JPH0261091B2 - - Google Patents

Info

Publication number
JPH0261091B2
JPH0261091B2 JP1534978A JP1534978A JPH0261091B2 JP H0261091 B2 JPH0261091 B2 JP H0261091B2 JP 1534978 A JP1534978 A JP 1534978A JP 1534978 A JP1534978 A JP 1534978A JP H0261091 B2 JPH0261091 B2 JP H0261091B2
Authority
JP
Japan
Prior art keywords
focusing electrode
electrode
focusing
potential
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1534978A
Other languages
Japanese (ja)
Other versions
JPS54108569A (en
Inventor
Shigeo Takenaka
Eizaburo Hamano
Shinpei Koshigoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1534978A priority Critical patent/JPS54108569A/en
Publication of JPS54108569A publication Critical patent/JPS54108569A/en
Publication of JPH0261091B2 publication Critical patent/JPH0261091B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は陰極線管用電子銃に係り特にインライ
ン形3電子銃方式シヤドーマスク形カラー受像管
に用いて好適な電子ビーム集束用主レンズ系に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron gun for a cathode ray tube, and more particularly to a main lens system for focusing an electron beam suitable for use in an in-line three-electron gun type shadow mask type color picture tube.

周知の如く陰極線管(図示せず)の電子銃は一
般に2つの基本部分即ち、物点形成部を含む電子
ビーム発生源と陰極線管の螢光面に電子ビームを
集束させる電子ビーム集束用主レンズ系よりな
り、通例前者を3極部、後者を主レンズ系と称し
ている。
As is well known, the electron gun of a cathode ray tube (not shown) generally has two basic parts: an electron beam source including an object point forming part and a main electron beam focusing lens that focuses the electron beam on the fluorescent surface of the cathode ray tube. The former is usually called the triode part and the latter the main lens system.

一般に前記主レンズ系の多くは静電集束形で、
別々の導電性管状素子(電極)を同軸に配置し、
所望の集束電界を得るよう所定のパターンの電圧
が印加されている。
Generally, most of the main lens systems mentioned above are of the electrostatic focusing type,
Separate conductive tubular elements (electrodes) are arranged coaxially,
A predetermined pattern of voltages is applied to obtain a desired focused electric field.

電子銃の形態としては一般にはバイポテンシヤ
ル形(双電位)、ユニポテンシヤル形(単電位)、
さらに米国特許第3995194号明細書に記されてい
るトライポテンシヤル形がある。
Generally, the types of electron guns are bipotential type (double potential), unipotential type (single potential),
There is also a tripotential type described in US Pat. No. 3,995,194.

次にこれら3つの電子銃の各主レンズ系の電極
配置及び軸上電位分布を第1図a,b,cによつ
て説明する。
Next, the electrode arrangement and axial potential distribution of each main lens system of these three electron guns will be explained with reference to FIGS. 1a, b, and c.

即ち第1図aに示すバイポテンシヤル形は2つ
の集束電極1,2を有するレンズ系であつて、陰
極に近い方の電極1が相対的に低電位であり、陰
極線管の螢光面に近い方の電極2が相対的に高電
位であり、この2つの電極1,2間の軸上電位分
布は曲線3に示すように単調に増加するレンズ系
である。この種のバイポテンシヤル形レンズの軸
上電位分布はその1次導関数が符号を変えないの
で“単調”と云われている。
That is, the bipotential type shown in FIG. The lens system is such that one electrode 2 has a relatively high potential, and the axial potential distribution between these two electrodes 1 and 2 increases monotonically as shown by a curve 3. The axial potential distribution of this type of bipotential lens is said to be "monotonic" because its first derivative does not change sign.

しかし、ある種のバイポテンシヤル形レンズは
球面収差特性が悪く、この様な電子銃を内装した
陰極線管のネツク部のような相当小さな空間で
は、集束ビームスポツトを充分に小さくして、特
に高電流ビームレベルにおいて、解像度を良くす
ることはできない。
However, some types of bipotential lenses have poor spherical aberration characteristics, and in a fairly small space such as the neck of a cathode ray tube containing an electron gun, it is necessary to make the focused beam spot sufficiently small, especially for high currents. Resolution cannot be improved at beam level.

次に第1図bに示すユニポテンシヤル形(単電
位形)に主レンズ系は3つの集束電極4,5,6
より構成され、その軸上電位分布はほゞ鞍状をな
し、レンズ系の始端電極4と終端電極6がほゞ同
電位になつている。
Next, in the unipotential type (single potential type) shown in Figure 1b, the main lens system has three focusing electrodes 4, 5, 6.
The axial potential distribution is approximately saddle-shaped, and the starting end electrode 4 and the ending end electrode 6 of the lens system are at substantially the same potential.

しかしてこの様な構造を有する単電位形主レン
ズ系は集束ビームスポツトを小さくすることは出
来るが、この様な構造を有する電子銃を内装した
陰極線管は管内放電などを起しやすいという欠点
がある。
However, although a single-potential main lens system with a lever-like structure can reduce the focused beam spot, a cathode ray tube with an internal electron gun having such a structure has the disadvantage that it is susceptible to internal discharge. be.

最後に第1図cに示したトライポテンシヤル形
が主レンズ系は少なくとも3つの集束電極望まし
くは4つの集束電極8,9,10,11よりな
り、軸上電位分布は曲線12に示すように相対的
に中位の電位から単調に相対的に低位の電位に減
少し、さらに相対的に高位に単調にかつ連続して
スムースに増加している。
Finally, the main lens system of the tripotential type shown in FIG. The potential decreases monotonically from a medium potential to a relatively low potential, and then increases monotonically and continuously to a relatively high potential.

この様なトライポテンシヤル形主レンズ系を有
する電子銃は前述した2種の電子銃とは異なり、
集中ビームスポツトも良好であるが、相対的に中
間の電位が必要であるなどの理由があるため、別
電源を必要とし、更に電子銃全体の長さが長くな
り、また3極部の組立に必要以上の精度が要求さ
れるなどの欠点がある。
An electron gun with such a tripotential main lens system is different from the two types of electron guns mentioned above.
A concentrated beam spot is also good, but because it requires a relatively intermediate potential, a separate power source is required, the overall length of the electron gun becomes longer, and it is difficult to assemble the triode. It has drawbacks such as requiring more precision than necessary.

また前述した各種レンズ系の軸方向電位分布の
2次導関数を求めて見ると第2図に示すように、
バイポテンシヤル形では第2図aの曲線3″ユニ
ポテンシヤル形では第2図bの曲線7″、トライ
ポテンシヤル形は第2図cの曲線12″に示す如
く正の最大値を1個持つ単純な曲線となるので、
これらは単一レンズと言われている。
Furthermore, when we calculate the second derivative of the axial potential distribution of the various lens systems mentioned above, we find that as shown in Figure 2,
The bipotential type has a simple curve 3 in Figure 2a, the unipotential type has a simple curve 7'' in Figure 2b, and the tripotential type has a single positive maximum value, as shown in curve 12'' in Figure 2c. Since it is a curve,
These are said to be single lenses.

