JPS6038855A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6038855A
JPS6038855A JP58146394A JP14639483A JPS6038855A JP S6038855 A JPS6038855 A JP S6038855A JP 58146394 A JP58146394 A JP 58146394A JP 14639483 A JP14639483 A JP 14639483A JP S6038855 A JPS6038855 A JP S6038855A
Authority
JP
Japan
Prior art keywords
capacitor
capacitors
substrate
recessed
si3n4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58146394A
Other languages
Japanese (ja)
Other versions
JPH0426217B2 (en
Inventor
Tokuo Kure
久礼 得男
Hideo Sunami
英夫 角南
Yoshifumi Kawamoto
川本 佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58146394A priority Critical patent/JPS6038855A/en
Publication of JPS6038855A publication Critical patent/JPS6038855A/en
Publication of JPH0426217B2 publication Critical patent/JPH0426217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent leakage currents between recessed type capacitors (between memory cells) by inserting insulating films among the capacitors and a semiconductor substrate or isolating the cells by a groove deeper than the recessed type capacitors. CONSTITUTION:Field SiO2 7 is formed, the films of Si3N4 15 and PSG (phosphorus glass) 16 are applied, and a photo-resist pattern 17 to which sections forming the recessed sections of capacitors are bored is shaped. The PSG16, the Si3N4 15, the field SiO27 and pad SiO214 and an Si substrate 4 are etched. Si3N418 is etched selectively in a directional manner by using reactive sputtering etching by CH2F2 gas, Si3N419 adhering on side walls is left, and recessed sections 20 are formed to the Si substrate 4 through reactive sputtering etching by a mixed gas of CCl and O2. The Si3N415, 19 on the side walls and the surfaces are removed by a phosphoric acid solution, and polycrystalline silicon 22 is applied so that the recessed sections are not buried completely. An insulating film 25 (such as SiO2, Si3N4 or its multilayer film) and poly Si 26 are applied, thus forming MOS type capacitors.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置およびその製造方法に関し、詳しく
は凹形キャパシタを含む半導体装置およびその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device including a concave capacitor and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

1記1怠単位あたシ1つのキャパシタと1つの醒界効釆
トランジスタよ構成る1トランジスタ型メモリセルにお
いて、近年、第1図に示すように、キャパシタ部1に凹
部2を設けて実効キャパシタ面積全増大したものが提案
された。(特開昭51−130178号)なお、第1図
において、メモリセル1個分は第1図破線aで示されて
いる。
In recent years, in a one-transistor type memory cell consisting of one capacitor and one effective transistor, as shown in FIG. A design with a total area increase was proposed. (Japanese Unexamined Patent Publication No. 51-130178) In FIG. 1, one memory cell is indicated by a broken line a in FIG.

第2図は、第1図のA−A断面である。、(第1図では
ワードIw9、ビット疏12の配線パターン等を省略し
た。)このような凹形キャパシタのメモリセルでは、従
来の平面キャパシタのものに比べ、キャパシタ面積は大
幅に組手できるが、このセルを高密度に配置して大規模
メモリを構成しようとすると次の問題が生じる。す−な
ゎち、凹形キャパシタを近接して配置すると、矢印13
で示したようなキャパシタ間のリーク電流が流れ易くな
シ、メモリ動作が不安定になるという現象が起こる。菓
子間を分離しているフィールド5iOz7の直丁にVよ
チャネルカット用の不純物拡散が通常行われるので、リ
ーク電流はポテンシャルの鞍部ができる矢印13近傍で
流れ易い。また、キャパシタ間(ソース間)だけではな
く、キャパシタと隣接セルのコンタクト部3の間(ソー
ス・ドレーン間)でも同様のリーク電流が生じる・ 〔発明の目的〕 本発明の目的は、上記キャパシタ間(メモリセル間)の
リーク電流を防止した半導体装置およびその製造方法を
提供することにある。
FIG. 2 is a cross section taken along the line AA in FIG. 1. (In Figure 1, the wiring patterns for word Iw9 and bit line 12 are omitted.) With such a concave capacitor memory cell, the capacitor area can be significantly reduced compared to that of a conventional planar capacitor. When attempting to construct a large-scale memory by arranging these cells at high density, the following problem arises. Well, if concave capacitors are placed close together, arrow 13
A phenomenon occurs in which leakage current between capacitors as shown in Figure 2 is not easy to flow, and memory operation becomes unstable. Since impurity diffusion for V channel cutting is normally performed directly in the field 5iOz7 separating the confections, leakage current tends to flow near the arrow 13 where a potential saddle is formed. Furthermore, a similar leakage current occurs not only between the capacitors (between sources) but also between the capacitor and the contact portion 3 of the adjacent cell (between the source and drain). An object of the present invention is to provide a semiconductor device that prevents leakage current (between memory cells) and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

