JPS6039511B2 - Jet injection grinding method - Google Patents

Jet injection grinding method

Info

Publication number
JPS6039511B2
JPS6039511B2 JP4059676A JP4059676A JPS6039511B2 JP S6039511 B2 JPS6039511 B2 JP S6039511B2 JP 4059676 A JP4059676 A JP 4059676A JP 4059676 A JP4059676 A JP 4059676A JP S6039511 B2 JPS6039511 B2 JP S6039511B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
nozzle
fluid
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4059676A
Other languages
Japanese (ja)
Other versions
JPS52124294A (en
Inventor
舜二 大森
庸夫 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4059676A priority Critical patent/JPS6039511B2/en
Publication of JPS52124294A publication Critical patent/JPS52124294A/en
Publication of JPS6039511B2 publication Critical patent/JPS6039511B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】 この発明はワーク(被研削物)の温度上昇に起因する形
状精度の低下の問題を解決したジェット荘液研削法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a jet grinding method that solves the problem of deterioration in shape accuracy caused by an increase in the temperature of a workpiece (object to be ground).

研削加工は、加工現象が複雑で理論的解明が遅れている
ため、現場での熟練工の“勘”が大きな比重を占めてい
る。
Grinding involves complex processing phenomena and theoretical understanding is slow, so the ``hunch'' of skilled workers on site plays a large role.

しかし最近では、その工学的追求と高精度高能率化の要
望がとみに増大して、多方面より理論的検討や新技的の
開発が積極的に行なわれている。
However, in recent years, the pursuit of engineering and the demand for high precision and high efficiency have increased rapidly, and theoretical studies and new technological developments are being actively carried out from various fields.

その新技術の一つとして、ジェット荘液研削法を挙げる
ことができる。これは第1図に示すように、砥石1とワ
ーク2との接触点(研削点)に、ノズル3に設けた厚さ
の、中1のスリット4から、研削液5を高圧で噴射して
、研削加工の高能率化に阻害因子となる研削熱を積極的
に除去しようとするもので、付随的に次のような効果を
期待することができる。
One of the new technologies is the jet liquid grinding method. As shown in Fig. 1, this is done by injecting grinding fluid 5 at high pressure from a medium-thick slit 4 provided in a nozzle 3 to the contact point (grinding point) between the grinding wheel 1 and the workpiece 2. , which attempts to actively remove the grinding heat that is an impediment to increasing the efficiency of grinding, and the following additional effects can be expected.

‘ィー 製品表面性状(組織、残留応力など)劣化の防
止。‘。
'E Prevention of deterioration of product surface properties (structure, residual stress, etc.). '.

} 研削熱による寸法精度の低下防止。し一 砥石寿命
の延長。しかしながら、この研削法の実用化への道には
、種々の障害が横たわっている。
} Prevents dimensional accuracy from decreasing due to grinding heat. Shiichi: Extending the life of the whetstone. However, there are various obstacles on the way to practical application of this grinding method.

その一つが、ジェット衝撃によって生ずるワークの逃げ
に起因した製品形状の精度低下の問題である。
One of these is the problem of reduced precision in product shape due to workpiece escape caused by jet impact.

それを第2図も参照しつつ説明する。なお、説明の便を
はかるため、砥石を移動させるが、実際にはワークが砥
石軸方向に移動する。ジェット注液研削法では研削液5
を高圧(たとえば椿関昭48−7469y号では噴射圧
力を2k9/仇以上としている)で噴射するため、ワー
ク2もしくは砥石1に、これらを引離すような力Fjが
発生する。そしてワーク2および砥石1軸まわりの剛性
をK、研削背分力をFrとすれば、ワーク2の逃げ量d
Wは、普通注液法のd側=蔓‘こ対し、ジェット洋液法
ではd叫=F三芳ことなって、後者の逃げ量が増大する
This will be explained with reference to FIG. Note that for convenience of explanation, the grindstone is moved, but in reality, the workpiece moves in the direction of the grindstone axis. In the jet injection grinding method, grinding fluid 5
is injected at high pressure (for example, in Tsubaki Seki No. 48-7469y, the injection pressure is 2k9/m or more), a force Fj is generated on the workpiece 2 or the grinding wheel 1 to separate them. If the rigidity around the workpiece 2 and one axis of the grinding wheel is K, and the grinding back force is Fr, then the relief amount of the workpiece 2 is d
W is different from the d side of the normal liquid injection method, which is the d side of the liquid injection method, and the d side of the jet liquid injection method, which means that the amount of escape increases in the latter case.