次に電子銃に要求される特性について考えてみ
ると電子銃の性能は第一次的に電子銃の主レンズ
系によつて、陰極線管の螢光面上に集束した電子
ビーム径で表わされ、この集束した電子ビーム径
が小さければ小さい程、主レンズ系の性能が良
く、フオーカス品位が良好と言われる。
Next, considering the characteristics required of an electron gun, the performance of an electron gun is primarily expressed by the diameter of the electron beam focused on the fluorescent surface of the cathode ray tube by the main lens system of the electron gun. It is said that the smaller the diameter of this focused electron beam, the better the performance of the main lens system and the better the focus quality.

電子光学的な説明を行うと以下の如くなる。即
ち一般に電子銃の集束レンズにより集束された電
子ビーム径(DT)は電子光学的倍率に依存した
電子ビーム径(DX)と、球面収差による電子ビ
ーム径の拡がり(DSA)、及び電子相互反撥効果
による電子ビーム径の拡がり成分(DSC)よりな
り下式で表わされる DT=√(XSA22 SC ここで DX=M・dX DSA=1/2MCSαO 3 すなわちDXは電子光学的倍率(M)と仮想物
点の大きさ(dX)の積であり、DSAは、球面収差
係数(CS)と倍率(M)と電子ビームの発散角
(αO)の3乗に比例する。従つて望ましい電子銃
の主レンズ系より見た仮想物点の大きさ(dX)、
球面収差係数(CS)及び電子ビームの主レンズ系
(集束レンズ)より見た電子ビームの発散角(αO
がそれぞれ小さい事が望ましい。
An electro-optical explanation is as follows. That is, in general, the electron beam diameter (D T ) focused by the focusing lens of an electron gun is determined by the electron beam diameter ( D The expansion component of the electron beam diameter due to the mutual repulsion effect (D SC ) is expressed by the following formula: D T = √ ( X + SA ) 2 + 2 SC where D X = M・d X D SA = 1/2 MC S α O 3 or D X is the product of the electron optical magnification (M) and the size of the virtual object point ( d It is proportional to the cube of the divergence angle (α O ). Therefore, the desired size of the virtual object point ( dX ) as seen from the main lens system of the electron gun is
Spherical aberration coefficient (C S ) and divergence angle of the electron beam (α O ) as seen from the main lens system (focusing lens) of the electron beam
It is desirable that each of them be small.

しかし陰極線管の一種であるカラー受像管に於
ては、その幾何学的寸法、特に電子銃の主レンズ
系の幾何学的中心から螢光面までの距離(近似的
像点距臨)が一定の場合、電子光学的倍率に依存
した電子ビーム径(DX)と球面収差による電子
ビーム径の拡がり(DSA)及び(DSA)と電子相
互反撥効果による電子ビーム径の拡がり(DSC
とは互いに相反関係にあり、最小電子ビーム径を
得る最適解が前記ユニポテンシヤル形、バイポテ
ンシヤル形各々についてはそれぞれ第3図a及び
bに示す如く求められる。さらに詳述すれば、電
子銃の3極部(物点形成領域)と主レンズ(集束
レンズ)系の組合せが最適でないと、例えば画面
中央部の解像度、画面周辺部と中央部の均一性、
高い電流時のブルーミング(変調非集束)等のそ
れぞれの特性のバランスが悪くなる。
However, in a color picture tube, which is a type of cathode ray tube, its geometric dimensions, especially the distance from the geometric center of the main lens system of the electron gun to the phosphor surface (approximate image point distance), are constant. In the case of , the electron beam diameter ( D
are in a contradictory relationship with each other, and the optimal solutions for obtaining the minimum electron beam diameter are determined for each of the unipotential type and bipotential type as shown in FIGS. 3a and 3b, respectively. More specifically, if the combination of the electron gun's triode (object point forming area) and main lens (focusing lens) system is not optimal, for example, the resolution at the center of the screen, the uniformity between the periphery and the center of the screen,
The balance of each characteristic such as blooming (modulation defocusing) at high current becomes worse.

従つて3極部すなわち第1電極、第2電極、第
3電極の各々の電極間距離の選択は充分に注意を
払う必要があり、前記3極部(物点形成領域)の
設計により電子ビームの発散角及び仮想物点位置
が決定される。従つて3極部と主レンズ系の設計
は総合的に検討する必要があり、特に主レンズ系
の陰極側に最も近い電極(第1図の1,4,8)
の印加電圧及び3極部との電極間距離によりブリ
フオーカス特性が定まり、従つてこれらにより電
子ビームの発散角及び仮想物点位置が決定される
ことになる。
Therefore, it is necessary to pay sufficient attention to the selection of the distance between the three electrodes, that is, the first, second, and third electrodes. The divergence angle and virtual object point position are determined. Therefore, it is necessary to comprehensively consider the design of the triode part and the main lens system, especially the electrodes closest to the cathode side of the main lens system (1, 4, 8 in Figure 1).
The brief focus characteristics are determined by the applied voltage and the distance between the electrodes and the triode, and therefore the divergence angle of the electron beam and the virtual object point position are determined by these.

3電子銃方式シヤドーマスク形カラー受像管を
用いたカラー受像機を例にとると、一般には前記
バイポテンシヤル形電子銃が用いられ、陰極は概
略100〜150V、第1電極はほぼ接地電圧、第2電
極はほぼ400〜800V、第1集束電極1は数KV
(4.4KV〜5.5KV)、第2集束電極2は螢光面と同
電位で20KV〜30KV印加されている。
Taking as an example a color receiver using a three-electron gun type shadow mask type color picture tube, the above-mentioned bipotential type electron gun is generally used, the cathode is approximately 100 to 150V, the first electrode is approximately ground voltage, and the second electrode is approximately 100 to 150V. The voltage of the electrode is approximately 400-800V, and the voltage of the first focusing electrode 1 is several KV.
(4.4 KV to 5.5 KV), and 20 KV to 30 KV is applied to the second focusing electrode 2 at the same potential as the fluorescent surface.

