JPH0118536B2 - - Google Patents

Info

Publication number
JPH0118536B2
JPH0118536B2 JP13948077A JP13948077A JPH0118536B2 JP H0118536 B2 JPH0118536 B2 JP H0118536B2 JP 13948077 A JP13948077 A JP 13948077A JP 13948077 A JP13948077 A JP 13948077A JP H0118536 B2 JPH0118536 B2 JP H0118536B2
Authority
JP
Japan
Prior art keywords
electrode
focusing
focusing electrode
electron gun
main lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13948077A
Other languages
Japanese (ja)
Other versions
JPS5472667A (en
Inventor
Shigeo Takenaka
Eizaburo Hamano
Shinpei Koshigoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13948077A priority Critical patent/JPS5472667A/en
Priority to DE19782850656 priority patent/DE2850656C2/en
Priority to ES475304A priority patent/ES475304A1/en
Publication of JPS5472667A publication Critical patent/JPS5472667A/en
Priority to US06191016 priority patent/US4368405B1/en
Publication of JPH0118536B2 publication Critical patent/JPH0118536B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は陰極線管用電子銃に係り、特にインラ
イン形3電子銃方式シヤドウマスク形カラー受像
管に用いて好適な電子銃の電子ビーム集束用主レ
ンズ系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron gun for a cathode ray tube, and more particularly to a main lens system for focusing an electron beam of an electron gun suitable for use in an in-line three-electron gun type shadow mask type color picture tube.

周知の如く陰極線管(図示せず)の電子銃は一
般の2つの基本的部分、即ち物点形成部を含む電
子ビーム源と、陰極線管の螢光面に電子ビームを
集束させる電子ビーム集束用主レンズ系よりなり
通例前者を3極部、後者を集束レンズ(主レン
ズ)系と称している。現在市販されている陰極線
管用電子銃の集束レンズ(主レンズ)系の多くは
静電集束形で別々の導電性管状素子(電極)を同
軸に配置し、所望の集束電界を得るよう所定のパ
ターンの電圧が加えられている。
As is well known, the electron gun of a cathode ray tube (not shown) generally has two basic parts: an electron beam source including an object point former, and an electron beam focusing device that focuses the electron beam on the fluorescent surface of the cathode ray tube. It consists of a main lens system, and the former is usually called a triode part and the latter a focusing lens (main lens) system. Most of the focusing lens (main lens) systems of electron guns for cathode ray tubes currently on the market are of the electrostatic focusing type, in which separate conductive tubular elements (electrodes) are arranged coaxially, and a predetermined pattern is formed to obtain the desired focused electric field. voltage is applied.

電子銃の形態としては一般にはバイポテンシヤ
ル(双電位)形、ユニポテンシヤル(単電位)形
があり、さらに米国特許3995194号明細書に記載
されたトライポテンシヤル形がある。
Generally, electron guns are of bipotential type, unipotential type, and tripotential type as described in US Pat. No. 3,995,194.

次にこれら3つの電子銃の各主レンズ(集束レ
ンズ)系の電極配置及び軸上電位分布を第1図に
よつて説明する。即ち第1図aに示すバイポテン
シヤル形は2つの集束電極1,2を有する主レン
ズ系であつて陰極に近い方の電極1が相対的に低
電位、陰極線管の螢光面に近い方の電極2が相対
的に高電位であり、この2つの電極間の電位は曲
線3に示す様に単調に増加するような分布となり
この電位分布によつて主レンズ系が形成されてい
る。この種のバイポテンシヤル形電子銃の主レン
ズ系の軸上電位分布は、その最初の導関数が符号
を変えないので“単調”と云われる。しかしこの
様な構造を有するバイポテンシヤル形主レンズ系
のある種のものは球面収差特性が悪く、この様な
電子銃を内装した陰極線管のネツク部のような相
当小さな空間では、集束ビームスポツトを特に高
い電流ビームレベルにおいて充分に小さくするこ
とは不可能であり、従つて解像度を良くすること
はできない。
Next, the electrode arrangement and axial potential distribution of each main lens (focusing lens) system of these three electron guns will be explained with reference to FIG. That is, the bipotential type shown in FIG. Electrode 2 has a relatively high potential, and the potential between these two electrodes has a monotonically increasing distribution as shown by curve 3, and this potential distribution forms the main lens system. The axial potential distribution of the main lens system of this type of bipotential electron gun is said to be "monotonic" because its first derivative does not change sign. However, some types of bipotential main lens systems with such a structure have poor spherical aberration characteristics, and in a fairly small space such as the neck of a cathode ray tube containing such an electron gun, it is difficult to achieve a focused beam spot. It is not possible to make it sufficiently small, especially at high current beam levels, and therefore resolution cannot be improved.

次に第1図bに示すユニポテンシヤル形(単電
位形)の主レンズ系は3個の集束電極4,5,6
より構成され、その軸上電位分布は曲線7に示す
ようにほゞ鞍状をなし、主レンズ系の始端と終端
がほゞ同電位になつている。
Next, the main lens system of the unipotential type (single potential type) shown in Fig. 1b has three focusing electrodes 4, 5, 6.
The axial potential distribution is approximately saddle-shaped as shown by curve 7, and the starting and ending ends of the main lens system are at approximately the same potential.

しかしこの様な構造を有する単電位形主レンズ
系は集束ビームスポツトを小さくすることは出来
るがこの電子銃を内装した陰極線管の管内放電を
起しやすいという欠点がある。
However, although the monopotential main lens system having such a structure can reduce the size of the focused beam spot, it has the disadvantage that it is susceptible to internal discharge in the cathode ray tube incorporating the electron gun.

最後に第1図cに示したトライポテンシヤル形
の主レンズ系は、少なくとも3つの集束電極、望
ましくは4つの集束電極8,9,10,11より
なり、その軸上電位分布は曲線12に示すように
相対的に中間の電位から単調に相対的に低い電位
に変化し、さらに相対的に高い電位に単調に連続
に変化している。
Finally, the tripotential main lens system shown in FIG. The potential monotonically changes from a relatively intermediate potential to a relatively low potential, and then monotonically and continuously changes to a relatively high potential.

