JPS6039741A - Electron gun for cathode-ray tube - Google Patents

Electron gun for cathode-ray tube

Info

Publication number
JPS6039741A
JPS6039741A JP14654083A JP14654083A JPS6039741A JP S6039741 A JPS6039741 A JP S6039741A JP 14654083 A JP14654083 A JP 14654083A JP 14654083 A JP14654083 A JP 14654083A JP S6039741 A JPS6039741 A JP S6039741A
Authority
JP
Japan
Prior art keywords
grid
potential
lens
electrode
focusing electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14654083A
Other languages
Japanese (ja)
Other versions
JPH0564410B2 (en
Inventor
Eiji Kanbara
蒲原 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14654083A priority Critical patent/JPS6039741A/en
Publication of JPS6039741A publication Critical patent/JPS6039741A/en
Publication of JPH0564410B2 publication Critical patent/JPH0564410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/488Schematic arrangements of the electrodes for beam forming; Place and form of the elecrodes

Abstract

PURPOSE:To reduce the diameter of beam-spot on a target, by providing an eletrode between 5th grid and 6th grid of the main lens part and applying an intermediate potential between the potential of the 5th grid and that of the 6th grid onto said electrode. CONSTITUTION:An electron gun is built up with a 4 poles part 56 containing a cathode 9 and 1st-3rd grid 12-14 and a main lens part 57 containing 3rd-7th grid 14-18, and 6th grid 17 is provided between 5th grid 16 and 7th grid 18. An intermediate potential of about 8kV is given to the 3rd grid 14 and the 5th grid 16. A low-grade potential of about 700V is given to the 4th grid 15, a high- grade potential of about 25kV is given to the 7th grid 18, and further an intermediate potential of about 16.5kV which is between the potential of the 5th grid 16 and that of the 7th grid 18 is given to the 6th grid 17. Consequently, the lens performance can be greatly enhanced and the diameter of beam-spot can be remarkably reduced by using the beam of best quality.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は陰極線管用電子銃に係シ、特にその電子ビーム
を集束するための静磁レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron gun for a cathode ray tube, and more particularly to a magnetostatic lens for focusing the electron beam.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

陰極線管用電子銃は一般に2つの基本的部分から成る。 Cathode ray tube electron guns generally consist of two basic parts.

1つは電子ビーム発生部を含む物点形成部で、他の1つ
はこの電子ビームを所定のスクリーン上に集束させる加
速集束用レンズ部である。
One is an object point forming section including an electron beam generating section, and the other is an accelerating and focusing lens section that focuses the electron beam onto a predetermined screen.

通例前者を四極部、後者を主レンズ部と称していて四極
部の最終段の電極と主レンズ部の最初の電極は同一のも
のである。前記主レンズ部の多くは靜鑞レンズ形態で、
゛磁子ビーム開孔を有する少なくとも2個の電極に所定
の電位を印加することによって形成される。
Usually, the former is called a quadrupole section and the latter is called a main lens section, and the final stage electrode of the quadrupole section and the first electrode of the main lens section are the same. Most of the main lens portions are in the form of a white lens,
It is formed by applying a predetermined potential to at least two electrodes having magneton beam apertures.

一方この様な電子銃において、所定のスフIJ −ン上
に集束された電子ビームのスポット径DTは四極部から
主レンズ部へ入射するビームの質と主レンズ部のレンズ
性能によって決まる。主レンズ部のレンズ性能は各電極
の電位、各電極長、各電極間距離、電極開孔の寸法によ
って変えることができ冬が、実際には電子銃の物理的設
計のため込くりかの制限をうける。また四極部から主レ
ンズ部へ入射するビームの質は四極部の最終段の電極即
ち主レンズ部の最初の電極電位Ec3によって決定され
、これはEc3が8〜9KVのとき最良の状態となるこ
とが[マルチステップフォーカス](“エレクトロニク
ス“昭和53年11月号、1147頁〜1151頁)に
示されている。
On the other hand, in such an electron gun, the spot diameter DT of the electron beam focused on a predetermined sphere IJ- is determined by the quality of the beam incident on the main lens part from the quadrupole part and the lens performance of the main lens part. The lens performance of the main lens section can be changed depending on the potential of each electrode, the length of each electrode, the distance between each electrode, and the size of the electrode aperture, but in reality there are limitations due to the physical design of the electron gun. receive. Furthermore, the quality of the beam incident from the quadrupole section to the main lens section is determined by the final stage electrode of the quadrupole section, that is, the first electrode potential Ec3 of the main lens section, and this is best when Ec3 is 8 to 9 KV. is shown in [Multi-Step Focus] ("Electronics" November 1973 issue, pages 1147-1151).

この様な陰極線管用電子銃の代表的なものとしテ主しン
ズ部をパイポテンシャル形しンズトシタものがある。こ
のパイポテンシャル形しンズハ第1集束゛磁極と第2集
束電極とから成り、第2集束電極には陽極高電位が印加
され、第1集束電極には相対的に中電位が印加される。
A typical example of such an electron gun for a cathode ray tube is one in which the main lens portion is of the pi potential type. This pi-potential type sensor consists of a first focusing magnetic pole and a second focusing electrode, a high anode potential is applied to the second focusing electrode, and a relatively medium potential is applied to the first focusing electrode.

この様な電子銃を例えばインライン配列、シャドウマス
ク方式のカラー受像管に用いた場合、3個の電子銃を横
方向−列に一体化して並べこれをガラス円筒のネック内
に封入して使用するため、まず電極の開孔即ちレンズ口
径が物理的に制限される。次いで電極間に形成される集
束電界が他の電界の影響を受けない様にするために成極
間距離が制限される。次いで所定のスクリーン上に正し
く集束させるために電極長又は電極電位が制限される。
When such an electron gun is used, for example, in an in-line array or shadow mask type color picture tube, three electron guns are integrated in a row in the horizontal direction and are enclosed in the neck of a glass cylinder. Therefore, first, the aperture of the electrode, that is, the lens aperture is physically limited. Next, the distance between the electrodes is limited so that the focused electric field formed between the electrodes is not influenced by other electric fields. The electrode length or electrode potential is then limited for proper focusing onto a given screen.

即ち第1集束磁極の電極長を決定すれば電極電位はl義
的に決まる。従ってこの様な電子銃では主レンズ部のレ
ンズ性能を変えるKは゛磁極長を変える以外ないことに
なるが、電極長を変えても大幅なレンズ性能の向上は望
めない。
That is, if the electrode length of the first focusing magnetic pole is determined, the electrode potential is determined logically. Therefore, in such an electron gun, the only way to change the lens performance of the main lens section is to change the magnetic pole length, but even if the electrode length is changed, no significant improvement in lens performance can be expected.