ここで第1集束電極1の長さは主レンズ径の直
径を基準にするとほぼ3.5程度であり、主レンズ
系より見た電子ビームの発散角は概略4゜〜5.5゜程
度で比較的大きく、さらに第1集束電極1はたか
だか数KV(4.4〜5.0KV)のため3極部に形成さ
れる所謂クロスオーバー位置が第1電極又は陰極
に印加されるビデオ信号に対して変動し、特に高
い電流時にブルーミング(変調非集束)を起しや
すい傾向がある。一方電子光学的倍率はユニポテ
ンシヤル形電子銃に比較して小さいため所謂低輝
度(低い電流時)の解像度は相対的に良好である
が発散角が大きいためフオーカスの均一性が悪
く、前述したブルーミング特性が悪くなる欠点を
有している。
Here, the length of the first focusing electrode 1 is approximately 3.5 degrees based on the diameter of the main lens, and the divergence angle of the electron beam seen from the main lens system is relatively large, approximately 4° to 5.5°. Furthermore, since the first focusing electrode 1 has a voltage of only a few KV (4.4 to 5.0 KV), the so-called crossover position formed in the three-pole section varies with respect to the video signal applied to the first electrode or the cathode, especially when the current is high. Sometimes blooming (modulation defocusing) tends to occur. On the other hand, the electro-optical magnification is smaller than that of a unipotential electron gun, so the so-called low brightness (at low current) resolution is relatively good, but the large divergence angle results in poor focus uniformity and the aforementioned blooming. It has the disadvantage of poor characteristics.

ユニポテンシヤル形電子銃の場合、3極部はバ
イポテンシヤル形とほぼ同じであるが、第1集束
電極4、第3集束電極6に高圧(螢光面電位)が
印加され、第2集束電極5には実質的に零ボルト
又は数KV印加されているので、結果として発散
角は概略2゜と小さいが、その反面電子光学的倍率
がバイポテンシヤル形主レンズよりやや大きく、
低輝度時の解像度がやや劣るが、均一性、ブルー
ミング特性等は相対的に良好となる。
In the case of a unipotential type electron gun, the three-pole part is almost the same as the bipotential type, but a high voltage (fluorescent surface potential) is applied to the first focusing electrode 4 and the third focusing electrode 6, and the second focusing electrode 5 Since substantially zero volts or several KV is applied to the lens, the divergence angle is as small as approximately 2 degrees, but on the other hand, the electro-optical magnification is slightly larger than that of a bipotential main lens.
Although the resolution at low brightness is slightly inferior, uniformity, blooming characteristics, etc. are relatively good.

なお、上記ユニポテンシヤル形レンズの特性
は、中間の電極の電位を両側の電極の電位より高
くしたユニポテンシヤル形レンズでも同じように
示す。
Note that the characteristics of the above-mentioned unipotential lens are similarly exhibited by a unipotential lens in which the potential of the middle electrode is higher than the potential of the electrodes on both sides.

ユニポテンシヤル形の場合、3極部の第2電極
と第1集束電極4間、第1集束電極4と第2集束
電極5間等に高電圧が印加されるため前記電極間
の耐電圧特性が悪く、放電によりカラー受像機の
ビデオ回路を損傷させたり、電子銃の陰極自体を
破壊させたりするため最近はあまり使用されてい
ない。
In the case of the unipotential type, a high voltage is applied between the second electrode and the first focusing electrode 4 of the triode part, between the first focusing electrode 4 and the second focusing electrode 5, etc., so the withstand voltage characteristics between the electrodes are Unfortunately, the discharge can damage the video circuits of color receivers and destroy the cathode of the electron gun, so it is not used much these days.

トライポテンシヤル形集束レンズは集束レンズ
の球面収差が電子計算機による解析の結果米国特
許3995194号明細書に記されているように下記の
量の線積分に大きく依存することが判り、V0
小さい領域或は電子ビーム径が大きい領域で
V0″を出来る限り小さく保持すれば必要な集束力
が得られ、生じた球面収差を抑制することが発見
された。
As a result of computer analysis, it was found that the spherical aberration of the tripotential type focusing lens largely depends on the line integral of the following quantity, as described in U.S. Pat. No. 3,995,194, and the region where V 0 is small. Or in a region where the electron beam diameter is large.
It has been discovered that keeping V 0 ″ as small as possible provides the necessary focusing power and suppresses the resulting spherical aberration.

〔(V0″)2/(V03/2〕r3 ここでV0はレンズ系の軸上電位分布、rはビ
ーム内の電子の半径方向座標である。すなわち、
第1図cに示した如く、第1集束電極8、第2集
束電極9、第3集束電極10、第4集束電極11
の4つの電極より集束レンズが構造され、第1、
第3集束電極8,10には相対的に中間の電位
(10〜12KV)が、第2集束電極9には相対的に
低い(5〜7KV)電位が、第4集束電極11に
は螢光面電位が印加され、その軸上電位分布は相
対的に中間の電位から滑らかにかつ単調に相対的
に低い電位に変化し、さらに滑らかにかつ単調に
相対的に高電位に変化し、かつ前記軸上電位分布
が1つの延長形レンズとして作用するような電極
構成及び電圧でなければならない。これは第2図
b,cより明らかな如くユニポテンシヤル形とト
ライポテンシヤル形の軸上電位分布は全く同形で
あることより理解できる。
[(V 0 ″) 2 / (V 0 ) 3/2 ] r 3 where V 0 is the axial potential distribution of the lens system and r is the radial coordinate of the electrons in the beam, i.e.
As shown in FIG. 1c, a first focusing electrode 8, a second focusing electrode 9, a third focusing electrode 10, a fourth focusing electrode 11
A focusing lens is constructed from four electrodes;
The third focusing electrode 8, 10 has a relatively intermediate potential (10-12 KV), the second focusing electrode 9 has a relatively low potential (5-7 KV), and the fourth focusing electrode 11 has a fluorescent potential. A surface potential is applied, the axial potential distribution changes smoothly and monotonically from a relatively intermediate potential to a relatively low potential, and then smoothly and monotonically changes to a relatively high potential, and The electrode configuration and voltage must be such that the axial potential distribution acts as an extended lens. This can be understood from the fact that, as is clear from FIGS. 2b and 2c, the axial potential distributions of the unipotential type and the tripotential type are completely the same.

このため主レンズ系の直径で規格化された各集
束電極長は第2集束電極9が0.5〜2.2、第3集束
電極10が0.75以下、第1集束電極8はカラー受
像管の幾何学的寸法、及び印加電圧より一義的に
決定される。以後電極長は全て規格値で説明す
る。
Therefore, the length of each focusing electrode normalized by the diameter of the main lens system is 0.5 to 2.2 for the second focusing electrode 9, 0.75 or less for the third focusing electrode 10, and the length of the first focusing electrode 8 is the geometric dimension of the color picture tube. , and the applied voltage. Hereinafter, all electrode lengths will be explained using standard values.

トライポテンシヤル形電子銃の特徴は従来一般
のバイポテンシヤル形電子銃より相対的に高い2
種の集束電位(6〜7KV及び10〜12KV)を印加
することにより電子光学的倍率を稼ぎ、必然的に
生じる球面収差の増大は前述した如く延長形単一
レンズにすることにより極力抑えた設計となつて
いるため、低輝度の解像度(収差は無視出来る程
度の比較的低電流領域)は格段と改良される。
The characteristics of the tripotential type electron gun are that it is relatively higher than the conventional general bipotential type electron gun2.
Electro-optical magnification is achieved by applying a specific focusing potential (6 to 7 KV and 10 to 12 KV), and the inevitable increase in spherical aberration is minimized by using an extended single lens as described above. Therefore, low-luminance resolution (in a relatively low current region where aberrations are negligible) is significantly improved.