このワーク2の逃げが製品の形状精度に悪影響を及ぼす
のであるが、とくにトラバース研削(砥石軸方向に送り
を与える研削)においては、第2図イに示すように、ワ
ーク2の端部で砥石1の中の2/鏡陸度を逃したのちに
再びワーク2を研削する必要があり、端部と心部とでワ
ーク2の逃げ量が異なるため、その表面が中凸となり、
形状精度が低下する。
This escape of the workpiece 2 has a negative effect on the shape accuracy of the product, but especially in traverse grinding (grinding that applies feed in the direction of the grinding wheel axis), as shown in Figure 2A, the edge of the workpiece 2 2 of 1/It is necessary to grind the work 2 again after missing the mirror land, and since the amount of relief of the work 2 is different between the edge and the center, the surface becomes convex in the middle,
Shape accuracy decreases.

そこで、一般的には研削の最後に切込みを与えないで、
ワーク2の逃げ量に相当する部分のみを削りとり、つま
りdW&0→Fr20になるまで表面を研削して、所定
の形状精度、面粗度を得るようにしている。
Therefore, generally speaking, no depth of cut is made at the end of grinding.
Only a portion corresponding to the relief amount of the workpiece 2 is removed, that is, the surface is ground until dW&0→Fr20 to obtain a predetermined shape accuracy and surface roughness.

これを、スパークアウトと呼ぶが、ジェット注液研削法
ではFr20となっても・ワ‐ク2の端部と′腿とでに
穀の鋤生じ、形状精度が低下する。
This is called spark-out, but in the jet injection grinding method, even if the grinding speed is Fr20, plowing of grain occurs at the ends and thighs of the workpiece 2, reducing shape accuracy.

その低下を防止し、かつジェット注液法の効果を十分発
揮せしめるためには、ノズル3のスリット4の厚さのを
絞ることによって、研削点の隙間(砥石は含泡性の砥粒
集合体であるため隙間ができる)に研削液を全て通過せ
しめ、研削点の上方や側方には液を飛散させないように
することが効果的である。
In order to prevent this decrease and fully utilize the effect of the jet injection method, it is necessary to reduce the thickness of the slit 4 of the nozzle 3 to reduce the gap between the grinding points (the grinding wheel is a foam-containing abrasive grain aggregate). It is effective to allow all of the grinding fluid to pass through the gap (because of this, there is a gap) and to prevent the fluid from scattering above or to the sides of the grinding point.

しかし、ここに一つの問題が生ずる。However, a problem arises here.

それはワーク2の全体の温度が上昇して、この場合も形
状精度が低下することである。すなわち、ノズル3から
噴射された研削液の流れをみると、通常は第3図に示す
如く、一方の流れ5aは砥石1とワ−ク2の隙間を通抜
けて、研削点の熱を除去する流れであるが、もう一方の
流れ5bは、上記の隙間に入りきれずに、ワーク2の表
面に沿って、これを冷却しつつ流れ落ちる。
This is because the overall temperature of the workpiece 2 increases, and in this case, the shape accuracy also decreases. That is, when looking at the flow of the grinding fluid injected from the nozzle 3, normally, as shown in Fig. 3, one flow 5a passes through the gap between the grinding wheel 1 and the workpiece 2 and removes the heat at the grinding point. However, the other flow 5b cannot completely enter the above-mentioned gap and flows down along the surface of the workpiece 2 while cooling it.