しかし、例えば第1集束電極と第2集束電極の間に少な
くとも1個以上の電極を設け、これらに第1集束電極電
位と第2集束電極電位の間の電位を適当に印加すれば、
即ち第1集束電極と第2集東成極間距離が長くなったも
のと同等のレンズを実用的に形成させることができ、レ
ンズ性能を大幅に向上させることができる。この様な電
子銃は特公昭55〜48674号公報に示されている。
However, if, for example, at least one or more electrodes are provided between the first focusing electrode and the second focusing electrode, and a potential between the first focusing electrode potential and the second focusing electrode potential is appropriately applied to these electrodes,
That is, it is possible to practically form a lens equivalent to one in which the distance between the first focusing electrode and the second focusing electrode is increased, and the lens performance can be greatly improved. Such an electron gun is shown in Japanese Patent Publication No. 55-48674.

しカーし、特公昭55−48674号公報に示されてい
る様な電子銃では、主レンズ部のレンズの焦点距離が長
くなる特徴を有している。従って所定のスクリーン上に
ビームを正しく集束させるためには第1集束電極の電極
長をかなり長くするか、あるいは第1集束電極電位をか
なり低く設定しなければならなくなる。第1集束電極の
磁極長を相自分長くすると四極部からある発散角をもっ
て入射してきた電子ビームが主レンズ部でかなり大永く
なシ、球面収差を強く受ける様になる。この結果結局ス
クリーン上に集束されたビームスポット径DTはあまり
小さくならない。また電極長が長すぎることは電子銃製
作時に不都合であり、経済的にも無駄である。
However, an electron gun such as that disclosed in Japanese Patent Publication No. 55-48674 is characterized in that the focal length of the lens in the main lens portion is long. Therefore, in order to properly focus the beam on a given screen, the electrode length of the first focusing electrode must be made considerably long, or the first focusing electrode potential must be set quite low. When the magnetic pole lengths of the first focusing electrodes are made longer, the electron beam incident from the quadrupole section at a certain divergence angle becomes considerably longer at the main lens section, and becomes subject to strong spherical aberration. As a result, the diameter DT of the beam spot focused on the screen does not become very small. Moreover, too long electrode length is inconvenient when manufacturing an electron gun, and is also economically wasteful.

また第1集束電極電位をかなり低く設定すると前述した
様に四極部から主レンズ部へ入射するビームの質が悪く
なり、結局スクリーン上に集束されたビームスポット径
DTを小6くすることかで急ない。
Furthermore, if the potential of the first focusing electrode is set quite low, the quality of the beam incident from the quadrupole section to the main lens section will deteriorate, as mentioned above, and the beam spot diameter DT focused on the screen will eventually be reduced to 6. There's no rush.

〔発明の内的〕[Internality of the invention]

本発明は、陰極線管用電子銃において、王レンズ部のレ
ンズ性能を向上させると共に、四極部から主レンズ部へ
入射するビームが最も質の良い状態にあるときのものを
部用することによって、所定のスクリーン上に集束され
たビームスポット径をより小さくすることを目的とした
ものである。
The present invention improves the lens performance of the main lens part in an electron gun for a cathode ray tube, and also uses a part when the beam entering the main lens part from the quadrupole part is in the best quality state. The purpose of this is to further reduce the diameter of the beam spot focused on the screen.

〔発明の概要〕[Summary of the invention]

本発明の陰極線管用電子銃は、主レンズ部が少なくとも
5個の電極より成り第1集束電極には相対的に中位の電
位を、第2集束電極には相対的に低位の電位を、第3集
束電極には相対的に中位の電位を、最終集束電極には相
対的に高位の電位を印加し、第3集束電極と最終集束電
極の間にある少なくとも1個以上の各集束′電極には第
3集束電極電位と最終集束電極電位の間の電位を印加す
ることによって前記目的を達成するものである。
In the electron gun for a cathode ray tube of the present invention, the main lens part is made up of at least five electrodes, a relatively medium potential is applied to the first focusing electrode, a relatively low potential is applied to the second focusing electrode, and a relatively low potential is applied to the second focusing electrode. A relatively intermediate potential is applied to the three focusing electrodes, a relatively high potential is applied to the final focusing electrode, and at least one or more each focusing electrode is applied between the third focusing electrode and the final focusing electrode. The above objective is achieved by applying a potential between the third focusing electrode potential and the final focusing electrode potential to.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しつつ本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明を実施したカラー受像管用インライン配
列電子銃の一例でインライン方向から見た構成図であり
、第2図はインラインに直角な方向から見た構成図(2
−2軸断面)である。第1図及び第2図において、電子
銃(1)は後述する複数個の電極と、これらを支える複
数の絶縁支持体(2)を有する。そして前記複数個の電
極は、赤、緑、青各色の螢光体層に射突する3本の電子
ビーム(3a)+(3b ) 、 (3c )を発生す
るための3個のそれぞれヒータ(6a) * (6b)
 * (6c)を内装する一列配設された陰極(”) 
、(9b) t (9c)と、この3個の陰極に対する
位置にそれぞれ所定の電子ビーム通過孔部が突設され一
体化構造(:3−ニタイズ構造)を有する第1グリッド
醤、第2グリツド13、第3グリツドI、第4グリツド
α段、第5グリツド(Le1第6グリツド(trI、第
7グリツドα梯及びコンバーゼンス電極(L!1から成
シ、それぞれこの順序で前記絶縁支持体(2)に植設固
定支持されている。前記第1グリツド圓と前記第2グリ
ツド住騰は近接配置された平板状電極からなり、第3グ
リツドIは前記第2グリツド霞に近接配置され接合され
た2個のカップ状磁極(211゜(23からなり、第4
グリツド霞は第3グリツドIに続いて第3グリツドよシ
浅い2個のカップ状電極(ハ)、t24から成り、第5
グリツドαeは第4グリツドα9に続りて第4グリッド
α■]深い2個のカップ状電極四、弼から威力、第6グ
リツドaηは第5グリツr 顛に続いて平板状電極(2
7)から成る。前記各カップ状電極の閉鎖面及び平板状
電極にはそれぞれ各電子ビームに整合した3個の電子ビ
ーム通過孔部が設けられて匹る。第1グリツドt1a及
び第2グリツドa3のビーム通過孔は比較的小石<、第
3グリツドα4の第2グリツドaJに面する側のビーム
通過孔(32a)、(32b)、(32G)はそれより
大きく、第3グリツドα4の第4グリツドα9に面する
側のビーム通過孔(33a)、(33b)、(33c)
 オJ:び第4グリツドa5小ら第6グリツド(L?)
までのビーム通過孔(33a)〜(38a) 、(33
b) 〜(38b) 、(33c) 〜(38c)’は
比較的大きい径である。次に第7グリツドa梯は閉鎖端
に一列配設された゛磁子ビーム通過孔部(39a)。
FIG. 1 is a configuration diagram of an example of an inline array electron gun for color picture tubes embodying the present invention, as seen from the inline direction, and FIG. 2 is a configuration diagram (2
- biaxial cross section). In FIGS. 1 and 2, an electron gun (1) has a plurality of electrodes, which will be described later, and a plurality of insulating supports (2) that support them. The plurality of electrodes are connected to three heaters (3a) + (3b) and (3c), respectively, for generating three electron beams (3a) + (3b) and (3c) that impinge on the red, green, and blue phosphor layers. 6a) * (6b)
* One row of cathodes ('') containing (6c)
, (9b) t (9c), and a first grid base and a second grid base having an integrated structure (3-nitized structure) with predetermined electron beam passage holes protruding from positions relative to these three cathodes. 13. Consists of the third grid I, the fourth grid α stage, the fifth grid (Le1, the sixth grid (trI), the seventh grid α stage and the convergence electrode (L!1), respectively in this order, the insulating support (2 ).The first grid circle and the second grid base are composed of flat plate electrodes arranged close to each other, and the third grid I is disposed close to and connected to the second grid circle. Two cup-shaped magnetic poles (211° (23), the fourth
The grid haze consists of two cup-shaped electrodes (c), t24, which are shallower than the third grid, following the third grid I, and the fifth grid.
The grid αe is the fourth grid α9, followed by the fourth grid α■] Two deep cup-shaped electrodes 4, the power is from the top, and the sixth grid aη is the fifth grid r, followed by the flat plate electrode (2
7). The closed surface of each cup-shaped electrode and the plate-shaped electrode are provided with three electron beam passage holes that are aligned with each electron beam, respectively. The beam passage holes of the first grid t1a and the second grid a3 are relatively small, and the beam passage holes (32a), (32b), (32G) on the side facing the second grid aJ of the third grid α4 are smaller than that. Large beam passage holes (33a), (33b), (33c) on the side of the third grid α4 facing the fourth grid α9
OJ: 4th grid A5 small 6th grid (L?)
Beam passing holes (33a) to (38a), (33
b) ~(38b) and (33c) ~(38c)' have relatively large diameters. Next, the seventh grid level A has magnet beam passage holes (39a) arranged in a row at the closed end.