また第1集束電極8に10〜12KVと比較的高い
電圧が印加されているためブルーミング特性も良
好である。
Furthermore, since a relatively high voltage of 10 to 12 KV is applied to the first focusing electrode 8, the blooming characteristic is also good.

反面、主レンズ系の電極長が長くなり、第3電
極(第1集束電極)8に比較的高い電圧を印加し
ている割には主レンズ系より見た電子ビームの発
散角はあまり小さくならないため電子ビームの集
束角が大きくなり、結果として画面中央部のフオ
ーカスは非常に良好であるが、最近主流となつた
自己集中方式カラー受像管装置の如く、非常に非
斉一な磁場空間で偏向させた場合、偏向収差を受
けやすく、結果としてフオーカスの均一性が悪
く、さらに前記球面収差が前記偏向収差を受け非
点収差を発生するために、前記均一性をさらに悪
化させているのが実状であり、さらに後述する問
題点がある。
On the other hand, although the electrode length of the main lens system becomes longer and a relatively high voltage is applied to the third electrode (first focusing electrode) 8, the divergence angle of the electron beam as seen from the main lens system does not become very small. Therefore, the convergence angle of the electron beam becomes large, and as a result, the focus at the center of the screen is very good. In this case, it is easy to receive deflection aberration, resulting in poor focus uniformity, and the fact is that the spherical aberration is affected by the deflection aberration and causes astigmatism, which further deteriorates the uniformity. However, there are additional problems that will be discussed later.

即ちカラー受像管の傾向としてフオーカス品位
の向上化がある。フオーカス品位の向上化は換言
すれば螢光面上に極小電子ビームスポツトを形成
することを意味するが、従来形主レンズ系の場合
その代償として電子銃組立の高精度化が必要条件
となる。
That is, the trend in color picture tubes is to improve focus quality. In other words, improving the focus quality means forming a very small electron beam spot on the phosphor surface, but in the case of a conventional main lens system, a high precision electron gun assembly is required as a trade-off.

周知の如く、カラー受像管の種々の組立誤差を
補正する目的で受像管のネツク部に色純度補正マ
グネツトやコンバージエンス補正マグネツトが配
置され、これらマグネツトにより前記受像管(含
む電子銃)の組立誤差を補正している。
As is well known, a color purity correction magnet and a convergence correction magnet are arranged in the neck portion of the picture tube in order to correct various assembly errors of the color picture tube, and these magnets correct assembly errors of the picture tube (including the electron gun). is being corrected.

電子銃の高性能化を計ると前述した如く、主レ
ンズ系の球面収差に依存する電子ビーム径の拡が
り成分(DSA)が多くなり、前記マグネツトによ
り受像管の組立誤差を補正した場合、受像管画面
中央部に於いても球面収差、一部非点収差のため
所謂にじみが発生しやすくなり、結果としてフオ
ーカス品位を劣化させる。従つて電子銃の高性能
化を計るためには電子銃の組立精度向上が必要と
なる。
As mentioned above, when aiming to improve the performance of an electron gun, the electron beam diameter broadening component (D SA ), which depends on the spherical aberration of the main lens system, increases. Even in the center of the tube screen, so-called bleeding tends to occur due to spherical aberration and partial astigmatism, resulting in deterioration of focus quality. Therefore, in order to improve the performance of an electron gun, it is necessary to improve the assembly precision of the electron gun.

前記、球面収差や非点収差は電子ビーム発生源
から放射された電子ビームの発散角に依存する
為、ユニポテンシヤル形の場合は比較的問題がな
いがバイポテンシヤル形、トライポテンシヤル形
の如く電子光学的倍率を小さくし、反面、球面収
差成分がやや大きい電子銃の主レンズ系の場合、
非常に大きな問題となつている。換言すれば電極
長自体はなるべく短かく、かつユニポテンシヤル
形の均一性を保ち、バイポテンシヤル形の低倍率
を保つ設計が理想的である。
As mentioned above, spherical aberration and astigmatism depend on the divergence angle of the electron beam emitted from the electron beam generation source, so there is relatively no problem in the case of the unipotential type, but it is relatively difficult for electron optics such as the bipotential type and tripotential type. In the case of the main lens system of an electron gun, which has a small target magnification and a slightly large spherical aberration component,
It has become a very big problem. In other words, the ideal design is to keep the electrode length as short as possible, maintain the uniformity of the unipotential type, and maintain the low magnification of the bipotential type.

本発明は前記種々の形の陰極線管用電子銃の諸
欠点に鑑み発明されたものであり、電子計算機に
よる電子光学的解析を基に実験試行を重ねた結果
得られた新しい主レンズ系を有する陰極線管用電
子銃を提供することを目的としており、公知のト
ライポテンシヤル形と酷似しているが、その構造
作用効果など全く別異のものであり、陰極線管の
一種である特に自己集中形カラー受像管装置の如
く、偏向収差を多く発生させる陰極線管に最適な
電子銃に関するものである。
The present invention was invented in view of the various drawbacks of the various types of electron guns for cathode ray tubes, and was developed through repeated experimental trials based on electron optical analysis using an electronic computer. The purpose is to provide a tube electron gun, and although it is very similar to the well-known tripotential type, its structure and effect are completely different, and it is a type of cathode ray tube, especially a self-concentrating color picture tube. The present invention relates to an electron gun that is most suitable for use with cathode ray tubes, which generate a large amount of deflection aberration, such as other devices.

次に図面により本発明の一実施例を説明する。 Next, one embodiment of the present invention will be described with reference to the drawings.