したがって、ノズル3のスリット4の厚さ凧を先述した
ように絞った場合は、ワーク2の表面に沿う研削液が殆
どなくなるので、ワーク2の温度が上昇してしまい、製
品の形状精度が低下する。この発明はワークの温度上昇
を抑制して、それ,に起因する形状精度の低下の問題を
解決した、ジェット荘液研削法を提供するものである。
この発明は砥石とワークとの接触点に研削液を噴射して
研削を行なうに際し、接触点に冷却用研削液を洋液しつ
つ、かつ、該接触点とは別個に、ワークの表面に直接冷
却用研削液を補助的に垂れ注ぐことを特徴とする。
Therefore, if the thickness of the slit 4 of the nozzle 3 is narrowed as described above, there will be almost no grinding fluid along the surface of the workpiece 2, which will increase the temperature of the workpiece 2 and reduce the shape accuracy of the product. do. The present invention provides a jet grinding method that suppresses the temperature rise of the workpiece and solves the problem of deterioration in shape accuracy caused by this.
When grinding is performed by spraying a grinding fluid onto the contact point between a grindstone and a workpiece, the cooling fluid is sprayed onto the contact point and, separately from the contact point, the cooling fluid is sprayed directly onto the surface of the workpiece. It is characterized by supplementary dripping of cooling grinding fluid.

以下、図面を参照しながらこの発明を詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第4図において、1は砥石、2はワークで・これらの接
触丸点に、ノズル3のスリット4から研削液5が噴射さ
れる。この発明では、ノズル3とは別個にワーク冷却用
ノズル6を配設し、そこから研削液7をワーク2の表面
に注液して、ワーク2全体を冷却する。この研削液7は
ノズル3の研削液5とは異って、噴射圧力には関係なく
、ワーク2表面にたれ流すだけでよい。ノズル3,6の
構造としては、たとえば第5図に示すものが好ましい。
In FIG. 4, 1 is a grindstone, 2 is a workpiece, and a grinding fluid 5 is injected from a slit 4 of a nozzle 3 to the contact point between them. In this invention, a workpiece cooling nozzle 6 is provided separately from the nozzle 3, and the grinding fluid 7 is injected onto the surface of the workpiece 2 from there to cool the entire workpiece 2. Unlike the grinding liquid 5 of the nozzle 3, this grinding liquid 7 only needs to drip onto the surface of the workpiece 2, regardless of the injection pressure. The structure of the nozzles 3 and 6 is preferably as shown in FIG. 5, for example.

なお、この場合は給液系統が同一であるが、それを別に
してもよい。まずノズル3を説明すると、ノズル本体3
aにスベーサ3bを敷き、それにノズル蓋3cをボルト
締めする。3dは液の流れを整えるための予圧室、3e
はランドで、これは面粗度を十分なめらかにとり、たと
えば1父以下にしておくことが望ましい。
Although the liquid supply systems are the same in this case, they may be different. First, to explain the nozzle 3, the nozzle body 3
Place the base plate 3b on the surface a, and bolt the nozzle cover 3c to it. 3d is a pre-pressure chamber to adjust the flow of liquid, 3e
is a land, and it is desirable that the surface roughness be sufficiently smooth, for example, less than 1.

以上で、スベーサ3bの厚さに等しい厚さの、中1の、
スリット4を設けたノズル3が形成される。一方、ノズ
ル6はたとえばパイプをつぶしたような形状のもので十
分通用し、その根元はノズル3の根元から分岐していて
、液量調節用バルブ6aが取付けてある。
With the above, the middle 1, with the thickness equal to the thickness of the base plate 3b,
A nozzle 3 with a slit 4 is formed. On the other hand, the nozzle 6 may be of the shape of a crushed pipe, for example, and its base is branched from the base of the nozzle 3, and a liquid volume adjustment valve 6a is attached thereto.

研削液は、図示しないポンプで加圧されたのち、Aから
ノズル3に入り、一方は予圧室3e、スリット4を経て
B方向に噴射され、またもう一方はバルブ6aを経て、
ノズル6の先端からC方向に流れ出る。これらのノズル
3,6を使用してジェット注液削法を実施すると、以下
に述べるような効果をることができる。
After being pressurized by a pump (not shown), the grinding fluid enters the nozzle 3 from A, and is injected in the direction B through the pre-pressure chamber 3e and the slit 4, and the other through the valve 6a.
It flows out from the tip of the nozzle 6 in the direction C. When the jet injection cutting method is carried out using these nozzles 3 and 6, the following effects can be obtained.