(39b)+ (39c)を有するカップ状電極(ハ)
から成って^るが、前記磁子ビーム通過孔部のうち中央
の通過孔部(39b)は前述した第1グリツドQ7Jか
ら第6グリツドαDまでの1子ビーム通過孔部と整合し
ている。一方間側の通過孔部(39a)、(39りは例
えば中央の通過孔部(39b)よ)外方に離れるように
僅かに偏位してお)、前述した第1グリツド住2から第
6グリツドanまでの電子ビーム通過孔部とは整合して
いない。前述した両側の電子ビーム通過孔部の偏位は3
本の電子ビームをターゲット上で1点に交叉させるため
に中央電子ビームを除く両側の電子ビームに僅かに非対
称電界による偏向を与えるためのものであって、非対称
電界を与える他の手段であってもよい。前記第7グリツ
ド(1秒には更に前述した各磁子ビーム径路に概略整合
した3個の電子ビーム通過孔部(40a ) + (4
0b ) 、(40c )をその底部に有する有底筒状
(ハ)のコンバーゼンス電極σlが固着され、このコン
バーゼンス電極部には図示しない陽極端子に印加される
約25KVの相対的に高い電圧を加えるパルプスペーサ
(21が取付けられている。
Cup-shaped electrode (c) with (39b) + (39c)
Of the magneton beam passage holes, the center passage hole (39b) is aligned with the single beam passage holes from the first grid Q7J to the sixth grid αD described above. On the other hand, the passage holes (39a) on the intervening side (for example, the passage holes (39a) are slightly deviated outwardly from the central passage hole (39b)) from the first grid housing 2 described above. It is not aligned with the electron beam passage hole up to 6 grids an. The deviation of the electron beam passage holes on both sides mentioned above is 3
This is for giving a slight asymmetrical electric field deflection to the electron beams on both sides, excluding the central electron beam, in order to cause the main electron beam to intersect at one point on the target, and is another means for giving an asymmetrical electric field. Good too. The seventh grid (1 second also includes three electron beam passage holes (40a) + (4
A convergence electrode σl having a bottomed cylindrical shape (c) having 0b) and (40c) at its bottom is fixed, and a relatively high voltage of about 25 KV applied to an anode terminal (not shown) is applied to this convergence electrode part. A pulp spacer (21) is attached.

以上の電極構成にお^て各電極には以下の様な電位が与
えられる。陰極は約150■のカットオフ電圧に保たれ
これに変調信号が加えられる。第1700vが、第3グ
リツドa4と第5グリツドαeには約8KVの相対的に
中位の電位が、第4グリツドα9には約700Vの第2
グリツドと同様相対的に低位の磁位が、第7グリツド帥
には約25KVの相対的に高位の電位が、第6グリツド
(Inには第5グリツドαυと第7グリツドa8の電位
の間の中高電位が印加される。
In the above electrode configuration, the following potentials are applied to each electrode. The cathode is held at a cutoff voltage of about 150 Å to which a modulation signal is applied. 1700V, the third grid a4 and the fifth grid αe have a relatively medium potential of about 8KV, and the fourth grid α9 has a second potential of about 700V.
The grid has a relatively low magnetic potential of about 25 KV, the seventh grid has a relatively high potential of about 25 KV, and the sixth grid (In) has a relatively low magnetic potential between the potentials of the fifth grid αυ and the seventh grid a8. A medium-high potential is applied.

この様な電子銃は細いガラス円筒のネック(図示せず)
内に封入される。
Such an electron gun has a thin glass cylinder neck (not shown).
enclosed within.