第4図は本発明の電子銃の一実施例を示す説明
用要部簡略断面図であり、図に於て21は陰極、
22は第1電極、23は第2電極であり、この3
つの電極により所謂3極部を形成しており、主レ
ンズ系は第1集束電極24、第2集束電極25、
第3集束電極26、第4集束電極27の4つの電
極により形成されている。陰極21には通常100
〜150Vの直流電圧及びビデオ信号が印加され、
第1電極22は概略接地電位が、第2電極23に
は400〜1000V程度の電位が印加され、さらに第
1集束電極24と第3集束電極26は陰極線管の
内部又は外部にて同電位に保たれ、概略4.4KV〜
10KVが印加され、第2集束電極25は第4集束
電極27と接続され、かつ陰極線管の螢光面電位
とほゞ同一の高電圧(概略20〜30KV)が印加さ
れている。このような電極構成に於て、かつ主レ
ンズ系の直径で規格化された各電極長は望ましい
実施例の1つとして、第2集束電極25の長さは
長径Dの概略0.1〜0.5すなわち、0.1D≦G2L≦
0.5Dと他の第3電極24、第5電極26に比較
して非常に薄く設計されている。
FIG. 4 is a simplified cross-sectional view of essential parts for explaining one embodiment of the electron gun of the present invention, in which 21 is a cathode;
22 is a first electrode, 23 is a second electrode, and these 3
The two electrodes form a so-called triode, and the main lens system includes a first focusing electrode 24, a second focusing electrode 25,
It is formed by four electrodes: a third focusing electrode 26 and a fourth focusing electrode 27. Usually 100 for cathode 21
~150V DC voltage and video signal are applied,
The first electrode 22 is applied with approximately ground potential, the second electrode 23 is applied with a potential of about 400 to 1000 V, and the first focusing electrode 24 and the third focusing electrode 26 are at the same potential inside or outside the cathode ray tube. Maintained, approximately 4.4KV~
10 KV is applied, the second focusing electrode 25 is connected to the fourth focusing electrode 27, and a high voltage (approximately 20 to 30 KV) which is substantially the same as the fluorescent surface potential of the cathode ray tube is applied. In such an electrode configuration, the length of each electrode normalized by the diameter of the main lens system is one of the preferred embodiments, and the length of the second focusing electrode 25 is approximately 0.1 to 0.5 of the major axis D, that is, 0.1D≦ G2L
It is designed to be 0.5D and very thin compared to the other third electrode 24 and fifth electrode 26.

前述した本発明の電子銃に適応する主レンズ系
の軸上電位分布は第5図の曲線28に示すように
相対的に低位の電位から単調に相対的に中位の電
位に僅かに単調に変化し、次に前記相対的に低位
の電位に実質的に低下し、さらに相対的に高い電
位に単調に変化している。前記軸上電位分布の2
次導関数は第6図aの曲線28″に示すように正
の極大値を2個と負の極大値を2個有した複合レ
ンズを構成している。
The axial potential distribution of the main lens system adapted to the electron gun of the present invention described above is slightly monotonous from a relatively low potential to a relatively medium potential, as shown by curve 28 in FIG. The voltage potential changes, then decreases substantially to the relatively lower potential, and then monotonically changes to the relatively higher potential. 2 of the above-mentioned on-axis potential distribution
The second derivative constitutes a complex lens having two positive maximum values and two negative maximum values, as shown by curve 28'' in FIG. 6a.

この2次導関数の形態は第3集束電極26の長
さや主レンズ系の開孔部径などにより、場合によ
つては第6図bの曲線281″の如く正の極大値を
3個と、負の極大値3個を有する複合レンズを構
成する場合もある。
The form of this second derivative depends on the length of the third focusing electrode 26, the diameter of the aperture of the main lens system, etc., and in some cases, it may have three positive maximum values as shown in the curve 28 1 '' in Figure 6b. In some cases, a compound lens having three negative maximum values is constructed.

言換えると、本発明の最大の特徴は前記した如
く、バイポテンシヤル形主レンズ系の第1集束電
極1を2分割し、その分割された間に相対的に非
常に薄く、すなわち0.1D≦G2L≦0.5Dの関係とな
るように非常に薄く、かつ相対的にかなり高い例
えば陰極線管の螢光面とほぼ同じ電圧を印加し、
局部的に補助レンズとして中間の電極の電位が両
側の電極電位よりも高いユニポテンシヤル形レン
ズを挿入し電子銃の主レンズ系より見た電子ビー
ムの発散角を僅かに小さくしている。即ち第7図
に示すように、バイポテンシヤル形レンズの場
合、電子ビーム発散角α1(=4〜5゜)をユニポテ
ンシヤル形レンズを挿入したことにより、電子ビ
ーム発散角α0(=3〜4゜)へと集束を僅かに変化
させている点に特徴がある。また、集束作用の
“僅か”な変化を得るために、フオーカス電圧を
“僅か”に変化させるが、その“僅か”の程度は
以下の通りである。
In other words, the greatest feature of the present invention is that, as mentioned above, the first focusing electrode 1 of the bipotential main lens system is divided into two parts, and the space between the two parts is relatively very thin, that is, 0.1D≦G. 2 Apply a voltage that is very thin so that L≦0.5D and relatively high voltage, for example, approximately the same as that of the fluorescent surface of a cathode ray tube,
A unipotential lens, in which the potential of the intermediate electrode is higher than that of the electrodes on both sides, is locally inserted as an auxiliary lens to slightly reduce the divergence angle of the electron beam as seen from the main lens system of the electron gun. That is, as shown in FIG. 7, in the case of a bipotential lens, the electron beam divergence angle α 1 (=4 to 5 degrees) is changed to the electron beam divergence angle α 0 (=3 to 5 degrees) by inserting a unipotential lens. It is characterized by a slight change in focusing to 4°). Furthermore, in order to obtain a "slight" change in the focusing effect, the focus voltage is "slightly" changed, and the extent of the "slight" is as follows.

即ち任意のバイポテンシヤル形電子銃を用いた
陰極線管において、その集束電圧Vf0となるよう
第1集束電極長を決定したとする。このバイポテ
ンシヤル形の第1集束電極1の長さを例えば1.27
と一定にし、各電極間隔g1、g2=0.072とした場
合第7図に示す如く、本発明の電子銃に適応する
主レンズ系の長さ(G1L+G2L+G3L+g1+g2)を
前記バイポテンシヤル形の第1集束電極1の長さ
に等しくし、さらに本発明の主レンズ系の(第
1、第2、第3集束電極)24,25,26に
Vf0を印加すれば当然のことながら前記バイポテ
ンシヤル形と全く等価となる(ここでG1L、G3L
≫g1、g2)次にG1LとG3Lの長さは一定に保ち、
電極間の距離g1、g2も一定に保ち、20〜30KVの
高電圧を印加した第2集束電極の長さG2Lを僅か
に変更すると第8図の如く、第1、第3集束電極
24,25のフオーカス電圧Vfはある点より急
峻に高くなり最終的には非集束状態となる。
That is, suppose that in a cathode ray tube using an arbitrary bipotential electron gun, the length of the first focusing electrode is determined so that the focusing voltage Vf 0 is obtained. The length of this bipotential type first focusing electrode 1 is, for example, 1.27
When the electrode spacing g 1 , g 2 =0.072, the length of the main lens system suitable for the electron gun of the present invention is as shown in FIG. 7 (G 1L +G 2L +G 3L +g 1 +g 2 ) be equal to the length of the bipotential first focusing electrode 1, and further to (first, second, third focusing electrodes) 24, 25, 26 of the main lens system of the present invention.
Naturally, if Vf 0 is applied, it becomes completely equivalent to the bipotential type (here, G 1L , G 3L ,
≫g 1 , g 2 ) Next, keep the lengths of G 1 L and G 3 L constant,
If the distances g 1 and g 2 between the electrodes are also kept constant and the length G 2 L of the second focusing electrode to which a high voltage of 20 to 30 KV is applied is slightly changed, the first and third focusing electrodes are changed as shown in Fig. 8. The focus voltage Vf of the electrodes 24 and 25 increases sharply from a certain point and eventually becomes unfocused.