この様なレンズ系を有する電子銃は前述した2
種の電子銃と異なり集中ビームスポツトも良好で
あるが相対的に中間の電位が必要であるなどのた
め別電源を必要とし、更に電子銃の長さが長くな
り、また3極部の組立に必要以上の精度が要求さ
れるなどの欠点がある。
An electron gun with such a lens system is the above-mentioned 2
Unlike other types of electron guns, it has a good concentrated beam spot, but it requires a relatively intermediate potential, so it requires a separate power supply, the length of the electron gun is longer, and it is difficult to assemble the triode part. It has drawbacks such as requiring more precision than necessary.

次に電子銃に要求される特性について考えてみ
ると電子銃の性能は第一次的に電子銃の集束レン
ズ(主レンズ)系によつて、陰極線管の螢光面上
に集束した電子ビーム径で表わされ、この集束し
た電子ビーム径が小さければ小さい程、主レンズ
系の性能が良く、フオーカス品位が良好と云われ
る。
Next, considering the characteristics required of an electron gun, the performance of an electron gun is primarily determined by the focusing lens (main lens) system of the electron gun, which focuses the electron beam onto the fluorescent surface of the cathode ray tube. It is said that the smaller the diameter of the focused electron beam, the better the performance of the main lens system and the better the focus quality.

電子光学的な説明を行うと以下の如くなる。即
ち一般に電子銃の集束レンズにより集束された電
子ビーム径(DT)は電子光学的倍率に依存した
電子ビーム径(DX)と、球面収差による電子ビ
ーム径の拡がり(DSA)、及び電子相互反撥効果
による電子ビーム径の拡がり成分(DSC)よりな
り下式で表わされる。
An electro-optical explanation is as follows. That is, in general, the electron beam diameter (D T ) focused by the focusing lens of an electron gun is determined by the electron beam diameter ( D It consists of the broadening component (D SC ) of the electron beam diameter due to the mutual repulsion effect, and is expressed by the following formula.

DT=√(XSA22 SC ここでDX=M・dX DSA=1/2MCSαO 3 すなわちDXは電子光学的倍率(M)と仮想物
点の大きさ(dXの積であり、DSAは、球面収差係
数(CS)と倍率(M)と電子ビームの発散角
(αO)の3乗に比例する。従つて望ましい電子銃
の主レンズ系(集束レンズ)は倍率(M)、主レ
ンズ系より見た仮想物点の大きさ(dX)、球面収
差係数(CS)及び電子ビームの主レンズ系(集束
レンズ)より見た電子ビームの発散角(αO)がそ
れぞれ小さい事が望ましい。
D T = √ ( X + SA ) 2 + 2 SC where D X = M d ( It is the product of d (Focusing lens) is the magnification (M), the size of the virtual object point seen from the main lens system ( d It is desirable that the divergence angle (α O ) of each is small.

しかし陰極線管の一種であるカラー受像管の幾
何学的寸法、特に電子銃の主レンズの幾何学的中
心から螢光面までの距離(近似的像点距離)が一
定の場合、電子光学的倍率に依存した電子ビーム
径(DX)と球面収差による電子ビーム径の拡が
り(DSA)及び(DSA)と電子相互反撥効果によ
る電子ビーム径の拡がり(DSC)とは互いに相反
関係にあり、最小電子ビーム径を得る最適解が前
記ユニポテンシヤル形、バイポテンシヤル形各々
についてはそれぞれ第2図a及びbに示す如く求
められる。さらに詳述すれば、電子銃の3極部
(物点形成領域)と主レンズ(集束レンズ)系の
組合せが最適でないと、例えば画面中央部の解像
度、面周辺部と中央部の均一性、高い電流時のブ
ルーミング(変調非集束)等のそれぞれの特性の
バランスが悪くなる。
However, when the geometric dimensions of a color picture tube, which is a type of cathode ray tube, are constant, especially when the distance from the geometric center of the main lens of the electron gun to the phosphor surface (approximate image point distance) is constant, the electron optical magnification The electron beam diameter ( D , the optimum solution for obtaining the minimum electron beam diameter is obtained for each of the unipotential type and bipotential type as shown in FIGS. 2a and 2b, respectively. More specifically, if the combination of the electron gun's triode (object point forming area) and main lens (focusing lens) system is not optimal, for example, the resolution at the center of the screen, the uniformity between the periphery and the center of the screen, The balance of each characteristic such as blooming (modulation defocusing) at high current becomes worse.

従つて3極部すなわち第1電極、第2電極、第
3電極の各々の電極距離の選択は充分に注意を払
う必要があり、前記3極部(物点形成領域)の設
計により電子ビームの発散角及び仮想物点位置が
決定され、従つて3極部と主レンズ系の設計は総
合的に検討する必要があり、特に主レンズ系の陰
極側に最も近い電極(第1図の1,4,8)の印
加電圧及び3極部との電極距離によりプリフオー
カス特性が定まり従つてこれらにより電子ビーム
の発散角及び仮想物点位置が決定されることにな
る。
Therefore, it is necessary to pay sufficient attention to the selection of the electrode distances for each of the three poles, that is, the first, second, and third electrodes. The divergence angle and virtual object point position are determined, and therefore the design of the triode and main lens system must be comprehensively considered, especially the electrode closest to the cathode side of the main lens system (1, The prefocus characteristics are determined by the applied voltage and the electrode distance from the triode portion (4, 8), and therefore the divergence angle of the electron beam and the virtual object point position are determined by these.

3電子銃方式シヤドーマスク形カラー受像管を
用いたカラー受像機を例にとると、一般には前記
バイポテンシヤル形電子銃が用いられ、陰極は概
略100〜150V、第1電極はほゞ接地電圧、第2電
極はほゞ400V〜800V、第3電極(第1集束電
極)は数KV(4.4KV〜5.0KV)、第4電極(第2
集束電極)は螢光面と同電位で20KV〜30KV印
加されている。
Taking as an example a color receiver using a three-electron gun type shadow mask type color picture tube, the aforementioned bipotential type electron gun is generally used, the cathode is approximately 100 to 150V, the first electrode is approximately ground voltage, and the second electrode is approximately 100 to 150V. The second electrode is approximately 400V to 800V, the third electrode (first focusing electrode) is several KV (4.4KV to 5.0KV), and the fourth electrode (second focusing electrode) is approximately 400V to 800V.
20KV to 30KV is applied to the focusing electrode) at the same potential as the fluorescent surface.