凹形キャパシタをもとにして発生するリーク電流を防止
する本発明は、凹形キャパシタと半導体基板間に絶縁膜
を挿入するか、または凹形キャパシタよシも深い溝でセ
ル間を分離することによって、リーク゛成流通路を〜r
ち切るものである。
The present invention, which prevents leakage current caused by a concave capacitor, involves inserting an insulating film between the concave capacitor and the semiconductor substrate, or separating cells with deep grooves beyond the concave capacitor. The leakage flow path is defined by ~r
It is something to be cut into pieces.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は、本発明の一実施例r示す工程図である。FIG. 3 is a process diagram showing an embodiment of the present invention.

まず、第3図(1)に示すように、周知のLOCO8法
によって、フィールド5i027全形成した後、3i3
N415とPSG(リンガラス)16の膜を被着し、キ
ャパシタの凹部を形成する部分を開口したホトレジスト
パターン17を形成した。開口部は、フィールド5iQ
27の端部に位置させる。
First, as shown in FIG. 3(1), after the entire field 5i027 is formed by the well-known LOCO8 method, 3i3
A film of N415 and PSG (phosphorus glass) 16 was deposited, and a photoresist pattern 17 was formed with openings in the areas where the concave portions of the capacitors were to be formed. The opening is field 5iQ
27 end.

続いて、CF4にH2金約5チ混台したガスを用いた反
応性スパッタエツチング法で、PSG16゜5iaN4
15.フィールドSiO□7およびバッド8jCh14
とSi基板4をエッチした。この際、各材料のエツチン
グ速度比は、Si3N4 : 5iOz:5i=2:2
:1程度になるようエツチング条件を選び、フィールド
5i027のエツチングが完了した時点でエツチングを
終了した。次に、ホトレジス)17を除去し、5j3N
418を被着した。
Next, PSG16°5iaN4 was formed using a reactive sputter etching method using CF4 mixed with about 50% H2 gold.
15. Field SiO□7 and Bad 8jCh14
and etched the Si substrate 4. At this time, the etching rate ratio of each material is Si3N4:5iOz:5i=2:2
Etching conditions were selected so that the etching value was about 1:1, and the etching was terminated when the etching of field 5i027 was completed. Next, remove the photoresist) 17 and 5j3N
418 was applied.

(第3図(2)) CH2F2ガスでの反応性スパッタエツチングを用いて
、513N418を方向的に選択エッチして、lI+l
l壁に板層した5j3N419を残し、続いて、CCt
 4と02混合ガスの反応性スパッタエツチングでSi
基板4に凹部20を形成した。、(第3図(3))この
時のエツチング法としては、 Si、N418とSi基
板4をそれぞれ方向的かつ選択的にエッチできるもので
あれば上記以外のものでもよい。
(Figure 3 (2)) Using reactive sputter etching with CH2F2 gas, 513N418 is selectively etched in the direction to form lI+l.
1 Leave the plate-layered 5j3N419 on the wall, then CCt
Si is etched by reactive sputter etching using a mixed gas of 4 and 02.
A recess 20 was formed in the substrate 4. (FIG. 3(3)) The etching method used at this time may be any method other than those described above as long as it can directionally and selectively etch the Si, N418, and Si substrates 4, respectively.

なお、PS016はS’5N415の保護のためもうけ
たものでめシ、省略することも可能である。
Note that PS016 was created to protect S'5N415 and can be omitted.