本発明において“僅か”にという意味は、集束
状態を得るためには、前記フオーカス電圧が同一
寸法のバイポテンシヤル形電子銃に比較してたか
だか0.5〜2.5KV程度の変化をするにすぎないこ
とを意味し、そのように第2集束電極25長
G2L、電極間距離g1、g2を選択する必要がある。
そのため、第2集束電極長G2Lは0.5〜0.1に設定
する必要がある。また第2集束電極25の位置が
螢光面側に近づくに従い補助集束電極としての作
用が強くなるため結果としてバイポテンシヤル形
の低倍率という特徴を失う。従つてある程度陰極
21に近い方が望ましく、そのため、第3集束電
極の長さG3Lを長くしている。すなわち、各集束
電極長は下記式を満足することが望ましい。
In the present invention, "slightly" means that in order to obtain a focused state, the focus voltage must change by at most 0.5 to 2.5 KV compared to a bipotential electron gun of the same size. means, so that the second focusing electrode 25 length
G 2 L and inter-electrode distances g 1 and g 2 need to be selected.
Therefore, the second focusing electrode length G 2 L needs to be set to 0.5 to 0.1. Further, as the position of the second focusing electrode 25 approaches the fluorescent surface side, its action as an auxiliary focusing electrode becomes stronger, and as a result, the feature of low magnification of the bipotential type is lost. Therefore, it is desirable that the third focusing electrode be close to the cathode 21 to some extent, and therefore the length G 3 L of the third focusing electrode is made long. That is, it is desirable that each focusing electrode length satisfies the following formula.

G3L≧G1L>G2L ここで G1L:第1集束電極長 G2L:第2 〃 G3L:第3 〃 言換えると、特公昭29−2216号公報に記載され
た如く、“電子流に対して集束作用を呈し、電子
流が該陽極A1中に拡散して該陽極に捕集される
のを充分防止せしめるよう阻止電極Sの小孔内に
集中せしめる”ような影響が大なる集束作用をも
たせるのではなく僅かに電子ビームの発散角を小
さくするよう主レンズ系を構成する必要があり、
電極配置から判断すると非常に酷似しているがそ
の作用効果は全く異なるものである。
G 3 L≧G 1 L>G 2 L where G 1 L: first focusing electrode length G 2 L: second G 3 L: third In other words, as described in Japanese Patent Publication No. 29-2216, "Exhibits a focusing effect on the electron flow and concentrates it in the small hole of the blocking electrode S so as to sufficiently prevent the electron flow from diffusing into the anode A1 and being collected by the anode." It is necessary to configure the main lens system so that the divergence angle of the electron beam is slightly reduced, rather than having a large focusing effect.
Judging from the electrode arrangement, they are very similar, but their effects are completely different.

前述の如く電子銃の主レンズ系を形成すること
により下記の如き利点を有する。
Forming the main lens system of the electron gun as described above has the following advantages.

第1に電子ビームの発散角を容易に縮少できる
ため画面中央部に於ける球面収差を大幅に軽減で
き結果として電子銃の組立誤差による非点収差を
軽減できる。(なんとなれば球面収差は電子ビー
ムの発散角の3乗に比例し、非点収差は球面収差
が減少すれば出にくい為) 第2に前記球面収差が軽減される為、自己集中
形カラー受像管装置の如く偏向収差の大なる系で
は、画面周辺部の非点収差が軽減できフオーカス
の均一性が向上する。(均一性及び非点収差は電
子ビームの集束角に比例) 第3に基本的にはバイポテンシヤル形の範中で
僅かに仮想物点を遠方方向に後退させるため結果
的にはバイポテンシヤル形より電子光学的倍率を
稼ぐことが出来る。
First, since the divergence angle of the electron beam can be easily reduced, spherical aberration at the center of the screen can be significantly reduced, and as a result, astigmatism caused by assembly errors of the electron gun can be reduced. (This is because spherical aberration is proportional to the cube of the divergence angle of the electron beam, and astigmatism is less likely to occur if spherical aberration is reduced.) Second, since the spherical aberration is reduced, self-focusing color image reception is possible. In systems with large deflection aberrations, such as tube devices, astigmatism at the periphery of the screen can be reduced and focus uniformity can be improved. (Uniformity and astigmatism are proportional to the convergence angle of the electron beam.) Thirdly, basically, the virtual object point is slightly retreated in the far direction within the range of the bipotential type, so as a result, the shape is smaller than the bipotential type. Electro-optical magnification can be achieved.

第4に従来形バイポテンシヤル形の如くフオー
カスの均一性を向上させるため第1/第2電極、
第2/第3電極間距離を拡げ、相対的に画面中央
部の解像度を劣化させるような妥協設計をする必
要がなく均一性を高めることができ、さらに重要
な事には前記妥協設計を行なつたとき生じる陰
極/第一電極間距離が所望の帰点消去電圧を得る
ため小さくなり、結果的には管内の浮遊物による
陰極/第1電極導通等の問題発生を防止すること
ができる。
Fourthly, in order to improve focus uniformity as in the conventional bipotential type, the first/second electrodes,
It is not necessary to make a compromise design that increases the distance between the second and third electrodes and relatively degrades the resolution in the center of the screen, and more importantly, it is possible to improve uniformity. The distance between the cathode and the first electrode, which occurs when the tube is bent, becomes smaller in order to obtain the desired return point elimination voltage, and as a result, it is possible to prevent problems such as cathode/first electrode conduction due to floating objects within the tube.

第5にピユリテイー磁界等の不要磁界に起因す
る非点収差が発生しにくい。(基本的にトライポ
テンシヤル形より電極長が短かくなる為) 等の利点を有する。
Fifth, astigmatism caused by unnecessary magnetic fields such as a pieurity magnetic field is less likely to occur. (Basically, the electrode length is shorter than the tripotential type).

次に本発明の陰極線管用電子銃の第2の実施例
について第9図によつて説明する。図中前記実施
例と同一符号は同一部分を示す。
Next, a second embodiment of the electron gun for a cathode ray tube according to the present invention will be described with reference to FIG. In the drawings, the same reference numerals as in the above embodiment indicate the same parts.