従つて第3電極(第1集束電極)長は主レンズ
径の直径を基準にするとほゞ3.5程度であり、主
レンズ系より見た電子ビームの発散角は概略4゜〜
5.5゜程度であり比較的大きく、さらに第3電極
(第1集束電極)はたかだか数KV(4.4〜50KV)
にため3極部に形成される所謂クロスオーバー位
置が第1電極又は陰極に印加されるビデオ信号に
対して変動し、特に高い電流時にブルーミング
(変調非集束)を起しやすい傾向がある。一方電
子光学的倍率はユニポテンシヤル形電子銃に比較
して小さいため所謂低輝度(低い電流時)の解像
度は相対的に良好であるが発散角が大きいためフ
オーカスの均一性が悪く、前述したブルーミング
特性が悪くなる欠点を有している。
Therefore, the length of the third electrode (first focusing electrode) is approximately 3.5 degrees based on the diameter of the main lens, and the divergence angle of the electron beam as seen from the main lens system is approximately 4 degrees to
It is approximately 5.5°, which is relatively large, and the third electrode (first focusing electrode) has a power of several KV at most (4.4 to 50 KV).
Therefore, the so-called crossover position formed in the triode section varies with respect to the video signal applied to the first electrode or cathode, and tends to cause blooming (modulation defocusing), especially at high currents. On the other hand, the electro-optical magnification is smaller than that of a unipotential electron gun, so the so-called low brightness (at low current) resolution is relatively good, but the large divergence angle results in poor focus uniformity and the aforementioned blooming. It has the disadvantage of poor characteristics.

ユニポテンシヤル形電子銃の場合、3極部はバ
イポテンシヤル形とほゞ同じであるが、第3電極
(第1集束電極)、第5電極(第3集束電極)に高
圧(螢光面電位)が印加され、第4電極(第2集
束電極)には実質的に零ボルト又は数KV印加さ
れているので結果として発散角は概略2゜と小さい
が、その反面電子光学的倍率がバイポテンシヤル
形主レンズよりやゝ大きく、低輝度時の解像度が
やゝ劣るが、均一性、ブルーミング特性等は相対
的に良好となる。
In the case of a unipotential type electron gun, the three-pole part is almost the same as the bipotential type, but a high voltage (fluorescent surface potential) is applied to the third electrode (first focusing electrode) and fifth electrode (third focusing electrode). is applied, and substantially zero volts or several KV is applied to the fourth electrode (second focusing electrode), so the divergence angle is as small as approximately 2 degrees, but on the other hand, the electro-optical magnification is bipotential. Although it is slightly larger than the main lens and its resolution at low brightness is slightly inferior, its uniformity, blooming characteristics, etc. are relatively good.

ユニポテンシヤル形の場合、3極部の第2電極
と第3電極(第1集束電極)間、第3電極(第1
集束電極)、第4電極(第2集束電極)間等に高
電圧が印加されるため前記電極間の耐電圧特性が
悪く、放電によりカラー受像機のビデオ回路を損
傷させたり、電子銃の陰極自体を破壊させたりす
るため最近はあまり使用されていない。
In the case of the unipotential type, between the second electrode and the third electrode (first focusing electrode) of the triode part, the third electrode (first focusing electrode)
Since a high voltage is applied between the focusing electrode (focusing electrode) and the fourth electrode (second focusing electrode), the withstand voltage characteristics between the electrodes are poor, and the discharge may damage the video circuit of the color receiver, and the cathode of the electron gun. It is not used much these days because it can destroy itself.

トライポテンシヤル形集束レンズは集束レンズ
の球面収差が電子計算機による解析の結果米国特
許3995194号明細書に記載されているように下記
の量の線積分に大きく依存することが判り、V0
が小さい領域或は電子ビーム径が大きい領域で
V0″を出来る限り小さく保持すれば必要な集束力
が得られ、生じた球面収差を抑制することが発見
された。
As a result of computer analysis, it was found that the spherical aberration of the tripotential type focusing lens largely depends on the line integral of the following quantity, as described in U.S. Pat. No. 3,995,194, and V 0
In the region where the electron beam diameter is small or the electron beam diameter is large.
It has been discovered that keeping V 0 ″ as small as possible provides the necessary focusing power and suppresses the resulting spherical aberration.

〔(V0″)2/(V03/2〕r3 ここでV0はレンズ系の軸方向電位分布、rは
ビーム内の電子の半径方向座標である。すなわ
ち、第1図cに示した如く、第3電極(第1集束
電極)8、第4電極(第2集束電極)9、第5電
極(第3集束電極)10、第6電極(第4集束電
極)11の4つの電極より集束レンズが構造さ
れ、第3、第5電極(第1、第3集束電極)には
相対的に中間の電位(10〜12KV)が、第4電極
(第2集束電極)には相対的に低い(5〜7KV)
電位が、第6電極(第4集束電極)には螢光面電
位が印加され、、その軸上電位分布は相対的に中
間の電位から滑らかにかつ単調に相対的に低い電
位に変化し、さらに滑らかにかつ単調に相対的に
高電位に変化し、かつ前記軸上電位分布が1つの
延長形レンズとして作用するような電極構成及び
電圧でなければならない。
[(V 0 ″) 2 / (V 0 ) 3/2 ] r 3 where V 0 is the axial potential distribution of the lens system and r is the radial coordinate of the electrons in the beam. That is, Fig. 1c As shown in FIG. A focusing lens is constructed from two electrodes, and a relatively intermediate potential (10 to 12 KV) is applied to the third and fifth electrodes (first and third focusing electrodes), and a relatively intermediate potential (10 to 12 KV) is applied to the fourth electrode (second focusing electrode). Relatively low (5~7KV)
A fluorescent surface potential is applied to the sixth electrode (fourth focusing electrode), and the axial potential distribution changes smoothly and monotonically from a relatively intermediate potential to a relatively low potential, Furthermore, the electrode configuration and voltage must be such that the voltage changes smoothly and monotonically to a relatively high potential, and the axial potential distribution acts as an extended lens.