この様な電子銃の電子ビーム集束11A構を中央電子ビ
ームを例にとって第3図に示す。両側のビームも本質的
には同じである。第3図に示す様に陰極(9局)ら放射
された電子ビーム(3)fは第1グリツドaaO開孔(
至)を通過して第1グリツドuaから第2グリツドa3
の間でクロスオーバ像61を形成し、第2グリツド(1
31の開孔01)を通過し、主として第2グリツド圓と
第3グ、リッドI間に形成されるブリフォーカスレンズ
G1)にょル僅かに集束されながら第3グリツド側の中
へ進んでいく。第3グリツドα委へ4グリッドα9−第
5グリツ゛ドillによって形成されル弱匹ユニポテン
シャル形レンズ(5壜により僅かに集束されながら第5
グリッドWe−第6グリッド同−第7グリツドα種によ
って形成されるパイポテンシャル形レンズ53によシ強
く集束されてスクリーンI5壕上にビームスポット1l
li!9として結像する。このとき、陰極から第3グリ
ツドの前部までを四極部6E9と称し、第3グリツドか
ら第7グリツドまでを主レンズ部67)と称して区別し
ている。主レンズ部67)へ入射する電子ビーム(3)
は四極部(至)からの電子ビームであフ、この四極部(
至)からの電子ビームを逆方向に追跡して仮想クロスオ
ーバ像t55を考えこの像を主レンズ部Gηによってス
クリーン(54)上に結像させるものである。従って四
極部(イ)からの電子ビームの質が良好なもの程スクリ
ーンI!54)上のビームスポット(ロ)の径は小さく
なル、また主レンズ部5′l)のレンズ性能の良好なも
の程スクリーン6る上のビームス余ットl551の径は
小さくなる。ここでいう電子ビームの質とは[マルチス
テップフォーカス」(“エレクトロニクス“昭和53年
11月号。
The electron beam focusing 11A structure of such an electron gun is shown in FIG. 3, taking the central electron beam as an example. The beams on both sides are also essentially the same. As shown in Fig. 3, the electron beam (3) f emitted from the cathode (9 stations) is transmitted to the first grid aaO aperture (
) from the first grid ua to the second grid a3
A crossover image 61 is formed between the second grid (1
The lens passes through the aperture 01) of 31 and advances into the third grid side while being slightly focused by the pre-focus lens G1) formed mainly between the second grid circle, the third circle, and the lid I. A weak unipotential lens is formed by the 4th grid α9 to the 5th grid ill to the 3rd grid α.
Grid We - 6th grid same - 7th grid It is strongly focused by the pi-potential type lens 53 formed by the type α, and a beam spot 1l is formed on the screen I5 trench.
li! It is imaged as 9. At this time, the part from the cathode to the front part of the third grid is called a quadrupole part 6E9, and the part from the third grid to the seventh grid is called a main lens part 67). Electron beam (3) incident on the main lens section 67)
is the electron beam from the quadrupole (to), and this quadrupole (
A virtual crossover image t55 is created by tracing the electron beam from (to) in the opposite direction, and this image is formed on the screen (54) by the main lens portion Gη. Therefore, the better the quality of the electron beam from the quadrupole (a), the better the screen I! 54) The smaller the diameter of the upper beam spot (b) is, and the better the lens performance of the main lens portion 5'l), the smaller the diameter of the upper beam spot l551 on the screen 6. The quality of the electron beam referred to here is [Multi-Step Focus] ("Electronics" November 1978 issue).

1147頁〜1151頁)に示されているエミツタンス
で表わされるものであり、このエミツタンスが小さいも
の程良質のビームである。上記文献では第3グリツド電
位EC,を変化させたときのエミツタンス(6)を実測
し、第5図の如(Bc3が8〜9KVでエミツタンスは
最小となることが報告されており、本発明者も第5図と
同様の結果を実測した。
1147 to 1151), and the smaller the emittance, the better the quality of the beam. In the above literature, the emittance (6) was actually measured when the third grid potential EC was changed, and it was reported that the emittance is minimum when Bc3 is 8 to 9 KV, as shown in Figure 5. The results similar to those shown in Fig. 5 were also measured.

即ち、四極部(4)からの電子ビームは四極部の最終電
極であり、主レンズ部67)の前段電極である第3グリ
ツドa尋の電位ECsが8〜9KVのときが最も良質の
ビームとなることになる。
That is, the electron beam from the quadrupole section (4) is the final electrode of the quadrupole section, and the best quality beam is when the electric potential ECs at the third grid a fathom, which is the front stage electrode of the main lens section 67), is 8 to 9 KV. It will become.

次に主レンズ部67)においては、第4図に示す様に仮
想クロスオーバ像(至)を物点としてこれをスクリーン
64)上に結像させるもので、主レンズ部の倍率による
物点の像の拡がシをDX、主レンズ部の球面収差による
ビームの拡が9をDIIA 、ターゲット近くでの空間
電荷の反発によるビームの拡が9t Dsoとするとタ
ーゲット上でのビームスポット径DTは DT=((Dx+Dsa)”+Dso” )””、!:
 −1ルコ、!: dl ” THFiORBTICA
T、 AND PRaCTICAL AS−PECT 
OF FLECTRON−GUN DESIGN FO
RC0LORPICT−UaFI TUBB8 ” (
IIfE Trans、CE、 Feb、 1975)
に水式れている。従ってここでいう主レンズ部のレンズ
性能の良好なものとは倍率が小さく、球面収差を受けに
くいレンズをいう。
Next, in the main lens section 67), as shown in Fig. 4, the virtual crossover image (to) is used as an object point and is imaged on the screen 64). If the image expansion is DX, the beam expansion due to the spherical aberration of the main lens is DIIA, and the beam expansion due to the repulsion of space charges near the target is 9t Dso, the beam spot diameter DT on the target is DT. =((Dx+Dsa)"+Dso")"",! :
-1 Luko! : dl” THFiORBTICA
T, AND PRaCTICAL AS-PECT
OF FLECTRON-GUN DESIGN FO
RC0LORPICT-UaFI TUBB8” (
IIfE Trans, CE, Feb, 1975)
There is a water ceremony. Therefore, a lens having good lens performance in the main lens section as used herein refers to a lens that has a small magnification and is not susceptible to spherical aberration.

