JPS6040706B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6040706B2
JPS6040706B2 JP52158000A JP15800077A JPS6040706B2 JP S6040706 B2 JPS6040706 B2 JP S6040706B2 JP 52158000 A JP52158000 A JP 52158000A JP 15800077 A JP15800077 A JP 15800077A JP S6040706 B2 JPS6040706 B2 JP S6040706B2
Authority
JP
Japan
Prior art keywords
gate electrode
gate
manufacturing
region
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52158000A
Other languages
Japanese (ja)
Other versions
JPS5491086A (en
Inventor
紀 倉上
隆 山中
茂 越丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP52158000A priority Critical patent/JPS6040706B2/en
Priority to US05/942,729 priority patent/US4268847A/en
Publication of JPS5491086A publication Critical patent/JPS5491086A/en
Priority to US06/192,401 priority patent/US4357747A/en
Publication of JPS6040706B2 publication Critical patent/JPS6040706B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法にかかり、特に絶縁ゲー
ト型電界効果トランジスタのゲートの幅方向のチャンネ
ル・ストッパ領域に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a channel stopper region in the width direction of a gate of an insulated gate field effect transistor.

従来の絶縁ゲート型MOSトランジスタを用いた集積回
路装置では、各素子間の絶縁分離領域を基板と同じ型の
不純物拡散層と厚いフィールド酸化膜で形成した後、M
OB型トランジスタろゲート領域にゲート絶縁膜及び多
結晶シリコンのゲート電極を形成し、基板と反対の型の
不純物を拡散してソース、ドレィンを形成する事で完成
していた。
In an integrated circuit device using conventional insulated gate MOS transistors, an insulating isolation region between each element is formed using an impurity diffusion layer of the same type as the substrate and a thick field oxide film, and then the M
The OB type transistor was completed by forming a gate insulating film and a gate electrode of polycrystalline silicon in the gate region, and diffusing impurities of the opposite type to the substrate to form the source and drain.

このゲート電極形成の方法はたとえば気相成長法で多結
晶シリコンを形成し、フオト・レジストを用いた写真蝕
刻法で選択的に除去して形成される。この写真蝕刻の時
に製造上の余裕を持ってゲート電極はゲート絶縁膜を完
全に覆う必要がある為にゲート電極は必ずフィールド酸
化膜上に重なりの部分が必要となってくる。第1図は従
来技術によるダイナミック型ランダム・アクセル・メモ
リ装置のメモリ・セルの平面図である。該メモリ・セル
は1つのソース・チャンネル型MOSトランジスタと1
つの容量を持つ1トランジスタ型メモリセルであり既知
の方法で製造される。第1図の中の11は拡散層による
デ−夕線、12はゲート領域、13は多結晶シリコンよ
り成るゲート電極、14は容量部分、15は容量部の電
極で多結晶シリコンより成るものである。一般にはゲー
ト電極の幅Aはゲートの幅Bよりも広く、写真技術の製
造上のばらつきを考慮してゲートの幅方向には片側につ
き3ムmほどフィールド上に突き出している。従って大
容量メモリ装置に用いられた場合、該メモリ・セルの構
成方法ではゲート電極の幅Aに規定された周期で繰り返
して用いられるので、所定の値以下にして製造歩蟹を上
げたり、高密度化したりすることはできない。本発明の
目的はゲート電極幅を小さくしてMOS型トランジスタ
の大きさの縮少を計り高歩蟹で高密度な半導体装置の製
造方法を提供する事にある。
The method for forming this gate electrode is, for example, by forming polycrystalline silicon by vapor phase growth and selectively removing it by photolithography using a photoresist. At the time of photolithography, the gate electrode must completely cover the gate insulating film to allow for manufacturing margins, so the gate electrode always needs to have an overlapping portion on the field oxide film. FIG. 1 is a plan view of a memory cell of a dynamic random access memory device according to the prior art. The memory cell includes one source channel type MOS transistor and one
It is a one-transistor type memory cell with two capacitances and is manufactured by a known method. In Fig. 1, 11 is a data line formed by a diffusion layer, 12 is a gate region, 13 is a gate electrode made of polycrystalline silicon, 14 is a capacitor part, and 15 is an electrode of the capacitor part made of polycrystalline silicon. be. Generally, the width A of the gate electrode is wider than the width B of the gate, and in consideration of manufacturing variations in photographic technology, the gate electrode protrudes above the field by about 3 mm on each side in the width direction of the gate. Therefore, when used in a large-capacity memory device, the method of configuring the memory cell is such that the width A of the gate electrode is used repeatedly at a period defined by the width A, so it is necessary to keep the width below a predetermined value or increase the manufacturing process. It cannot be densified. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a high-density semiconductor device by reducing the gate electrode width and reducing the size of a MOS transistor.