このため主レンズ系の直径で規格化された各集
束電極長は第4電極(第2集束電極)9が0.5〜
2.2、第5電極(第3集束電極)10が0.75以下、
第3電極(第1集束電極)8はカラー受像管の幾
何学的寸法、及び印加電圧より一義的に決定され
る。トライポテンシヤル形電子銃の特徴は従来一
般のバイポテンシヤル形電子銃より相対的に高い
2種の集束電位(6〜7KV及び10〜12KV)を印
加することにより電子光学的倍率を稼ぎ、必然的
に生じる球面収差の増大は前述した如く延長形単
一レンズにすることにより極力抑えた設計となつ
ているため、低輝度の解像度(収差は無視出来る
程度の比較的低電流領域)は格段と改良される。
Therefore, the length of each focusing electrode normalized by the diameter of the main lens system is 0.5 to
2.2, the fifth electrode (third focusing electrode) 10 is 0.75 or less,
The third electrode (first focusing electrode) 8 is uniquely determined by the geometric dimensions of the color picture tube and the applied voltage. The feature of the tripotential electron gun is that it gains electron-optical magnification by applying two types of focusing potentials (6 to 7 KV and 10 to 12 KV) that are relatively higher than conventional bipotential electron guns. As mentioned above, the design minimizes the increase in spherical aberration by using an extended single lens, so low-luminance resolution (relatively low current range where aberrations are negligible) is significantly improved. Ru.

また第3電極(第1集束電極)8に10〜12KV
と比較的高い電圧が印加されているためブルーミ
ング特性も良好である。
Also, the third electrode (first focusing electrode) 8 has a voltage of 10 to 12 KV.
Since a relatively high voltage is applied, the blooming characteristics are also good.

反面、主レンズ系の電極長が長くなり、第3電
極(第1集束電極)8に比較的高い電圧を印加し
ている割には主レンズ系より見た電子ビームの発
散角はあまり小さくならないため電子ビームの集
束角が大きくなり、結果として画面中央部のフオ
ーカスは非常に良好であるが、最近主流となつた
自己集中方式カラー受像管装置の如く、非常に非
斉一な磁場空間で偏向させた場合、偏向収差を受
けやすく、結果としてフオーカスの均一性が悪
く、さらに前記球面差が前記偏向収差を受けて非
点収差を発生するために、前記均一性をさらに悪
化させているのが実状である。本発明の陰極線管
用電子銃は上記欠点に鑑みなされたものであり、
電子計算機による電子光学的解析の基礎に、新し
い主レンズ系を提供するもので、特に自己集中形
方式カラー受像管装置の如く偏向ヨーク磁界の非
斉一度が極めて高い陰極線管装置用電子銃の主レ
ンズ系として最適である。
On the other hand, although the electrode length of the main lens system becomes longer and a relatively high voltage is applied to the third electrode (first focusing electrode) 8, the divergence angle of the electron beam as seen from the main lens system does not become very small. Therefore, the convergence angle of the electron beam becomes large, and as a result, the focus at the center of the screen is very good. In this case, the lens is susceptible to deflection aberration, resulting in poor focus uniformity, and the fact is that the spherical surface difference is affected by the deflection aberration and generates astigmatism, which further deteriorates the uniformity. It is. The cathode ray tube electron gun of the present invention has been developed in view of the above drawbacks,
This system provides a new main lens system as the basis for electro-optical analysis using electronic computers, and is particularly suitable for use in electron guns for cathode ray tube devices, such as self-concentrating color picture tube devices, where the deflection yoke magnetic field has an extremely high degree of asymmetry. It is ideal as a lens system.

以下図面に沿つて具体的一実施例に関して詳述
する。第3図は本発明の電子銃に適応する主レン
ズ(集束レンズ)系を備えた電子銃の構造であ
る。図に於て21は陰極、22は第1電極、23
は第2電極で、この3つの電極により所謂3極部
を形成しており、主レンズ系は第3電極(第1集
束電極)24、第4電極(第2集束電極)25、
第5電極(第3集束電極)26、第6電極(第4
集束電極)27の4つの電極により形成されてい
る。陰極21には通常100〜150Vの直流電圧及び
ビデオ信号が印加され、電1電極22は概略接地
電位が、第2電極23には400V〜1000V程度の
電位が印加され、さらに第3電極(第1集束電
極)24と第5電極(第3集束電極)26は陰極
線管の内部又は外部にて同電位に保たれ、概略
4.4KV〜10KVが印加され澎望フオーカス電極を
構成している。第4電極(第2集束電極)25は
管の内部又は外部の電源により前記第3電極(第
1集束電極)24及び第5電極(第3集束電極)
26より低い電位に保たれ、さらに第6電極(第
4集束電極)27には螢光面電位と同一の高電圧
(概略20KV〜30KV)が印加されている。このよ
うな電極構成に於て、かつ主レンズ系の直径で規
格化された各電極長は望ましい実施例の1つとし
て、下記に記した如く第4電極(第2集束電極)
25の長さは概略0.2〜0.5と他の第3電極24、
第5電極26に比較して非常に薄く設計されてい
る。
A specific embodiment will be described in detail below with reference to the drawings. FIG. 3 shows the structure of an electron gun equipped with a main lens (focusing lens) system adapted to the electron gun of the present invention. In the figure, 21 is a cathode, 22 is a first electrode, 23
is a second electrode, and these three electrodes form a so-called triode part, and the main lens system includes a third electrode (first focusing electrode) 24, a fourth electrode (second focusing electrode) 25,
Fifth electrode (third focusing electrode) 26, sixth electrode (fourth focusing electrode)
It is formed by four electrodes (focusing electrode) 27. A DC voltage of 100 to 150 V and a video signal are usually applied to the cathode 21, a roughly ground potential is applied to the first electrode 22, a potential of about 400 to 1000 V is applied to the second electrode 23, and a third electrode The first focusing electrode) 24 and the fifth electrode (third focusing electrode) 26 are kept at the same potential inside or outside the cathode ray tube, and approximately
A voltage of 4.4KV to 10KV is applied and constitutes a desired focus electrode. The fourth electrode (second focusing electrode) 25 is connected to the third electrode (first focusing electrode) 24 and the fifth electrode (third focusing electrode) by a power source inside or outside the tube.
Further, a high voltage (approximately 20 KV to 30 KV), which is the same as the potential of the fluorescent surface, is applied to the sixth electrode (fourth focusing electrode) 27. In such an electrode configuration, each electrode length normalized by the diameter of the main lens system is one of the preferred embodiments, and the fourth electrode (second focusing electrode) is as described below.
The length of 25 is approximately 0.2 to 0.5 and the length of the other third electrode 24,
It is designed to be very thin compared to the fifth electrode 26.