上表は、この発明の一実施例を、ワークを冷却しないジ
ェット洋液研削法(比較例1,2)および従来の普通注
液法と比較した実験結果を示すもので、砥石1にはWA
6山8V(3000×18中)、ワーク2はSUJ2を
使用し、ジェット圧力は8.2k9/めである。表の結
果によると、たとえばスリット厚さ0.5肌のノズルと
0.2側のノズルとでは、研削点での冷却効果がほぼ等
しい、つまり焼け発生時の切り込み量がほぼ等しいが、
0.2側のノズルは、ワークの形状精度を低下させるF
jが0.5帆のノズルの1/2.5倍となり、形状精度
面で有利である。
The above table shows the experimental results comparing one embodiment of the present invention with a jet liquid grinding method that does not cool the workpiece (Comparative Examples 1 and 2) and a conventional ordinary liquid injection method.
6 peaks 8V (3000×18 medium), SUJ2 is used for work 2, and the jet pressure is 8.2k9/me. According to the results in the table, for example, a nozzle with a slit thickness of 0.5 and a nozzle with a slit thickness of 0.2 have almost the same cooling effect at the grinding point, that is, the depth of cut when burns occur is almost the same.
The nozzle on the 0.2 side is F, which reduces the shape accuracy of the workpiece.
j is 1/2.5 times that of a 0.5 sail nozzle, which is advantageous in terms of shape accuracy.

しかし、ワークの全体温度は0.5柵のノズルの2情強
で、この点から形状精度が低下する可能性がある。そこ
で実施例1に示すごとく、ワーク冷却用ノズル6を用い
ると、ワーク全体温度は、スリット厚さ0.5柳の比較
例1と同程度にまで低下し、ワークの温度上昇に基づく
形状精度の低下を防止することができる。
However, the overall temperature of the workpiece is about the same as that of a 0.5mm nozzle, and from this point the shape accuracy may deteriorate. Therefore, as shown in Example 1, when the workpiece cooling nozzle 6 is used, the overall temperature of the workpiece is reduced to the same level as in Comparative Example 1 of willow with a slit thickness of 0.5, and the shape accuracy due to the temperature rise of the workpiece is reduced. The decline can be prevented.

なお、この発明は前記の実施例に限定されず、要旨を変
えない範囲で種々の実施例を採用できる。また、トラバ
ース法以外の研削法にも適用可能である。以上を要する
に、この発明では研削点に冷却用研削液を注液しつつ、
これとは別個にワーク表面に直接冷却用研削液を補助的
に垂れ注ぐようにしたから、Fjに起因する形状精度の
低下が少なく、研削点での熱損傷も少なく、そしてワー
ク全体温度の上昇に基づく形状精度低下の少ない、ジェ
ット洋液研削法を実施することができる。
Note that the present invention is not limited to the embodiments described above, and various embodiments can be adopted without changing the gist. It is also applicable to grinding methods other than the traverse method. In summary, in this invention, while injecting cooling grinding fluid to the grinding point,
Separately from this, cooling grinding fluid is poured directly onto the workpiece surface as an auxiliary, so there is less deterioration in shape accuracy caused by Fj, less thermal damage at the grinding point, and an increase in the overall temperature of the workpiece. It is possible to implement the jet liquid grinding method with less deterioration in shape accuracy based on the method.

図面の簡単な説明第1図は従来のジェット注液研削法の
概略工程図、第2図イは同研削法で発生するワークの逃
げの現象の説明図、同図口は同現象に起因して形状精度
の低下したワークの表面形状を示す構成図、第3図は第
1図において研削液の流路を説明する工程図である。
Brief explanation of the drawings Fig. 1 is a schematic process diagram of the conventional jet injection grinding method, Fig. 2 A is an explanatory diagram of the phenomenon of workpiece escape that occurs in the same grinding method, and the opening in the figure is an illustration of the phenomenon caused by the same phenomenon. FIG. 3 is a block diagram showing the surface shape of a workpiece whose shape accuracy has decreased due to the grinding process, and FIG. 3 is a process diagram illustrating the flow path of the grinding fluid in FIG.