次に、PSG16をフッ酸溶液で除去し、四部20のS
i面を酸化した後、側壁および天面の8’3N415.
19をリン酸溶液で除去し、pol yB i (多結
晶シリコン)22を、四部が先金に埋まらないように被
着した。(第3図(4))ここで、凹部の5i(Jz2
1の下には、を化チャネルの発生を防止するため、基板
4と同導電型の不純物拡散層をイオン打込み法によって
形成しておくことが望ましい。
Next, PSG16 was removed with a hydrofluoric acid solution, and S
After oxidizing the i-plane, the side walls and top surface were 8'3N415.
19 was removed with a phosphoric acid solution, and polyB i (polycrystalline silicon) 22 was deposited so that the four parts were not buried in the tip metal. (Figure 3 (4)) Here, 5i (Jz2
It is desirable that an impurity diffusion layer of the same conductivity type as the substrate 4 be formed under the substrate 1 by ion implantation in order to prevent the formation of a channel.

poly S i 22に、基板4と異なる導電型の不
純物を拡散し低抵抗化したi、CC4カスの反応性スパ
ッタエツチングによってPo1y 3 i 22にエッ
チした。こうすることによって、凹部側壁のpoJyS
i23のみが残存し、しかもこのpolySiは、フィ
ールド5iOz7のない側の凹部側壁24で基板4と接
続している。
Poly Si 22 was etched into Poly 3 i 22 by reactive sputter etching of i, CC4 scum, which had a lower resistance by diffusing impurities of a conductivity type different from that of the substrate 4. By doing this, poJyS on the side wall of the recess
Only i23 remains, and this polySi is connected to the substrate 4 at the recess side wall 24 on the side where the field 5iOz7 is not present.

次に、絶縁膜25(例えば、bio□、 Si3N4ま
たはその多層膜)と、Po1y S i 26 を4.
盾し、第3図f67に示すようなMO8型キャパシタ金
形成した。
Next, an insulating film 25 (for example, bio□, Si3N4, or a multilayer film thereof) and PolyS i 26 are coated in 4.
Then, a gold MO8 type capacitor as shown in FIG. 3 f67 was formed.

以上のようにし−C形成し/こキャパシタは、第3図(
6)で明らかなように、基板4との境界に5i0221
が挿入されておp1キャパシタ間のリーク電流が極めて
流れにくい構造になっている。
The capacitor formed in the above manner is shown in Fig. 3 (
6), 5i0221 on the boundary with substrate 4
is inserted, making it extremely difficult for leakage current to flow between the p1 capacitors.

第4図は、上記製造工程r平面的rト見た図である。フ
ィールドS!02で囲わtL7ヒ島状領域30に対し凹
部を形成するパターン31は、第4図(1)に示したよ
うに配置する。四部のパターン31は島状領域30に少
しでもかがっていれば良いので、リングラフィにおける
パターンの合わせ余裕は大きい。また、第、4図(2)
に示すように、形成されたキャパシタ部1は510g2
1で周辺部と底部を囲tレ−c、t、−,6、矢印32
.33で示したキャパシタ間のリーク’tM、t&や欠
目J34で示したキャパシタとピット線コンタクト部と
のリーク電流が生じにくいことは明らかである。なお、
キャパシタを囲っている5io221は、隣接セル間で
接続してしまっても良い。
FIG. 4 is a plan view of the above manufacturing process. Field S! A pattern 31 forming a concave portion in the tL7 island-like region 30 surrounded by 02 is arranged as shown in FIG. 4(1). Since the four patterns 31 only need to overlap the island-like regions 30 even slightly, there is a large margin for alignment of the patterns in phosphorography. Also, Figure 4 (2)
As shown in , the formed capacitor part 1 has a weight of 510g2
1 surround the periphery and bottom t-ray-c, t,-, 6, arrow 32
.. It is clear that the leak 'tM, t& between the capacitors indicated by 33 and the leak current between the capacitor and the pit line contact section indicated by the notch J34 are unlikely to occur. In addition,
The 5io221 surrounding the capacitor may be connected between adjacent cells.

第5図は、Si基板に形成した溝を絶縁材で充填する素
子分離法によって、厚い5i0235でフィールドを形
成した例である。このような場合には、キャパシタ電極
23と基板4との接続部24を大きくすることができる
FIG. 5 shows an example in which a field is formed with thick 5i0235 by an element isolation method in which a groove formed in a Si substrate is filled with an insulating material. In such a case, the connecting portion 24 between the capacitor electrode 23 and the substrate 4 can be made larger.