前述した発明の電子銃に適応する主レンズ系の
軸上の電位分布は第4図のように相対的に中間の
電位から単調に相対的に低い電位に僅かに変化
し、さらに相対的に高い電位に単調に変化し、ト
ライポテンシヤル形の軸上の電位分布の如く、滑
らかに延長形単一レンズを構成するのでなく、巨
視的にはバイポテンシヤル形主レンズに近い軸上
電位分布をもつように配置されている。
The potential distribution on the axis of the main lens system adapted to the electron gun of the invention described above changes slightly from a relatively intermediate potential to a relatively low potential monotonically, and then to a relatively high potential, as shown in FIG. The potential changes monotonically, and instead of forming a smooth extended single lens like the axial potential distribution of a tripotential type lens, it has an axial potential distribution that is macroscopically similar to that of a bipotential type main lens. It is located in

云換えると、本発明の最大の特長は前記した如
く、バイポテンシヤル形主レンズ系の第3電極
(第1集束電極)を2分割し、その分割された間
に相対的に非常に薄く、かつ相対的にかなり低い
例えば第2電極とほゞ同じ電圧を印加し、局部的
に補助レンズとしてのユニポテンシヤル形レンズ
を挿入し電子銃の主レンズ系より見た電子ビーム
の発散角を僅かに小さくしている。第5図は、こ
の点を説明するもので、OBは物点、IMは像点を
表わし、角度α1はバイポテンシヤル形の場合、角
度α0は本発明による場合を示すもので、角度α1
4〜5゜、角度α0=3〜4゜とα1>α0と僅かに発散角
αが縮小されていることに特徴がある。さらに詳
述すると前記“僅か”の定義は以下の通りであ
る。
In other words, the greatest feature of the present invention is that, as mentioned above, the third electrode (first focusing electrode) of the bipotential main lens system is divided into two parts, and the space between the divided parts is relatively very thin. Apply a relatively low voltage, for example, approximately the same as the second electrode, and locally insert a unipotential lens as an auxiliary lens to slightly reduce the divergence angle of the electron beam as seen from the main lens system of the electron gun. are doing. Figure 5 explains this point, where OB represents the object point, IM represents the image point, angle α 1 represents the case of the bipotential type, angle α 0 represents the case according to the present invention, and angle α 1 =
It is characterized by a slightly reduced divergence angle α of 4 to 5 degrees, angle α 0 =3 to 4 degrees, and α 10 . To explain in more detail, the definition of "slightly" is as follows.

即ち任意のバイポテンシヤル形電子銃を用いた
陰極線管において、その集束電圧がVf0となるよ
う第3電極(第1集束電極)長を決定したとす
る。このバイポテンシヤル形の第3電極(第1集
束電極)の長さを例えば1.27と一定にし、各電極
間隔g1、g2=0.027とした場合第5図に示す如く、
本発明の電子銃に適応する主レンズ系の長さ
(G1L+G2L+G3L+g1+g2)を前記バイポテンシヤ
ル形の第3電極(第1集束電極)1の長さに等し
くし、さらに本発明の主レンズ系の第3、第4、
第5電極(第1、第2、第3集束電極)24,2
5,26にVf0を印加すれば当然のことながら前
記バイポテンシヤル形と全く等価となる(ここで
G1L、G3L≫g1、g2)次に電極間距離g1、g2を一定
に保ち、G2Lを僅かに変更すると第6図の如く、
第3、第5電極(第1、第3集束電極)24,2
6のフオーカス電圧Vfはある点より急峻に高く
なり最終的には非集束状態となる。
That is, suppose that in a cathode ray tube using an arbitrary bipotential electron gun, the length of the third electrode (first focusing electrode) is determined so that the focusing voltage is Vf 0 . If the length of the third electrode (first focusing electrode) of this bipotential type is constant, for example, 1.27, and the electrode spacing g 1 , g 2 =0.027, as shown in FIG. 5,
The length of the main lens system adapted to the electron gun of the present invention (G 1L +G 2L +G 3L +g 1 +g 2 ) is made equal to the length of the third electrode (first focusing electrode) 1 of the bipotential type, and The third, fourth, and
Fifth electrode (first, second, third focusing electrode) 24, 2
If Vf 0 is applied to 5 and 26, it becomes completely equivalent to the bipotential type mentioned above (here,
G 1L , G 3L ≫g 1 , g 2 ) Next, by keeping the inter-electrode distances g 1 and g 2 constant and changing G 2L slightly, as shown in Figure 6,
Third and fifth electrodes (first and third focusing electrodes) 24, 2
The focus voltage Vf of No. 6 rises sharply from a certain point and eventually becomes unfocused.

本発明において“僅か”にという意味は、前記
フオーカス電圧が同一寸法のバイポテンシヤル形
電子銃に比較してたかだか0.5〜2.5KV程度の変
化しかないことを意味しそのように第4電極(第
2集束電極)25長、電極間距離g1、g2を選択す
る必要がある。云換えると、特公昭29−2216号公
報に記載された如く、“電子流に対して集束作用
を呈し、電子流が該陽極A1中に拡散して該陽極
に捕集されるのを充分防止せしめるよう阻止電極
Sの小孔内に集中せしめる”ような影響が大なる
集束作用をもたせるのではなく僅かに電子ビーム
の発散角を小さくするよう主レンズ系を構成する
必要があり、電極配置から判断すると非常に酷似
しているがその作用効果は全く異なものである。
前述の如く電子銃の主レンズ系を形成することに
より下記に示す利点を有す。
In the present invention, "slightly" means that the focus voltage changes by at most about 0.5 to 2.5 KV compared to a bipotential electron gun of the same size. It is necessary to select the focusing electrode) 25 length and the inter-electrode distances g 1 and g 2 . In other words, as described in Japanese Patent Publication No. 29-2216, it "exhibits a focusing effect on the electron flow and sufficiently prevents the electron flow from diffusing into the anode A1 and being collected by the anode." In order to prevent the electron beam from concentrating in the small hole of the blocking electrode S, it is necessary to configure the main lens system so as to slightly reduce the divergence angle of the electron beam rather than having a large focusing effect. Judging from this, they are very similar, but their effects are completely different.
Forming the main lens system of the electron gun as described above has the following advantages.