上記目的を達成する為の本発明の構成は、半導体基板上
に各素子間の絶縁分離領域を形成し、素子領域にゲート
絶縁膜を形成し、この上にゲート電極となるたとえば多
結晶シリコンを彼着し、写真蝕刻法でゲート電極の幅を
形成し、不純物導入でチャンネル・ストッパ領域を形成
し、二度目の写真蝕刻法でゲート電極の長さ方向を形成
し、不純物導入でソ−ス、ドレィン領域を形成する事で
製作される。
The structure of the present invention to achieve the above object is to form an insulating isolation region between each element on a semiconductor substrate, form a gate insulating film in the element region, and deposit, for example, polycrystalline silicon, which will become a gate electrode, on this. After that, the width of the gate electrode is formed by photo-etching, the channel stopper region is formed by introducing impurities, the length of the gate electrode is formed by a second photo-etching, and the source is formed by introducing impurities. , is fabricated by forming a drain region.

本発明による半導体装置の製造方法によれば、MOS型
トランジスタは、ゲート電極の幅方向の大きさがゲート
領域の幅と同じとなるので、従来と比べてトランジスタ
1個当りの大きさを小さくすることができ、高歩蟹で高
密度な大規模集積回路装置を製造することができる。
According to the method for manufacturing a semiconductor device according to the present invention, in a MOS transistor, the size of the gate electrode in the width direction is the same as the width of the gate region, so the size of each transistor can be made smaller than in the conventional case. It is possible to manufacture high-density, large-scale integrated circuit devices in high speed.

次に本発明の好しし・実施例について図を用いて説明す
る。
Next, preferred embodiments of the present invention will be described with reference to the drawings.

第2図は本発明の実施例によって完成される1トランジ
スタ型のメモリ・セルの平面図である。
FIG. 2 is a plan view of a one-transistor type memory cell completed according to an embodiment of the present invention.

ここで21はたとえば拡散により形成される不純物層の
データ線、22はゲート領域、23は多結晶シリコンの
ゲート電極、26はチャンネル・ストッパ領域である。
ここでゲート電極の幅AはそのままMOS型トランジス
タのゲート幅と同じ大きさに自己整合型に作成され、従
釆に比べゲート電極幅を小さくできる。更にメモリ・セ
ルの繰り返しの大きさを決める8の幅は図ではA′より
も大きく描いてあるが本質的にはA′と同じ大きさでも
よく、このA′とB′が同じ大きさの場合には、製造上
のばらつきでゲート電極とゲートの重ならない部分にの
みチャンネル・ストッパ領域26は形成される。いま、
第2図のX−X′の直線で横切る断面を×方向の断面と
し、Y一Yの直線で横切る断面をY方向の断面とする。
第3図乃至第7図は本発明によるメモリ・セルの製造工
程を順次示したもので、第6図はY方向の断面図を、ま
た残りはX方向の断面図である。
Here, 21 is a data line of an impurity layer formed by diffusion, 22 is a gate region, 23 is a gate electrode made of polycrystalline silicon, and 26 is a channel stopper region.
Here, the width A of the gate electrode is made in a self-aligned manner to be the same size as the gate width of the MOS type transistor, so that the gate electrode width can be made smaller than in the case of a secondary structure. Furthermore, although the width of 8, which determines the repeat size of the memory cell, is drawn larger than A' in the figure, it may essentially be the same size as A', and if A' and B' are of the same size. In some cases, the channel stopper region 26 is formed only in a portion where the gate electrode and the gate do not overlap due to manufacturing variations. now,
In FIG. 2, the cross section taken along the line X-X' is taken as the cross section in the x direction, and the cross section taken along the line Y-Y is taken as the cross section in the Y direction.
3 to 7 sequentially show the manufacturing process of a memory cell according to the present invention, with FIG. 6 being a sectional view in the Y direction, and the remaining sectional views in the X direction.