主レンズ部のレンズ形態として代表的なものは第6図f
a)に示すパイポテンシャル形しンズト同図(b)に示
すユニポテンシャル形レンズがあす、一般忙パイポテン
シャル形レンズはレンズの倍率を小さくすることができ
るが球面収差を受け易いレンズ系であり、ユニポテンシ
ャル形レンズは球面収差を受けにくくすることができる
がレンズの倍率を小さくすることができないレンズ系で
ある。そこでこれらのレンズ系を改良したものとして同
図(C)に示す特開昭54−89472号公報にジオド
ラポテンシャル形レンズが提案されている。このクオド
2ボテンシャル形レンズはレンズ倍率をユニポテンシャ
ル形レンズよシ小さくすることができ、パイポテンシャ
ル形レンズよりは球面収差を受け忙〈くすることができ
る。これらのレンズ系では前述した四極部からの電子ビ
ームの質を最良の状態で使用するために第3グリツドの
電位を8〜9に/Vに設定する方が裏込が、ユニポテン
シャル形レンズでは第3グリツド電位が約25KVの高
電位であるため好ましくなり0一方パイポテンシャル形
レンズやジオドラポテンシャル形レンズのレンズ性能を
さらに向上させるには、電極間距離を大きくして軸上電
位分布をより緩かなものとすればよい。
The typical lens form of the main lens section is shown in Figure 6 f.
The pi-potential type lens shown in a) is a uni-potential type lens, and the uni-potential type lens is shown in figure (b).The general pi-potential type lens is a lens system that can reduce the magnification of the lens, but is susceptible to spherical aberration. A unipotential lens is a lens system that can be made less susceptible to spherical aberration, but cannot reduce the magnification of the lens. Therefore, as an improved version of these lens systems, a geodora potential type lens has been proposed in Japanese Patent Application Laid-Open No. 54-89472 as shown in FIG. 54(C). This quad-potential type lens can have a smaller lens magnification than a unipotential type lens, and can be more susceptible to spherical aberration than a pi-potential type lens. In these lens systems, it is better to set the potential of the third grid to 8 to 9/V in order to use the quality of the electron beam from the quadrupole part in the best condition, but with unipotential type lenses, it is better to backfill. The third grid potential is a high potential of approximately 25 KV, which is preferable.0 On the other hand, in order to further improve the lens performance of pi-potential type lenses and geodora potential type lenses, the distance between the electrodes can be increased to further improve the axial potential distribution. It is best to keep it loose.

このときの様子を第6図と比較して第7図に示す。The situation at this time is shown in FIG. 7 in comparison with FIG. 6.

第6図、第7図には軸上電位分布も同時に示して^る。Figures 6 and 7 also show the axial potential distribution.

! 7 図(a)の如くパイポテンシャル形レンズにお
いて、第3グリツド(114)と第4グリツド(115
)の間隔を大きく設定すれば軸上電位分布は緩かなもの
とな)レンズ性能は向上する。しかし一定距離のスクリ
ーン上に物点を結像させるためには第3グリツド(11
4)の電位を低くしてレンズを強くしなければならない
。例えば適当、tバイポテンシャル形レンズを使用した
電子銃で第3グリツドと第4グリツドの間隔Gを変えた
場合の必要なフォ−カス電圧Vf(Vf−第3グリツド
電圧/第4グリツド電圧)の変化は第8図(a)の様に
な〕、間隔Gの増加に対し、フォーカス電圧は低下して
いく。
! 7 In a pi-potential type lens as shown in Figure (a), the third grid (114) and the fourth grid (115)
), the axial potential distribution becomes gentler, and the lens performance improves. However, in order to form an image of an object point on a screen at a certain distance, the third grid (11
4) The potential must be lowered to make the lens stronger. For example, the required focus voltage Vf (Vf - 3rd grid voltage/4th grid voltage) when the distance G between the 3rd grid and 4th grid is changed in an electron gun using an appropriate t-bipotential type lens. The change is as shown in FIG. 8(a)], and as the distance G increases, the focus voltage decreases.

第3グリツド電位を低く設定することは前述した四極部
からの電子ビームの質が悪くなるので好ましくない。
It is not preferable to set the third grid potential low because the quality of the electron beam from the above-mentioned quadrupole section will deteriorate.

そこで第3グリツド(114)の電位を8〜9KVに設
定するKは第3グリツド(114)の長さを長くして物
点からレンズ主面までの距離を長くすることが考えられ
るが、第3グリツド(114)の長さを長くすることは
四極部からある発散角をもって入射してきたビームが主
レンズ部でかなシ大きな径となる。従って結局球面収差
を強く受ける様になるので電極間距離を大きくしてレン
ズ性能を向上させた効果がでなくなる。第8図(b)に
第3グリツドと第4グリツドの間隔が00のときの第3
グリツドの長さGs1対フォーカス電圧Vfの変化を示
す。
Therefore, it is possible to set the potential of the third grid (114) to 8 to 9 KV by increasing the length of the third grid (114) to increase the distance from the object point to the main surface of the lens. By increasing the length of the three grids (114), the beam entering from the quadrupole section with a certain divergence angle becomes considerably larger in diameter at the main lens section. As a result, it ends up being strongly affected by spherical aberration, so that the effect of improving lens performance by increasing the distance between the electrodes is lost. Figure 8(b) shows the third grid when the interval between the third and fourth grids is 00.
The graph shows the change in grid length Gs1 versus focus voltage Vf.

一方第7図(b)の如くジオドラポテンシャル形レンズ
において、第5グリツド(316)と第6グリツド(3
17)の間隔を大きく設定すれば、軸上電位分布は緩か
なものとな〕バイポテンシャル形レンズと同様にレンズ
性能を向上させることができる。
On the other hand, in the geodora potential type lens as shown in Fig. 7(b), the fifth grid (316) and the sixth grid (316)
If the interval 17) is set large, the axial potential distribution becomes gentle, and the lens performance can be improved in the same way as a bipotential type lens.