第1に、電子ビームの発散角を容易に縮小でき
るため、例えば、球面収差成分1/2・M・CS・α0 3
を本発明の一実施例と従来の一般的電子銃の一例
について比較してみると、従来0.64であつたの
が、本発明によると0.14となり、球面収差を約1/
5に軽減することができる。(球面収差は発散角の
3乗に比例するため) 第2に前記球面収差が大巾に軽減された為、特
に自己集中形カラー受像管装置の如く偏向収差が
大である系での画面周辺部の非点収差が軽減で
き、本発明の一実施例と従来の一般的な電子銃の
一例について、画面周辺部での電子ビームスポツ
ト径を比較してみると、従来、縦の長さが約8.0
mm、横が約7.0mmであつたのが、本発明によると、
縦が5.2mm、横が4.55mmとなり、フオーカスの均
一性を30〜40%向上させることができる。(均一
性及び非点収差は電子ビームの集束角に比例する
ため) 第3に、従来のユニポテンシヤル形電子銃の如
く、電気光学的倍率が大きくならず、むしろバイ
ポテンシヤル形よりさらに小さくなるため、例え
ば、本発明の一実施例と従来の一般的な電子銃の
例について低輝度における解像度を比較してみる
と、この解像度は倍率Mに比例するため、従来の
電子銃の倍率が18.7で、本発明の電子銃の倍率が
14.0であるから、解像度を約25%向上させること
ができる。
First, since the divergence angle of the electron beam can be easily reduced, for example, the spherical aberration component 1/2・M・CS・α 0 3
When comparing an embodiment of the present invention with an example of a conventional general electron gun, it is found that the conventional value of 0.64 becomes 0.14 according to the present invention, which reduces the spherical aberration by approximately 1/1.
It can be reduced to 5. (Because spherical aberration is proportional to the cube of the divergence angle.) Second, because the spherical aberration has been greatly reduced, it can be used especially around the screen in systems with large deflection aberrations, such as self-focusing color picture tube devices. Comparing the diameter of the electron beam spot at the periphery of the screen between an embodiment of the present invention and an example of a conventional general electron gun, it is found that in the past, the vertical length was Approximately 8.0
According to the present invention, the width was approximately 7.0 mm.
The length is 5.2 mm and the width is 4.55 mm, which can improve focus uniformity by 30 to 40%. (Because uniformity and astigmatism are proportional to the convergence angle of the electron beam.) Third, unlike conventional unipotential electron guns, the electro-optical magnification is not large, but rather is even smaller than that of bipotential electron guns. For example, when comparing the resolution at low brightness between an embodiment of the present invention and an example of a conventional general electron gun, it is found that since this resolution is proportional to the magnification M, the magnification of the conventional electron gun is 18.7. , the magnification of the electron gun of the present invention is
14.0, so the resolution can be improved by about 25%.

第4に、従来のバイポテンシヤル形の如く、フ
オーカスの均一性を向上させるために第1〜第2
電極間、第2〜第3電極間距離を拡げ、相対的に
画面中央部における解像度を劣化させるような妥
協設計をする必要がなく、任意に均一性を向上さ
せることができる。
Fourth, like the conventional bipotential type, the first to second
It is not necessary to make a compromise design that increases the distance between the electrodes and between the second and third electrodes and relatively degrades the resolution in the center of the screen, and uniformity can be arbitrarily improved.

第5に、さらに重要なことは従来のバイポテン
シヤル形の如く前記第4項に述べたような改良を
行つた場合、実用的な帰点消去電圧(第2電極電
圧)を得るため、陰極−第1電極間距離を狭める
必要があり、カラー受像管内の導電性不純物によ
る陰極−第1電極の短絡等の問題があるが本発明
ではそういつた心配は全くない。
Fifth, and more importantly, when the improvements described in item 4 above are made as in the conventional bipotential type, the cathode- It is necessary to narrow the distance between the first electrodes, and there are problems such as a short circuit between the cathode and the first electrode due to conductive impurities in the color picture tube, but the present invention eliminates such concerns at all.

第6には、ユニポテンシヤル形の如く、耐電圧
特性の不安がない。
Sixthly, unlike the unipotential type, there is no concern about withstand voltage characteristics.

第7には、トライポテンシヤル形の如く、2種
の比較的高い(5〜7KV及び10〜12KV)フオー
カス電源を必要としない(本発明の場合、第4電
極(第2集束電極)25は管内で第2電極23な
どと内部接続できる)等々非常に幾多の利点を有
す。
Seventh, unlike the tripotential type, it does not require two types of relatively high focus power sources (5-7 KV and 10-12 KV) (in the case of the present invention, the fourth electrode (second focusing electrode) 25 is (can be internally connected to the second electrode 23, etc.).

次に本発明の陰極線管用電子銃の第2の実施例
について第7図及び第8図によつて説明する。図
中前記実施例と同一符号は同一部分を示す。
Next, a second embodiment of the electron gun for a cathode ray tube according to the present invention will be described with reference to FIGS. 7 and 8. In the drawings, the same reference numerals as in the above embodiment indicate the same parts.

図に於て31は陰極、32は第1電極、33は
第2電極で、この3つの電極により所謂3極部を
形成しており主レンズ系は第3電極(第1集束電
極)34第4電極(第2集束電極)35、第5電
極(第3集束電極)36、第6電極(第4集束電
極)37より形成され、前記第3電極34は対設
した浅キヤツプ電極素子341,343間に平板電
極素子342が所定間隔をもつて間挿してあり、
第4電極35は2枚の平板電極素子よりなり、第
5電極36は対設した浅キヤツプ電極素子361
363間に2枚の平板素子362が所定間隔をもつ
て間挿してあり、更に第6電極37は浅キヤツプ
電極素子371,372の対設によつて形成されて
いる。
In the figure, 31 is a cathode, 32 is a first electrode, and 33 is a second electrode, and these three electrodes form a so-called triode part. It is formed of four electrodes (second focusing electrode) 35, a fifth electrode (third focusing electrode) 36, and a sixth electrode (fourth focusing electrode) 37, and the third electrode 34 is formed by an opposing shallow cap electrode element 34 1 , 34 3 , flat plate electrode elements 34 2 are inserted at a predetermined interval,
The fourth electrode 35 consists of two flat plate electrode elements, and the fifth electrode 36 consists of shallow cap electrode elements 36 1 ,
Two flat plate elements 36 2 are inserted between the electrodes 36 3 at a predetermined interval, and a sixth electrode 37 is formed by opposing shallow cap electrode elements 37 1 and 37 2 .