図に於て31は陰極、32は第1電極、33は
第2電極で、この3つの電極により所謂3極部を
形成しており主レンズ系は第1集束電極34、第
2集束電極35、第3集束電極36、第4集束電
極37より形成され、前記第1集束電極34は対
設した浅キヤツプ電極素子341,343間に平板
電極素子342が所定間隔をもつて間挿してあり、
第2集束電極35は3枚の平板電極素子よりな
り、第3集束電極36は対設した浅キヤツプ電極
素子361,364間に1個の浅キヤツプ電極素子
362が及び1個の平板電極素子363所定間隔を
もつて間挿してあり、更に第4集束電極37は対
設した浅キヤツプ電極素子371,371によつて
形成されている。
In the figure, 31 is a cathode, 32 is a first electrode, and 33 is a second electrode. These three electrodes form a so-called triode part, and the main lens system includes a first focusing electrode 34 and a second focusing electrode 35. , a third focusing electrode 36, and a fourth focusing electrode 37, and the first focusing electrode 34 has a flat plate electrode element 342 inserted at a predetermined interval between the shallow cap electrode elements 341 and 343 arranged oppositely. There is,
The second focusing electrode 35 consists of three flat plate electrode elements, and the third focusing electrode 36 has one shallow cap electrode element 36 2 between the opposed shallow cap electrode elements 36 1 and 36 4 and one flat plate electrode element 36 2 . Electrode elements 36 3 are inserted at a predetermined interval, and a fourth focusing electrode 37 is formed by opposed shallow cap electrode elements 37 1 , 37 1 .

前述の如く、各電極を平板電極素子、浅キヤツ
プ電極素子とすることにより、加工精度の向上、
熱的歪の経時変化の防止、組立ての簡略化などが
計られる。
As mentioned above, by using each electrode as a flat plate electrode element or a shallow cap electrode element, processing accuracy can be improved.
This helps prevent thermal distortion from changing over time and simplifies assembly.

前記構造の電子銃の同一電位印加電極素子、例
えば361,362,363は図示しない1本の導
線にて接続され更に図示しないステムピンに接続
されると共に前記各電極は図示しない1対または
2対の絶縁支持棒により所定間隔をもつて配設さ
れインライン形ユニタイズガンが完成されてい
る。
The electrode elements for applying the same potential of the electron gun having the above structure, for example, 36 1 , 36 2 , 36 3 are connected by a single conductive wire (not shown) and further connected to a stem pin (not shown), and each of the electrodes is connected to a pair (not shown) or a stem pin (not shown). Two pairs of insulated support rods are arranged at a predetermined interval to complete an in-line unitizing gun.

前述した構造を有する陰極線管に於ても第1の
実施例に於て第4図乃至第7図によつて説明した
第2集束電極35の長さG2L及びこの電極と対設
する各電極との間隔(g1)(g2)を主レンズ系の
直径(l)で規格された値を満足するようにすること
によつて第7図に示した様な特性を持たせること
が出来るが、この場合中央の電子ビームと両側の
電子ビームとでは、その偏向状態により主レンズ
系の集束状態が異なることがあるのでこの場合に
は電子ビーム通孔部の形状または直径を選択すれ
ばよいことは勿論である。
In the cathode ray tube having the above-mentioned structure, the length G 2L of the second focusing electrode 35 and each electrode opposite to this electrode as explained in FIGS. 4 to 7 in the first embodiment. By adjusting the distance (g 1 ) (g 2 ) to satisfy the value specified by the diameter (l) of the main lens system, the characteristics shown in Figure 7 can be obtained. However, in this case, the focusing state of the main lens system may differ between the center electron beam and the electron beams on both sides depending on their deflection state, so in this case, the shape or diameter of the electron beam aperture should be selected. Of course.

また電子ビーム発生源を含む3極部に補助電極
を配した電子銃にも適用できることは言うまでも
ない。
It goes without saying that the present invention can also be applied to an electron gun in which an auxiliary electrode is arranged in a three-pole portion including an electron beam source.

本発明の電子銃の主レンズ系は巨視的にはバイ
ポテンシヤル形に近く、僅かに軸上電位分布に山
をもたせたもので、言換えれば局部的にユニポテ
ンシヤルレンズを構成させたものであるから第1
集束電極24,34よりも相対的に高い電圧を印
加すればよい。
The main lens system of the electron gun of the present invention is macroscopically close to a bipotential type, with a slight peak in the axial potential distribution; in other words, it is locally configured as a unipotential lens. from 1st
A relatively higher voltage than the focusing electrodes 24 and 34 may be applied.

更に他の実施例として第5電極(第3集束電
極)26,36や、第6電極(第4集束電極)2
7,37を分割してそれぞれに所望の電圧を印加
する様にすることにより、全体としてユニポテン
シヤルまたはトライポテンシヤル形電子銃にする
ことも可能である。
Further, as other embodiments, the fifth electrode (third focusing electrode) 26, 36 and the sixth electrode (fourth focusing electrode) 2
By dividing parts 7 and 37 and applying a desired voltage to each, it is possible to make the whole into a unipotential or tripotential type electron gun.

本発明に於ては例えば第3電極のような加速、
集束用電極も説明の簡略化のため、集束電極なる
表現を行なつている。
In the present invention, for example, acceleration such as the third electrode,
The focusing electrode is also expressed as a focusing electrode to simplify the explanation.

以上述べた如く本発明の陰極線管用電子銃の主
レンズ系は従来のバイポテンシヤル形、ユニポテ
ンシヤル形及びトライポテンシヤル形と全く異な
り、その効果は前述した如くであり、工業的価値
は極めて大である。
As described above, the main lens system of the cathode ray tube electron gun of the present invention is completely different from the conventional bipotential type, unipotential type, and tripotential type, and its effects are as described above, and its industrial value is extremely large. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバイポテンシヤル、ユニポテン
シヤル、及びトライポテンシヤル各電子銃の主レ
ンズ系の簡略構造及び軸上電位分布を示す説明
図、第2図は第1図に示した各電子銃の軸上電位
分布の2次導関数を示す曲線図、第3図はバイポ
テンシヤル及びユニポテンシヤル各電子銃の電子
ビーム径の計算用説明図、第4図は本発明の陰極
線管用電子銃の一実施例の構造を示す簡略断面
図、第5図は第3図の主レンズ系の簡略構造及び
軸上電位分布を示す説明図、第6図は第5図の軸
上電位分布の2次導関数を示す説明図、第7図は
第5図の主レンズ系の説明図、第8図は第5図の
第1集束電極、第3集束電極のフオーカス電圧と
第2集束電極の長さとの関係を示す曲線図、第9
図は本発明の陰極線管用電子銃の他の実施例の簡
略説明図である。 24,34……第1集束電極、25,35……
第2集束電極、26,36……第3集束電極、2
7,37……第4集束電極。
Figure 1 is an explanatory diagram showing the simplified structure and axial potential distribution of the main lens system of conventional bipotential, unipotential, and tripotential electron guns, and Figure 2 is the axis of each electron gun shown in Figure 1. A curve diagram showing the second derivative of the upper potential distribution, FIG. 3 is an explanatory diagram for calculating the electron beam diameter of each bipotential and unipotential electron gun, and FIG. 4 is an embodiment of the electron gun for a cathode ray tube of the present invention. 5 is an explanatory diagram showing the simplified structure of the main lens system in FIG. 3 and the axial potential distribution. FIG. 6 is a diagram showing the second derivative of the axial potential distribution in FIG. Figure 7 is an explanatory diagram of the main lens system in Figure 5, and Figure 8 shows the relationship between the focus voltage of the first and third focusing electrodes and the length of the second focusing electrode in Figure 5. Curve diagram shown, No. 9
The figure is a simplified explanatory diagram of another embodiment of the electron gun for a cathode ray tube according to the present invention. 24, 34...first focusing electrode, 25, 35...
Second focusing electrode, 26, 36...Third focusing electrode, 2
7, 37... Fourth focusing electrode.