このとき一定距離のターゲット上に物点を結像させるた
めにはレンズを強くしなければならないが、ジオドラポ
テンシャル形レンズはパイポテンシャル形レンズと異な
り、第3グリツド(314)−第4グリツド(315)
−第5グリツド(316)間に弱匹ユニポテンシャル形
レンズが形成されているので、第3グリツド(314)
の電位を8〜9KVに保ったままこの二二ポテンシャル
形レンズを少し強くすればジオドラポテンシャル形レン
ズ全体のレンズ作用は強くなシ、所定のターゲット上に
物点を結像させることができる。即ちレンズ性能を向上
させた状態で且つ、四極部からの電子ビームの質を悪く
することなく電子銃を使用できるのでターゲット上のビ
ームスポット径DTを小さくすることができる。前記第
3グリツド(314)−第4グリツド(315)−第5
グリツド(316)間に形成されるユニボテンしャル形
レンズを少し強くするには、第4/ IJフッド315
)の電位を少・し下げるか、第4グリツド(315)の
長さを少し長くするカーまたは第3グリツド(314)
と第4グリツド(315)及び第4グリツド(315)
と第5グリツド(316)の電極間距離を少し大きくす
ればよい。ジオトリポテンシャル形レンズではパイポテ
ンシャル形レンズと異な9、第4グリツド(315)の
長さを僅かに長くするだけでレンズ作用を強くすること
ができるので、四極部からある発散角をもって入射して
きたビームが主レンズ部で大きな径を占めることはない
。従って球面収差を強ぐ受・けることはなくなる。例え
ば適当なりオトリポテンシャル形レンズを使用した電子
銃で、第5グリツドと第6グリツドの間隔Gを変えた場
合の必要なフォーカス電圧Vf(=第3グリッド電圧/
第6グリツド電圧)の変化を第9図(a)に、またある
間隔G。のとき第4グリツドの長さG4Zを変えたとき
のフォーカス電圧Vfの変化を同図(b)に示す。第9
図からジオドラポテンシャル形レンズでは第4グリツド
の長さを僅かに変えるだけでフォーカス電圧Vfは急激
に変化する。
At this time, in order to form an image of the object point on a target at a certain distance, the lens must be made strong, but unlike the pi potential type lens, the geodora potential type lens is different from the pi potential type lens, and the third grid (314) - the fourth grid (314) - the fourth grid ( 315)
- Since a weak unipotential lens is formed between the fifth grid (316), the third grid (314)
By making this 22 potential type lens a little stronger while maintaining the potential at 8 to 9 KV, the lens action of the entire geodora potential type lens becomes strong, and an object point can be imaged on a predetermined target. That is, since the electron gun can be used with improved lens performance and without degrading the quality of the electron beam from the quadrupole, the beam spot diameter DT on the target can be reduced. The third grid (314) - the fourth grid (315) - the fifth grid
To make the unibotential lens formed between the grids (316) a little stronger, the 4th/IJ hood 315
) or the length of the fourth grid (315) is slightly increased or the third grid (314)
and the fourth grid (315) and the fourth grid (315)
The distance between the electrodes of the fifth grid (316) and the fifth grid (316) may be slightly increased. In the geotripotential type lens, unlike the pi-potential type lens, the lens effect can be strengthened just by slightly increasing the length of the 9th and 4th grids (315), so that the light is incident from the quadrupole part with a certain divergence angle. The beam does not occupy a large diameter in the main lens section. Therefore, it is no longer affected by spherical aberration. For example, in an electron gun using an appropriate Otripotential lens, the required focus voltage Vf (=3rd grid voltage/
The variation of the sixth grid voltage) is shown in FIG. 9(a), also at a certain interval G. FIG. 4B shows the change in focus voltage Vf when the length G4Z of the fourth grid is changed. 9th
As can be seen from the figure, in the case of the Geodra potential type lens, the focus voltage Vf changes rapidly even if the length of the fourth grid is slightly changed.

以上の様に第5グリツド(316)と第6グリツド(3
17)の電極間距離を大きくしたジオドラポテンシャル
形レンズを主レンズ部に使用した電子銃はターゲット上
のビームスポット径DTをかなり小さくすることができ
るが、この様な電子銃は前述した様に実用上好ましくな
い。これは、電極間距離が大きすぎるとネック内の他の
電界の影響をうけ電極間に形成されている正常なレンズ
電界を乱し、正常なレンズ作用を期待できなくなるから
である。
As mentioned above, the fifth grid (316) and the sixth grid (3
17) An electron gun that uses a geodora potential type lens with a large interelectrode distance as the main lens can considerably reduce the beam spot diameter DT on the target, but as mentioned above, such an electron gun Practically unfavorable. This is because if the distance between the electrodes is too large, the normal lens electric field formed between the electrodes will be disturbed by the influence of other electric fields in the neck, and normal lens action cannot be expected.

そこで本発明では、ジオドラポテンシャル形レンズにお
いて、第5グリツド(316)と第6グリツド(317
)の間に少なくとも1個の磁極を設けこれに第5グリツ
ド(316)の電位と第6グリツド(317)の電位の
間の適当な電位を印加することによって、結果的に第7
図(b)に示す軸上電位分布を得、レンズ性能を向上さ
せるものである。即ち、第1図乃至第3図に示す本発明
の実施例では第5グリツド(tQと第7グリツドa8の
間に第6グリツドaηを設けこれに第5グリツド(te
と第7グリツドα印の間の中高電位を与えている。
Therefore, in the present invention, in the geodora potential type lens, the fifth grid (316) and the sixth grid (317)
), and by applying thereto a suitable potential between the potential of the fifth grid (316) and the potential of the sixth grid (317), the result is that the seventh
The axial potential distribution shown in Figure (b) is obtained and the lens performance is improved. That is, in the embodiment of the present invention shown in FIGS. 1 to 3, a sixth grid (aη) is provided between the fifth grid (tQ) and the seventh grid a8,
A medium-high potential is applied between the 7th grid and the 7th grid α mark.

この様な電位の供給方法は、第3グリツド(141と第
5グリツド顛には第1グリツドria及び第2グリツド
a国と同様7に電子銃下部のステム(図示せず)からス
テムビン(歯示せず)を通して供給し、第7グリツド(
IIには、バルブスペーサ(イ)を通して陽極高圧端子
(図示せず)から供給する。第6グリツド圓には、第5
グリツド(Leと同様にステムからステムピンを通して
供給することもできるが、実開昭48−21561号公
報、特開昭55−64351号公報、特開昭55−15
9548号公報に示されている様に第7グリノ下α樽の
高′鴫圧から抵抗分割によって供給することもできる。
The method of supplying such a potential is as follows: for the third grid (141) and the fifth grid (7), from the stem (not shown) at the bottom of the electron gun to the stem bin (tooth not shown), as in the first grid Ria and the second grid A through the seventh grid (
II is supplied from an anode high voltage terminal (not shown) through a valve spacer (A). In the 6th grid circle, there is a 5th
Grid (similar to Le, it can also be supplied from the stem through the stem pin, but it is also possible to supply it from the stem through the stem pin,
As shown in Japanese Patent Application No. 9548, it can also be supplied from the high pressure of the seventh grillo lower α barrel by resistance division.