第3図は×方向の断面図であり、P型で150−肌の比
抵抗のシリコン基板31上に既知の窒化シリコン膜を用
いて選択酸化法で1〆mの二酸化シリコン膜32を形成
することで絶縁分離領域を形成する工程を示したもので
ある。第4図は容量部分の形成工程を示したものである
FIG. 3 is a cross-sectional view in the x direction, in which a silicon dioxide film 32 with a thickness of 1㎜ is formed by selective oxidation using a known silicon nitride film on a P-type silicon substrate 31 with a resistivity of 150-skin. This figure shows the process of forming an insulating isolation region. FIG. 4 shows the process of forming the capacitor portion.

900℃の熱酸化により素子となるべき領域上に500
Aの二酸化シリコン膜を形成し、その上に1び仇‐3の
リンを含んだ0.5〃mの多結晶シリコン膜を気相成長
法で被着し、写真蝕刻法で多結晶シリコン、二酸化シリ
コン膜を順、次選択的に除去して客童部のゲ〜ト絶縁劇
膜33とゲート電極34を形成する。
By thermal oxidation at 900°C, 500%
A silicon dioxide film was formed, a 0.5 m thick polycrystalline silicon film containing 1 and 3 phosphorus was deposited on it by vapor phase growth, and polycrystalline silicon and polycrystalline silicon were formed by photolithography. The silicon dioxide film is sequentially and selectively removed to form a gate insulating film 33 and a gate electrode 34 in the contact area.

第5図はソース・チャンネル型トランジスタのゲート部
分の形成工程を示したものである。
FIG. 5 shows the process of forming the gate portion of a source-channel type transistor.

900℃の熱酸化で素子となるべき領域上に100帆の
二酸化シリコン膜35を形成し、その上に気相成長法で
1杉節‐3のリンを含んだ1.5rmの多結晶シリコン
膜36を彼着する。
A 100-layer silicon dioxide film 35 is formed on the region that is to become a device by thermal oxidation at 900° C., and a 1.5-rm polycrystalline silicon film containing 1 Sugibushi-3 phosphorus is formed thereon by vapor phase growth. He wears 36.

第6図はY方向の断面図である。FIG. 6 is a sectional view in the Y direction.

フオト・レジスト37を用いた写真蝕亥U法でMOS型
トランジスタの幅方向のみの多結晶シリコン36を選択
的に除去し、二酸化シリコン膜35を残した状態でイオ
ン注入法により、5加KeVで1び3凧‐2のポロンを
注入しトランジスタの幅方向に自己整合型にチャンネル
・ストッパ領域38を形成する。第7図は×方向の断面
図である。
The polycrystalline silicon 36 only in the width direction of the MOS transistor is selectively removed using the photo-etching process using the photoresist 37, and with the silicon dioxide film 35 remaining, the polycrystalline silicon 36 is removed using the ion implantation method at 5+KeV. Poron 1 and 3-2 are implanted to form a channel stopper region 38 in a self-aligned manner in the width direction of the transistor. FIG. 7 is a cross-sectional view in the x direction.