第4図はこの発明の一実施例における研削液の流路を説
明する工程図、第5図は同研削液のノズルの一例を示す
分解斜視図である。1・・・・・・砥石、21・・・・
・・ワーク、3…・・・ノズル(研削点冷却用)、4・
・…・スリット、5,7・・・・・・研削液、6・・・
・・・ノズル(ワーク冷却用)。第1図第2図 第3図 第4図 第5図
FIG. 4 is a process diagram illustrating the flow path of the grinding fluid in an embodiment of the present invention, and FIG. 5 is an exploded perspective view showing an example of a nozzle for the grinding fluid. 1...Whetstone, 21...
... Workpiece, 3... Nozzle (for cooling the grinding point), 4.
...Slit, 5,7... Grinding fluid, 6...
...Nozzle (for cooling the workpiece). Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 砥石とワークとの接触点に研削液を噴射して研削を
行なうに際し、接触点に冷却用研削液を注液しつつ、か
つ、該接触点とは別個に、ワークの表面に直接冷却用研
削液を補助的に垂れ注ぐことを特徴とするジエツト注液
研削法。
1. When grinding is performed by injecting a grinding fluid to the contact point between the grindstone and the workpiece, while injecting the cooling grinding fluid to the contact point, and separately from the contact point, apply cooling fluid directly to the surface of the workpiece. A jet injection grinding method characterized by supplementary pouring of grinding fluid.
JP4059676A 1976-04-10 1976-04-10 Jet injection grinding method Expired JPS6039511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059676A JPS6039511B2 (en) 1976-04-10 1976-04-10 Jet injection grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059676A JPS6039511B2 (en) 1976-04-10 1976-04-10 Jet injection grinding method

Publications (2)

Publication Number Publication Date
JPS52124294A JPS52124294A (en) 1977-10-19
JPS6039511B2 true JPS6039511B2 (en) 1985-09-06

Family

ID=12584876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059676A Expired JPS6039511B2 (en) 1976-04-10 1976-04-10 Jet injection grinding method

Country Status (1)

Country Link
JP (1) JPS6039511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244072B2 (en) 1998-09-09 2002-01-07 豊田工機株式会社 Cooling method in grinding

Also Published As

Publication number Publication date
JPS52124294A (en) 1977-10-19

Similar Documents

Publication Publication Date Title
US5718156A (en) Process for machining titanium parts using separate biased spraying collar
JP3244072B2 (en) Cooling method in grinding
US7153189B2 (en) Coolant supply method and apparatus for grinding machine
US6322428B1 (en) Working device and working method for magnet member
US3984213A (en) Slow grinding technique
JP3784349B2 (en) Rotating air layer blocking device with grinding wheel and grinding device using the same
JPS6039511B2 (en) Jet injection grinding method
KR102378547B1 (en) Laser-jet liquid beam autogenous abrasive grain flow multi-tasking head and operation method
US5140780A (en) Method and apparatus for cleaning and cooling a machine tool and workpiece
JPS5854951B2 (en) Jet injection grinding method
JP4182172B2 (en) Grinding equipment
JPH0538678A (en) Water jet processing device
JPS6031842Y2 (en) Machine Tools
Sakamoto et al. Effects of Megasonic Coolant on Cylindrical Grinding Performance
JPH0226616Y2 (en)
Schram et al. Influence of machining finish requirements on the surface structure of bainitic-austenitic cast iron with spherical graphite
JP4474720B2 (en) Method for manufacturing grooved member for gas bearing
JP3223049B2 (en) Opening flaw removal method
JP3988630B2 (en) Coolant supply method and apparatus for grinding machine
SU1705050A1 (en) Method of cooling during grinding
JPS6043274B2 (en) Grinding wheel dressing device
JPH07308854A (en) Honing machining method and honing machining device
SU1215967A1 (en) Method of abrasive machining of external surface
JPH10146761A (en) Processing liquid supply device, nozzle used in the same device, and method for processing the same nozzle
JPS59134661A (en) Dressing of grindstone