前記実施例の詳細な仕様は例えば以下の様である。第3
グリツドIの長さは5.0龍、第4グリツド霞の長石は
1.6關、第5グリツド住eの長さは20.0鴎、第6
グリツド住ηの長さは2.0 ml@、第7グリツドα
秒の長さは6.0頭である。また第3グリツド(14)
と第4グリツド(I5及び第4グリツド(19と第5グ
リツド俣eの間隔は0.6111、第5グリツド住eと
第6グリツド(In及び第6グリツド住ηと第7グリツ
ド(1Bの間隔は1. Q mrtrで、各グリッドの
電子ビーム通過孔径は中央の通過孔で4.52mである
(但し、第3グリツドの第2グリツドに対向する面の孔
径は除く)。また電子銃先端から、即し第7グリツドα
樽の先端からスクリーン(54)までの距離は342鼎
である。
The detailed specifications of the embodiment are as follows, for example. Third
The length of grid I is 5.0 long, the length of feldspar of the fourth grid is 1.6, the length of the fifth grid is 20.0, and the length of the fifth grid is 20.0.
The length of the grid η is 2.0 ml @, the 7th grid α
The length of seconds is 6.0 heads. Also the third grid (14)
and the distance between the 5th grid (I5 and the 4th grid (19) and the 5th grid (e) is 0.6111, the distance between the 5th grid (e) and the 6th grid (In), and the distance between the 6th grid (η) and the 7th grid (1B) is 1.Q mrtr, and the diameter of the electron beam passage hole in each grid is 4.52 m at the center passage hole (excluding the hole diameter on the surface of the third grid facing the second grid). , immediately the 7th grid α
The distance from the tip of the barrel to the screen (54) is 342 meters.

このとき前述した様に第3グリツドIと第5グリツドα
[9には約8に■の相対的に中位の電位が与えられ、第
4グリツドαQには約700vの相対的に低位の電位が
与えられ、第7グリツドUには約25KVの相対的に高
位の電位が与えられ、第6グリツドaηには第7グリツ
ド(18と第5グリツド囲の間の中高電位である約16
.5KVが与えられている。
At this time, as mentioned above, the third grid I and the fifth grid α
[9 is given a relatively medium potential of about 8 to ■, the fourth grid αQ is given a relatively low potential of about 700 V, and the seventh grid U is given a relative potential of about 25 KV. A high potential is applied to the sixth grid aη, and the seventh grid (approximately 16
.. 5KV is given.

この様な電子銃ではターゲット上のビームスポット径を
非常に小さくすることができる。
With such an electron gun, the beam spot diameter on the target can be made very small.

前記実施例では第3集束電極である第5グリツドと最終
集束電極である第7グリツドの間の第6グリツドとして
1個の′磁極しか配置されていない例を示したが1本発
明はこれに限らず、多数個の電極を配置して第3集束電
極からこれら多数イ固の電極を通して最終電極まで順次
電位が上昇する様に電位を与えてもよい。
In the above embodiment, an example was shown in which only one magnetic pole was disposed as the sixth grid between the fifth grid, which was the third focusing electrode, and the seventh grid, which was the final focusing electrode. However, the present invention is not limited to this, and a plurality of electrodes may be arranged to apply a potential so that the potential increases sequentially from the third focusing electrode through the plurality of electrodes to the final electrode.

また、前記実施例では第1集束電極である第3グリツド
と第3集束電極である第5グ1ノツト°751同電位と
なっているが、本発明はこれに限らず相対的に中位の電
位であれば異なる電位を与えてもよい。
Further, in the above embodiment, the third grid, which is the first focusing electrode, and the fifth grid, which is the third focusing electrode, are at the same potential by 751 degrees, but the present invention is not limited to this, and the present invention is not limited to this. Different potentials may be applied as long as they are potentials.

さらに前記実施例では第2集束電極である第4グリツド
を第2グリツドと同電位に設定しているが、本発明はこ
れに限らず相対的に低位の′電位であれば本発明は適用
できる。即ち米国特許第3995194号に記載されて
いる様なトライポテンシャル形レンズに対しても本発明
は適用できることは言うまでもない。
Further, in the above embodiment, the fourth grid, which is the second focusing electrode, is set to the same potential as the second grid, but the present invention is not limited to this, and the present invention can be applied to any relatively low potential. . That is, it goes without saying that the present invention can also be applied to a tri-potential type lens as described in US Pat. No. 3,995,194.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、主レンズ部カニ陰極部に
近い方から第1集束電極、第2集束゛磁極。
As described above, according to the present invention, the first focusing electrode and the second focusing magnetic pole are arranged in order from the one closest to the crab cathode part of the main lens part.

第3集束電極の順に配列された少なくとも5個の電極よ
り成夛、第1集束電極には相対的に中位の電位を、第2
集束電極には相対的に低位の電位を、第3集束電極には
相対的に中位の電位を与え、最終集束電極には相対的に
高位の電位を与え、第3集束′磁極と最終集束電極の間
にある少なくとも1個の集束電極には第3・集束電極電
位と最終集束電極電位の間の中高電位を与えることによ
って、極めて性能の良い陰極線管電子針を提供すること
ができ、所定のターゲット上のビームスポット径を小さ
くすることができ、高性能の陰極線管用電子銃を提供す
ることができる。
at least five electrodes arranged in the order of a third focusing electrode, a relatively intermediate potential is applied to the first focusing electrode, and a relatively medium potential is applied to the second focusing electrode.
A relatively low potential is applied to the focusing electrode, a relatively medium potential is applied to the third focusing electrode, a relatively high potential is applied to the final focusing electrode, and the third focusing electrode and the final focusing electrode are connected to each other. By applying a medium-high potential between the third and final focusing electrode potential to at least one focusing electrode between the electrodes, it is possible to provide a cathode ray tube electron needle with extremely good performance. The beam spot diameter on the target can be reduced, and a high-performance electron gun for cathode ray tubes can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明を適用した陰極線管用電子銃
の構成を示す断面図、第3図及び第4図は第1図に示す
電子銃の集束機構を説明するだめの概略図、第5図は第
3グリツド電位Hc3とエミツタンスεの関係を示す特
性図、第6図(al、第6図(b)、第6図(C)及び
第7図(a)、第7図(b)はそれぞれ主レンズ部の形
態と対応する軸上電位分布を示す概略図、第8図fa)
は第3グリツドと第4グリツドの間隔Gとフォーカス電
圧Vfの関係を示す特性図、第8図(b)は第3グリヅ
ドの長さGslとフォーカス電圧Vfの関係を示す特性
図、第9図(alは第5グリツドと第6グリツドの間隔
Gとフォーカス電圧Vfの関係を示す特性図、第9図(
b)は第4グリツドの長さG、/とフォーカス電圧Vf
の関係を示す特性図である。 (1)・・電子銃 (2)・・・絶縁支持体 ■・・第3グリツド(第1集束電極) a9・・・第4グリツド(第21 ) 10・・・第5グリツド(第3 t )Qn・・第6グ
リツド(第4 #1 )a8・・・第7グリツド(第5
 〃 )代理人 弁理土用 近 憲 佑 (ほか1名)
ほ − ミ ミ −4 第 6 図 (C) 第7図 (1)
1 and 2 are cross-sectional views showing the configuration of an electron gun for a cathode ray tube to which the present invention is applied; FIGS. 3 and 4 are schematic views for explaining the focusing mechanism of the electron gun shown in FIG. 1; FIG. 5 is a characteristic diagram showing the relationship between third grid potential Hc3 and emittance ε, FIG. 6 (al), FIG. 6(b), FIG. 6(C), FIG. b) is a schematic diagram showing the form of the main lens portion and the corresponding axial potential distribution, and Fig. 8 fa)
is a characteristic diagram showing the relationship between the distance G between the third and fourth grids and the focus voltage Vf, FIG. 8(b) is a characteristic diagram showing the relationship between the length Gsl of the third grid and the focus voltage Vf, and FIG. (al is a characteristic diagram showing the relationship between the distance G between the fifth and sixth grids and the focus voltage Vf, FIG.
b) is the length G of the fourth grid, / and the focus voltage Vf
FIG. (1) Electron gun (2) Insulating support ■ Third grid (first focusing electrode) a9... Fourth grid (21st) 10... Fifth grid (third t) ) Qn... 6th grid (4th #1) a8... 7th grid (5th
〃 ) Agent: Kensuke Chika (1 other person)
Ho- Mimi-4 Figure 6 (C) Figure 7 (1)