前述の如く、各電極を平板電極素子、浅キヤツ
プ電極素子とすることにより、加工精度の向上、
熱的歪の経時変化の防止、組立ての簡略化などが
計られる。
As mentioned above, by using each electrode as a flat plate electrode element or a shallow cap electrode element, processing accuracy can be improved.
This helps prevent thermal distortion from changing over time and simplifies assembly.

前記構造の電子銃の同一電位印加電極素子、例
えば361,362,363は1本の導線41にて
接続され更にステム42のピン43に接続される
共に前記各電極は絶縁支持棒44により所定間隔
をもつて配設されインライン形ユニタイズガンが
完成されている。
Electrode elements for applying the same potential, such as 36 1 , 36 2 , 36 3 of the electron gun having the above structure, are connected by one conductive wire 41 and further connected to a pin 43 of a stem 42, and each of the electrodes is connected to an insulating support rod 44. The in-line unitizing gun is completed by disposing the guns at predetermined intervals.

前述した構造を有する陰極線管に於ても第1の
実施例に於て第3図乃至第6図によつて説明した
第4電極(第2集束電極)35の長さG2L及びこ
の電極と対設する各電極との間隔(g1),(g2)を
主レンズ系の直径(l)で規格された値を満足するよ
うにすることによつて第6図に示した様な特性を
持たせることが出来るが、この場合中央の電子ビ
ームと両側の電子ビームとでは、その偏向状態に
より主レンズ系の集束状態が異なることがあるの
でこの場合には電子ビーム通孔部の形状または直
径を選択すればよいことは勿論である。
In the cathode ray tube having the above-described structure, the length G 2L of the fourth electrode (second focusing electrode) 35 and this electrode as explained in FIGS. 3 to 6 in the first embodiment are By making the distances (g 1 ) and (g 2 ) between the opposing electrodes satisfy the value specified by the diameter (l) of the main lens system, the characteristics shown in Figure 6 can be achieved. However, in this case, the focusing state of the main lens system may differ depending on the deflection state of the central electron beam and the electron beams on both sides. Of course, it is sufficient to select the diameter.

前記2つの実施例においては第4電極(第2集
束電極)25,35は第2電極23,33と陰極
線管の内部または外部で同電位に保つように説明
したが、これは必ずしも必要条件ではなく、例え
ば第1電極22,32または陰極21,31に保
つてもよくさらには単独に異なる電位を印加して
も良い。
In the above two embodiments, it has been explained that the fourth electrode (second focusing electrode) 25, 35 is kept at the same potential as the second electrode 23, 33 inside or outside the cathode ray tube, but this is not necessarily a necessary condition. For example, the potentials may be maintained at the first electrodes 22, 32 or the cathodes 21, 31, or different potentials may be applied individually.

本発明の電子銃の主レンズ系において巨視的に
はバイポテンシヤル形に近く、僅かに軸上電位分
布に谷をもたせたもので、云換えれば局部的にユ
ニポテンシヤルレンズを構成させたものであるか
ら第4電極(第2集束電極)25,35には第3
電極(第1集束電極)24,34よりも相対的に
低い電圧を印加すればよい。
Macroscopically, the main lens system of the electron gun of the present invention is close to a bipotential type, with a slight valley in the axial potential distribution; in other words, it is locally configured as a unipotential lens. to the fourth electrode (second focusing electrode) 25, 35.
A voltage relatively lower than that applied to the electrodes (first focusing electrodes) 24 and 34 may be applied.

更に他の実施例として第5電極(第3集束電
極)26,36や、第6電極(第4集束電極)2
7,37を分割してそれぞれに所望の電圧を印加
する様にすることにより、全体としてユニポテン
シヤルまたはバイポテンシヤル形電子銃にするこ
とも可能である。
Further, as other embodiments, the fifth electrode (third focusing electrode) 26, 36 and the sixth electrode (fourth focusing electrode) 2
By dividing parts 7 and 37 and applying a desired voltage to each, it is possible to make the whole into a unipotential or bipotential type electron gun.

本発明に於ては例えば第3電極のような加速、
集束用電極も説明の簡略化のため、集束電極なる
表現を行なつている。
In the present invention, for example, acceleration such as the third electrode,
The focusing electrode is also expressed as a focusing electrode to simplify the explanation.

以上述べた如く本発明の陰極線管用電子銃の主
レンズ系は従来のバイポテンシヤル形、ユニポテ
ンシヤル形及びトライポテンシヤル形と全く異な
り、その効果は前述した如くであり、工業的価値
は極めて大である。
As described above, the main lens system of the cathode ray tube electron gun of the present invention is completely different from the conventional bipotential type, unipotential type, and tripotential type, and its effects are as described above, and its industrial value is extremely large. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバイポテンシヤル、ユニポテン
シヤル、及びトライポテンシヤル各電子銃の主レ
ンズ系の簡略構造及び軸上の電位分布を示す説明
図、第2図はバイポテンシヤル及びユニポテンシ
ヤル各電子銃の電子ビーム径の計算用説明図、第
3図は本発明の陰極線管用電子銃の一実施例の構
造を示す簡略断面図、第4図は第3図の主レンズ
系の簡略構造及び軸上の電位分布を示す説明図、
第5図は第4図の主レンズ系の説明図、第6図は
第5図の第1集束電極、第3集束電極のフオーカ
ス電圧と第2集束電極の長さとの関係を示す曲線
図、第7図は本発明の陰極線管用電子銃の他の実
施例の簡略説明図、第8図は第7図の電子銃の組
立斜視図である。 24,34……第3電極(第1集束電極)、2
5,35……第4電極(第2集束電極)、26,
36……第5電極(第3集束電極)、27,37
……第6電極(第4集束電極)。
Figure 1 is an explanatory diagram showing the simplified structure and axial potential distribution of the main lens system of conventional bipotential, unipotential, and tripotential electron guns. An explanatory diagram for calculating the beam diameter, FIG. 3 is a simplified sectional view showing the structure of an embodiment of the electron gun for cathode ray tube of the present invention, and FIG. 4 is a simplified structure of the main lens system of FIG. 3 and the potential on the axis. An explanatory diagram showing the distribution,
FIG. 5 is an explanatory diagram of the main lens system in FIG. 4, and FIG. 6 is a curve diagram showing the relationship between the focus voltage of the first and third focusing electrodes and the length of the second focusing electrode in FIG. FIG. 7 is a simplified explanatory diagram of another embodiment of the electron gun for a cathode ray tube according to the present invention, and FIG. 8 is an assembled perspective view of the electron gun of FIG. 7. 24, 34...Third electrode (first focusing electrode), 2
5, 35...4th electrode (second focusing electrode), 26,
36...Fifth electrode (third focusing electrode), 27, 37
...Sixth electrode (fourth focusing electrode).