再度のフオト・レジスト39を用いた写真蝕刻法でMO
S型トランジスタの長さ方向の多結晶シリコン36を選
択的に除去し、ゲート電極40とゲート絶縁膜41を形
成する。更にこのフオト・レジスト39を用いてリンの
イオン注入法でトランジスタの長さ方向に自己整合型に
1ぴo肌‐3の濃度のソース領域42を形成する。この
後気相成長法で0・5ムm二酸化シリコン膜をチャンネ
ル・ストッパ領域38上やソース領域42上に形成し、
金属配線を行うことで完成される。ここでチャンネル・
ストッパ領域やソース領域42上の二酸化シリコン膿の
形成は、同時の熱酸化や別々の熱酸化の工程で行っても
よく、まさ、本発明はソース・チャンネル型トランジス
タで行ったが、ソースとドレィンを有するMOS型トラ
ンジスタの製作に用いても同様にできる。
MO by photolithography using photoresist 39 again.
The polycrystalline silicon 36 in the length direction of the S-type transistor is selectively removed to form a gate electrode 40 and a gate insulating film 41. Furthermore, using this photoresist 39, a source region 42 having a concentration of 1 P-3 is formed in a self-aligned manner in the length direction of the transistor by phosphorus ion implantation. Thereafter, a 0.5 mm silicon dioxide film is formed on the channel stopper region 38 and the source region 42 by a vapor phase growth method.
It is completed by performing metal wiring. Channel here
The formation of silicon dioxide pus on the stopper region and the source region 42 may be performed by simultaneous thermal oxidation or separate thermal oxidation steps. The same effect can be achieved even if it is used to manufacture a MOS type transistor having.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術による1トランジスタ型メモリ・セル
の平面図である。 第2図は本発明の一実施例による半導体装置の平面図で
ある。第3図乃至第7図は本発明一実施例の製造方法を
工程順に示した断面図であり、第3図、第4図、第5図
および第7図は第2図を切断線X−X′に沿って切断し
た矢印の方向を視た部分を、第6図は第2図を切断線Y
−Yに沿って矢印の方向を視た部分を示している。尚、
図において、11と21はデータ線、12と22はゲー
ト領域、13と23はゲート電極、14と24は容量領
域、15と25は容量部の電極、26はチャンネル・ス
トッパ領域、31はシリコン基板、32は二酸化シリコ
ン膜、33と41はゲート絶縁膜、34は容量部の電極
、35は二酸化シリコン膜、36は多結晶シリコン、3
7と39はフオト・レジスト、38はチヤンネル・スト
ッパ領域、40はゲート電極、42はソースである。 券「図 弟2図 第3図 多4図 努づ図 チふ図 多フ図
FIG. 1 is a top view of a one-transistor memory cell according to the prior art. FIG. 2 is a plan view of a semiconductor device according to an embodiment of the present invention. 3 to 7 are cross-sectional views showing the manufacturing method according to an embodiment of the present invention in the order of steps, and FIGS. 3, 4, 5, and 7 are cross-sectional views of FIG. Figure 6 shows the part cut along X' and viewed in the direction of the arrow;
A portion viewed in the direction of the arrow along -Y is shown. still,
In the figure, 11 and 21 are data lines, 12 and 22 are gate regions, 13 and 23 are gate electrodes, 14 and 24 are capacitor regions, 15 and 25 are capacitor electrodes, 26 is a channel stopper region, and 31 is silicon. 3 is a substrate, 32 is a silicon dioxide film, 33 and 41 are gate insulating films, 34 is an electrode of a capacitive part, 35 is a silicon dioxide film, 36 is a polycrystalline silicon film, 3
7 and 39 are photo resists, 38 is a channel stopper region, 40 is a gate electrode, and 42 is a source. Ticket ``Doujin 2, 3, 4, Tsutsuzu, Chifu, Tafu, etc.''