Claims (1)

【特許請求の範囲】 少なくとも陰極を含む電子ビーム発生部とこの電子ビー
ムを所定のスクリーン上に集束させる主レンズ部よ構成
る陰極線管用電子銃において、前記主レンズ部を構成す
る電極が前記電子ビーム発生部に近い方から第1集束電
極、第2集束電極。 第3集束電極の順に配列された少なくとも5個の電極よ
り成シ、それぞれ前記電子ビーム径路に整合した開孔を
有し、前記第1集束電極には相対的に中位の電位が、前
記第2集束電極には相対的に低位の電位が、前記第3集
束電極には相対的に中位の電位が与えられ、最終集束電
極には相対的に高位の電位が与えられ、前記第3集束電
極と前記最終集束電極の間にある少なくとも1個以上の
集束電極には前記第3集束電極電位と前記最終集束電極
電位の間の電位が与えられていることを特徴とする陰極
線管用電子銃。
[Scope of Claims] A cathode ray tube electron gun comprising an electron beam generating section including at least a cathode and a main lens section for focusing the electron beam on a predetermined screen, wherein the electrode constituting the main lens section is connected to the electron beam generating section. A first focusing electrode and a second focusing electrode from the side closest to the generating part. a third focusing electrode, each having an aperture aligned with the electron beam path, the first focusing electrode having a relatively intermediate potential; The two focusing electrodes are provided with a relatively low potential, the third focusing electrode is provided with a relatively medium potential, the final focusing electrode is provided with a relatively high potential, and the third focusing electrode is provided with a relatively high potential. An electron gun for a cathode ray tube, characterized in that at least one focusing electrode between the electrode and the final focusing electrode is applied with a potential between the third focusing electrode potential and the final focusing electrode potential.
JP14654083A 1983-08-12 1983-08-12 Electron gun for cathode-ray tube Granted JPS6039741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14654083A JPS6039741A (en) 1983-08-12 1983-08-12 Electron gun for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14654083A JPS6039741A (en) 1983-08-12 1983-08-12 Electron gun for cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS6039741A true JPS6039741A (en) 1985-03-01
JPH0564410B2 JPH0564410B2 (en) 1993-09-14

Family

ID=15409957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14654083A Granted JPS6039741A (en) 1983-08-12 1983-08-12 Electron gun for cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS6039741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063945A1 (en) * 1999-04-15 2000-10-26 Mitsubishi Denki Kabushiki Kaisha Crt electron gun

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177061A (en) * 1974-11-29 1976-07-03 Rca Corp Denshiju
JPS5489472A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron gun for cathode-ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177061A (en) * 1974-11-29 1976-07-03 Rca Corp Denshiju
JPS5489472A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron gun for cathode-ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063945A1 (en) * 1999-04-15 2000-10-26 Mitsubishi Denki Kabushiki Kaisha Crt electron gun
US6664725B2 (en) 1999-04-15 2003-12-16 Mitsubishi Denki Kabushiki Kaisha CRT electron gun with a plurality of electrodes

Also Published As

Publication number Publication date
JPH0564410B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
KR910009989B1 (en) The color picture tube device
US3678320A (en) Cathode ray tube having triangular gun array and curvilinear spacing between the fourth and fifth grids
JPS6039741A (en) Electron gun for cathode-ray tube
KR19980020321A (en) Electron gun for colored cathode ray tube
US4368405A (en) Electron gun for a cathode ray tube
US5744917A (en) Electron gun assembly for a color cathode ray tube apparatus
US4399388A (en) Picture tube with an electron gun having non-circular aperture
JP3672390B2 (en) Electron gun for color cathode ray tube
US6456018B1 (en) Electron gun for color cathode ray tube
US6841924B1 (en) Low-voltage high-resolution einzel gun
JP2878731B2 (en) Color picture tube equipment
JPH09320483A (en) Electron gun for cathode-ray tube
US3927341A (en) Cathode ray tube gun having nested electrode assembly
JPH0118536B2 (en)
JPS63198241A (en) Color cathode tube
KR100777716B1 (en) Screen electrode of electron gun for CRT and electron gun therewith
JPS60136133A (en) Electron gun for cathode-ray tube
KR200147960Y1 (en) Electron gun for color picture tube
KR100228161B1 (en) Electron gun for color cathode ray tube
JPH09134680A (en) Color picture tube device
JP2001307655A (en) Color cathode-ray tube device
JP2825264B2 (en) Color picture tube equipment
JP2960498B2 (en) Color picture tube equipment
KR20040076117A (en) Electron gun for Color Cathode Ray Tube
KR20000066308A (en) Electron gun of color picture tube