を有するよう
な成型物に押し出し加工することにより、成型物の表面
に近い部分では、成型物の芯部弁よりも強度に、フェラ
イト粒子の磁化容易軸方向を成型物の表面方向に一致す
るように機械的に配向せしめたことを特徴とする特許 ボンド磁石ならびにイの製造方法。 2、特許請求の範囲第1項において、平均長径が2μを
越え、4μ以下であることを特徴とする磁気特性の優れ
たボンド磁石ならびにその製造方法。
[Claims] 1. The average major axis is 1 to 10μ, and the thickness/major axis ratio is 0.
.. Magneto over 25 and under 0.9] - Plan By (
・A composition consisting of 50 to 12% by volume of tabular grains of rontium ferrite or barium ferrite, the remainder being a binder, is extruded into a molded product having a desired cross-sectional shape. As a result, the easy magnetization axis direction of the ferrite grains is mechanically oriented in the part near the surface of the molded product to be stronger than the core valve of the molded product so that it coincides with the surface direction of the molded product. A patented bonded magnet and manufacturing method. 2. A bonded magnet with excellent magnetic properties and a method for manufacturing the same, as set forth in claim 1, characterized in that the average major axis is more than 2μ and less than 4μ.
JP8896383A 1983-05-20 1983-05-20 Bonding magnet having excellent magnetic characteristic and manufacture thereof Pending JPS6041203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8896383A JPS6041203A (en) 1983-05-20 1983-05-20 Bonding magnet having excellent magnetic characteristic and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8896383A JPS6041203A (en) 1983-05-20 1983-05-20 Bonding magnet having excellent magnetic characteristic and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6041203A true JPS6041203A (en) 1985-03-04

Family

ID=13957477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8896383A Pending JPS6041203A (en) 1983-05-20 1983-05-20 Bonding magnet having excellent magnetic characteristic and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6041203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535901A2 (en) * 1991-09-30 1993-04-07 Kawasaki Steel Corporation Lateral orientation anisotropic magnet
JP2018174314A (en) * 2017-03-30 2018-11-08 Tdk株式会社 R-T-B based sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535901A2 (en) * 1991-09-30 1993-04-07 Kawasaki Steel Corporation Lateral orientation anisotropic magnet
JP2018174314A (en) * 2017-03-30 2018-11-08 Tdk株式会社 R-T-B based sintered magnet

Similar Documents

Publication Publication Date Title
JP5382206B2 (en) Sintered magnet and method for producing sintered magnet
JP2007214510A (en) Ferrite magnetic powder for bonded magnet therefor and manufacturing method, and the bonded magnet
US1369868A (en) Golf-ball and similar article
JPS6041203A (en) Bonding magnet having excellent magnetic characteristic and manufacture thereof
JPS59135705A (en) Resin magnet material
JPS61237405A (en) Multipolarized magnet
US4321222A (en) Method of manufacturing plastic-bonded anisotropic permanent magnets
JPS6159705A (en) Manufacture of composite magnet
JP5326748B2 (en) Ferrite magnet manufacturing method and manufacturing apparatus
JP3115466B2 (en) Method for producing hexagonal ferrite particles
JPH03218606A (en) Composition for synthetic resin magnet
JPH0340487B2 (en)
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JP4747772B2 (en) Resin magnet material
JPS5932107A (en) Composite soft magnetic material
JPH02180004A (en) Manufacture of anisotropic oxide magnetic powder an of plastic magnet
US3284359A (en) Barium potassium ferrite magnetic material exhibiting non-vanishing rotational hysteresis in applied magnetic fields
JPH04302101A (en) Ferrite magnetic powder for bonded magnet
JPH03160707A (en) Manufacture of ferrite magnetic powder for anisotropic bonded magnet
JPH04224116A (en) Ferrite magnetic powder for magnetic-field-oriented bond magnet
KR810002082B1 (en) Magnetic powder for rubber and plastic magnet
JP6011350B2 (en) Sintered magnet and preform before firing
JPS58125802A (en) Manufacture of rare-earth powder magnet
JP2001210506A (en) Rare earth anisotropic sheet magnet and its manufacturing method
JPH0578701A (en) Production of soft magnetic powder