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板に素子分離用の厚いシリコン
酸化膜を形成する工程と、一方向に延在しかつ所定のゲ
ート電極幅を有する導電層を設ける工程と、該導電層を
マスクとして前記シリコン酸化膜と該導電層下の半導体
基板の部分との間に一導電型の不純物を導入する工程と
、該導電層の長さ方向を所定のゲート電極が得られるよ
うにパターニングし、該導電層の長さ方向の端をマスク
として逆導電型の不純物を該半導体基板に導入してソー
ス、ドレイン領域を形成する工程とを有することを特徴
とする半導体基板の製造方法。
1. A step of forming a thick silicon oxide film for element isolation on a semiconductor substrate of one conductivity type, a step of providing a conductive layer extending in one direction and having a predetermined gate electrode width, and using the conductive layer as a mask the step of forming a thick silicon oxide film for element isolation. A step of introducing an impurity of one conductivity type between the silicon oxide film and a portion of the semiconductor substrate under the conductive layer, and patterning the length direction of the conductive layer so as to obtain a predetermined gate electrode. 1. A method of manufacturing a semiconductor substrate, comprising the step of introducing impurities of opposite conductivity type into the semiconductor substrate using longitudinal ends of the layer as a mask to form source and drain regions.
JP52158000A 1977-09-16 1977-12-28 Manufacturing method of semiconductor device Expired JPS6040706B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52158000A JPS6040706B2 (en) 1977-12-28 1977-12-28 Manufacturing method of semiconductor device
US05/942,729 US4268847A (en) 1977-09-16 1978-09-15 Semiconductor device having an insulated gate type field effect transistor and method for producing the same
US06/192,401 US4357747A (en) 1977-09-16 1980-09-30 Method for producing a semiconductor device having an insulated gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52158000A JPS6040706B2 (en) 1977-12-28 1977-12-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5491086A JPS5491086A (en) 1979-07-19
JPS6040706B2 true JPS6040706B2 (en) 1985-09-12

Family

ID=15662050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52158000A Expired JPS6040706B2 (en) 1977-09-16 1977-12-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6040706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145847A (en) * 1983-02-08 1984-08-21 ルノ−・ピエ−ル・ロ−ラン・オト Building mold frame using disposable mold frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145847A (en) * 1983-02-08 1984-08-21 ルノ−・ピエ−ル・ロ−ラン・オト Building mold frame using disposable mold frame

Also Published As

Publication number Publication date
JPS5491086A (en) 1979-07-19

Similar Documents

Publication Publication Date Title
US5266507A (en) Method of fabricating an offset dual gate thin film field effect transistor
US4125933A (en) IGFET Integrated circuit memory cell
JPH0799311A (en) Semiconductor device and manufacture thereof
JPH07202193A (en) Semiconductor device and manufacture thereof
JPS61179568A (en) Manufacture of semiconductor memory device
US5151374A (en) Method of forming a thin film field effect transistor having a drain channel junction that is spaced from the gate electrode
JPS5826829B2 (en) Dynamic memory cell manufacturing method
KR930009016B1 (en) Wiring contact structure of semiconductor device and manufacturing method
JPH0821694B2 (en) Method for manufacturing ultra-high integrated semiconductor memory device
JP2829992B2 (en) Semiconductor device
GB2080024A (en) Semiconductor Device and Method for Fabricating the Same
EP0028654B1 (en) Semiconductive memory device and fabricating method therefor
JPS6040707B2 (en) semiconductor memory
JPS5878466A (en) Low capacity field effect transistor
GB2087647A (en) Semiconductor memory manufacture
US4268847A (en) Semiconductor device having an insulated gate type field effect transistor and method for producing the same
JPS6156445A (en) Semiconductor device
JP2870086B2 (en) Manufacturing method of MOS nonvolatile semiconductor memory device
JPS6123360A (en) Semiconductor memory and manufacture of the same
JPS6040706B2 (en) Manufacturing method of semiconductor device
JPS6036106B2 (en) semiconductor storage device
JPS6362382A (en) Floating gate nonvolatile semiconductor storage device and manufacture thereof
JPS61107768A (en) Semiconductor memory device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS6249649A (en) Semiconductor device