Claims (1)

【特許請求の範囲】 1 少なくとも陰極、第1電極、第2電極よりな
る電子ビーム源発生部と、前記電子ビーム源発生
部より発射された電子ビームを集束する主レンズ
系を有する陰極線管用電子銃に於いて、前記主レ
ンズ系を形成する電極が前記電子ビーム源発生部
近傍より少なくとも第1集束電極、第2集束電
極、第3集束電極及び第4集束電極よりなる同軸
電極群を形成し、かつ前記第1集束電極と第3集
束電極に略同電位が印加され、前記第2集束電極
と第4集束電極には前記第1集束電極並びに第3
集束電極より高電位が印加され、前記第2集束電
極は前記主レンズ系の集束作用を僅かに変化させ
るものであり、前記主レンズ系が形成する軸上電
位分布が相対的に低位の位置から相対的に中位の
電位に単調に僅かに変化し、次に前記相対的に低
位の電位まで実質的に低下し、次に前記相対的に
高位の電位に単調に増加するようになされてお
り、前記軸上電位分布の2次導関数が少なくとも
正の極大値2個、負の極大値を2個有した複合レ
ンズであり、前記第2集束電極の軸方向の長さが
主レンズ系の直径に対して0.5乃至0.1であり、か
つ前記第1集束電極、第2集束電極及び第3集束
電極の軸方向の長さが下記式を満足していること
を特徴とする陰極線管用電子銃。 G3L≧G1L>G2L ここで G1L:第1集束電極長 G2L:第2集束電極長 G3L:第3集束電極長 2 第1集束電極及び第3集束電極の電位が約
4KV乃至10KVであり第2集束電極及び第4集束
電極の電位が約20KV乃至30KVであることを特
徴とする特許請求の範囲第1項記載の陰極線管用
電子銃。 3 第4集束電極が複数電極よりなることを特徴
とする特許請求の範囲第1項記載の陰極線管用電
子銃。
[Scope of Claims] 1. An electron gun for a cathode ray tube, comprising an electron beam source generating section comprising at least a cathode, a first electrode, and a second electrode, and a main lens system for focusing the electron beam emitted from the electron beam source generating section. The electrodes forming the main lens system form a coaxial electrode group consisting of at least a first focusing electrode, a second focusing electrode, a third focusing electrode, and a fourth focusing electrode from the vicinity of the electron beam source generating part, And substantially the same potential is applied to the first focusing electrode and the third focusing electrode, and the first focusing electrode and the third focusing electrode are applied to the second focusing electrode and the fourth focusing electrode.
A high potential is applied from the focusing electrode, and the second focusing electrode slightly changes the focusing action of the main lens system, so that the axial potential distribution formed by the main lens system changes from a relatively low position. a monotonically slight change to a relatively intermediate potential, then a substantial decrease to said relatively low potential, and then a monotonous increase to said relatively high potential; , a compound lens in which the second derivative of the axial potential distribution has at least two positive maximum values and two negative maximum values, and the length of the second focusing electrode in the axial direction is the same as that of the main lens system. An electron gun for a cathode ray tube, characterized in that the diameter is 0.5 to 0.1, and the axial lengths of the first focusing electrode, the second focusing electrode, and the third focusing electrode satisfy the following formula. G 3 L≧G 1 L>G 2 L where G 1 L: First focusing electrode length G 2 L: Second focusing electrode length G 3 L: Third focusing electrode length 2 First focusing electrode and third focusing electrode The potential of is approximately
2. The cathode ray tube electron gun according to claim 1, wherein the potential of the second focusing electrode and the fourth focusing electrode is about 20 KV to 30 KV. 3. The cathode ray tube electron gun according to claim 1, wherein the fourth focusing electrode comprises a plurality of electrodes.
JP1534978A 1978-02-15 1978-02-15 Electron gun for cathode-ray tube Granted JPS54108569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1534978A JPS54108569A (en) 1978-02-15 1978-02-15 Electron gun for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1534978A JPS54108569A (en) 1978-02-15 1978-02-15 Electron gun for cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS54108569A JPS54108569A (en) 1979-08-25
JPH0261091B2 true JPH0261091B2 (en) 1990-12-19

Family

ID=11886311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1534978A Granted JPS54108569A (en) 1978-02-15 1978-02-15 Electron gun for cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS54108569A (en)

Also Published As

Publication number Publication date
JPS54108569A (en) 1979-08-25

Similar Documents

Publication Publication Date Title
US4124810A (en) Electron gun having a distributed electrostatic lens
US4168452A (en) Tetrode section for a unitized, three-beam electron gun having an extended field main focus lens
US6225765B1 (en) Color cathode ray tube with a reduced dynamic focus voltage for an electrostatic quadrupole lens thereof
JPH0794116A (en) Electron gun for cathode ray tube
EP0469540A2 (en) Electron gun for cathode-ray tube
US4368405A (en) Electron gun for a cathode ray tube
JPH0118536B2 (en)
JP3369173B2 (en) Electron gun with main lens with low voltage limiting aperture
KR910001400B1 (en) Electron gun with-improved beam forming region
JPH0261091B2 (en)
US5159240A (en) Low voltage limiting aperture electron gun
EP0226145B1 (en) Electron gun assembly
US5043625A (en) Spherical aberration-corrected inline electron gun
KR830000492B1 (en) Electron gun for cathode ray tube
KR970006037B1 (en) Cathode ray tube with improved electron gun
US6456018B1 (en) Electron gun for color cathode ray tube
GB2309332A (en) An electron gun for a color cathode ray tube
EP1536451A1 (en) Cathode ray tube device with an in-line electron gun
GB2146171A (en) Cathode ray tubes
KR100232156B1 (en) Electron gun for color crt
KR200160129Y1 (en) Cathode ray tube
JP3074179B2 (en) Cathode ray tube
KR890003729B1 (en) Electron gun for brown tube
KR100777714B1 (en) Electron gun for color cathode ray tube
KR200160128Y1 (en) Cathode ray tube