Claims (1)

【特許請求の範囲】 1 電子ビーム発生源と、物点形成部を構成する
3極部と、前記電子ビーム発生源より発射された
電子ビームを集束する主レンズ系を有する陰極線
管用電子銃に於て、前記主レンズ系を形成する電
極が前記電子ビーム発生源近傍より少なくとも第
1集束電極、第2集束電極、第3集束電極及び第
4集束電極よりなる同軸電極群を形成し、第1集
束電極及び第3集束電極の電位が約4KV乃至
10KVであり、第2集束電極が前記3極部を形成
するいずれか一個の電極電位とほぼ同じ電位であ
り、第4集束電極の電位が約20KV乃至30KVで
あり、かつ、前記第2集束電極の軸方向の長さを
主レンズ系の直径に対して0.5乃至0.2の範囲と
し、前記第1、第3集束電極より短かくすること
により、軸上電位分布が前記各電位の変化が前記
第2集束電極近傍においてわずかに低く、全体と
して単調に変化するようになされていることを特
徴とする陰極線管用電子銃。 2 第4集束電極が複数電極で構成されている特
許請求の範囲第1項記載の陰極線管用電子銃。
[Scope of Claims] 1. An electron gun for a cathode ray tube having an electron beam generation source, a triode part constituting an object point forming part, and a main lens system that focuses the electron beam emitted from the electron beam generation source. The electrodes forming the main lens system form a coaxial electrode group consisting of at least a first focusing electrode, a second focusing electrode, a third focusing electrode, and a fourth focusing electrode from the vicinity of the electron beam generation source, and The potential of the electrode and the third focusing electrode is about 4KV to
10 KV, the second focusing electrode has approximately the same potential as any one of the electrodes forming the triode, the potential of the fourth focusing electrode is about 20 KV to 30 KV, and the second focusing electrode By setting the axial length of 0.5 to 0.2 with respect to the diameter of the main lens system and making it shorter than the first and third focusing electrodes, the axial potential distribution is changed so that the change in each potential is 2. An electron gun for a cathode ray tube, characterized in that the electron gun is slightly lower near the focusing electrode and changes monotonically as a whole. 2. The cathode ray tube electron gun according to claim 1, wherein the fourth focusing electrode is composed of a plurality of electrodes.
JP13948077A 1977-11-22 1977-11-22 Electron gun for cathode ray tube Granted JPS5472667A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13948077A JPS5472667A (en) 1977-11-22 1977-11-22 Electron gun for cathode ray tube
DE19782850656 DE2850656C2 (en) 1977-11-22 1978-11-22 Electron gun for cathode ray tubes
ES475304A ES475304A1 (en) 1977-11-22 1978-11-22 Electron gun for in-line colour crt
US06191016 US4368405B1 (en) 1977-11-22 1980-09-26 Electron gun for a cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13948077A JPS5472667A (en) 1977-11-22 1977-11-22 Electron gun for cathode ray tube

Publications (2)

Publication Number Publication Date
JPS5472667A JPS5472667A (en) 1979-06-11
JPH0118536B2 true JPH0118536B2 (en) 1989-04-06

Family

ID=15246224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13948077A Granted JPS5472667A (en) 1977-11-22 1977-11-22 Electron gun for cathode ray tube

Country Status (1)

Country Link
JP (1) JPS5472667A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180048A (en) * 1981-04-24 1982-11-05 Matsushita Electronics Corp Multistage focusing electron gun
JPS59123140A (en) * 1982-12-29 1984-07-16 Matsushita Electronics Corp Picture tube device
JPH0347617U (en) * 1989-09-18 1991-05-02
CN1040924C (en) * 1990-09-29 1998-11-25 株式会社金星社 Electron gun for color picture tube

Also Published As

Publication number Publication date
JPS5472667A (en) 1979-06-11

Similar Documents

Publication Publication Date Title
US4528476A (en) Cathode-ray tube having electron gun with three focus lenses
CA1127224A (en) Electron gun for cathode-ray tube
US4124810A (en) Electron gun having a distributed electrostatic lens
US4168452A (en) Tetrode section for a unitized, three-beam electron gun having an extended field main focus lens
US5397959A (en) Twin-convex electron gun
EP0469540A2 (en) Electron gun for cathode-ray tube
JPH0118536B2 (en)
US6614156B2 (en) Cathode-ray tube apparatus
EP0452789A2 (en) Color picture tube having inline electron gun with focus adjustment means
US4409514A (en) Electron gun with improved beam forming region
US4368405A (en) Electron gun for a cathode ray tube
EP0226145B1 (en) Electron gun assembly
US5043625A (en) Spherical aberration-corrected inline electron gun
US6597096B1 (en) Color cathode-ray tube electron gun
KR970006037B1 (en) Cathode ray tube with improved electron gun
US6841924B1 (en) Low-voltage high-resolution einzel gun
JPH0261091B2 (en)
US6646370B2 (en) Cathode-ray tube apparatus
KR830000492B1 (en) Electron gun for cathode ray tube
JP3074179B2 (en) Cathode ray tube
JPH09219156A (en) Electron gun for color cathode-ray tube
KR890003729B1 (en) Electron gun for brown tube
CA1058683A (en) Tetrode section for a unitized three-beam electron gun having an extended field main focus lens
JP2692858B2 (en) Color picture tube equipment
Banbury et al. A new approach to electron‐gun design for high‐performance cathode‐ray tubes