第6図は、さらに分離篩を深くした場合で、このように
キャパシタの凹部よシも深い絶縁材36を形成したとき
には、第7図に示すように凹部2を配置し、従来通9基
板をキャパシタの一方の電極とすればよい。(第6図は
第7図のH−B断面である。)なお、このような場合に
は、島状領域30と凹部2のパターン間の合わせ余裕は
小さくなるが、絶縁材36か四部2の断面形状がV字形
になるようにしておけば、凹部2のパターンが島状領域
30の端部にかかつても、キャパシタ面積が急激に減少
するようなことはない。
FIG. 6 shows a case where the separation sieve is made deeper. When the insulating material 36 is formed deeper than the recess of the capacitor in this way, the recess 2 is arranged as shown in FIG. It may be used as one electrode of the capacitor. (FIG. 6 is a cross section taken along line H-B in FIG. 7.) In such a case, the alignment margin between the patterns of the island-like regions 30 and the recessed portions 2 will be small; If the cross-sectional shape of the concave portion 2 is made to be V-shaped, even if the pattern of the concave portion 2 is located at the end of the island region 30, the capacitor area will not be suddenly reduced.

〔発明の効果〕〔Effect of the invention〕

上記のように、不発明によれば、凹形キャパシタの周囲
に絶縁膜が形成されるので、隣接キャパシタ間などで生
じるリーク′畦流を無くすことができる。したがって、
凹形キャパシタを含むメモリセルを近接して配置するこ
とができ、大規模業績回路を構成できる。
As described above, according to the invention, since an insulating film is formed around the concave capacitor, it is possible to eliminate leakage currents occurring between adjacent capacitors. therefore,
Memory cells containing concave capacitors can be placed in close proximity to form large scale performance circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメモリセルの平面図、第2図は第1図の
A−A断面図、第3図、第4図は本発明の実施例を示す
工程図、第5図、第6図は本発明の他の実施例を示す断
面図、第7図は第6図の平面図である。 l・・・キャパシタ部、2.20・・・凹部、3・・・
コンタクト部、4・・・Si基板、5.25・・・キャ
パシタ用絶縁膜、6,22,23.26・・・1)ol
y s s、 7 。 35.36・・・フィールドsho、、9・・・ワード
線、12・・・ビット線、13・・・リーク電流経路、
15゜18.19・・・5isN4.21・・・510
2.30・・・島第 1 図 Z z 図 <+) 17 (?2 B (3) 第 3[2] (4) 2 (5) (乙シ ロ 第 4 図 (υ (Z) 茗 5 図 不 2 図 第7図 F3 B
FIG. 1 is a plan view of a conventional memory cell, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIGS. 3 and 4 are process diagrams showing an embodiment of the present invention, and FIGS. The figure is a sectional view showing another embodiment of the present invention, and FIG. 7 is a plan view of FIG. 6. l...Capacitor part, 2.20...Recessed part, 3...
Contact part, 4... Si substrate, 5.25... Insulating film for capacitor, 6, 22, 23.26... 1) ol
ysss, 7. 35.36...Field sho, 9...Word line, 12...Bit line, 13...Leak current path,
15゜18.19...5isN4.21...510
2.30...Island 1st figure Z z figure<+) 17 (?2 B (3) 3rd [2] (4) 2 (5) (Otsushiro 4th figure (υ (Z) Myo 5 No 2 Figure 7 F3 B

Claims (1)

【特許請求の範囲】 1、凹形のキャパシタを有する半導体装置VCおいて、
該凸形キャパシタは、絶縁膜上に形成されており、該凹
形キャパシタの一方の電極が半導体基板に接続されてい
ることを特徴とする半導体装置。 2、凹形キャパシタを記憶容量部とするメモリセルを有
する半導体メモリにおいて、上記メモリセルは上記凹形
キャパシタよシも深く形成された絶縁物によって分離さ
れている特許請求の範囲第り項記載の半導体装置。 3、絶縁膜で分離された島状領域の端部にかかるように
半辱体基板Vc凹部を形成する工程と、該凹部内面を絶
縁膜で被憶する工程と、該絶縁膜上にキャパシタの下部
電極用の膜を形成し、上記島状領域の半導体基板と鬼気
的に接続する工程と、該下部電極膜上にキャパシタ用絶
縁膜および上部電極膜を形成しキャパシタを構成する工
程とを含むことを特徴とする半導体装置の製造方法。
[Claims] 1. In a semiconductor device VC having a concave capacitor,
A semiconductor device characterized in that the convex capacitor is formed on an insulating film, and one electrode of the concave capacitor is connected to a semiconductor substrate. 2. In a semiconductor memory having a memory cell having a concave capacitor as a storage capacitor, the memory cell is separated from the concave capacitor by an insulator formed deeply. Semiconductor equipment. 3. Forming a semi-circular substrate Vc recess so as to span the end of the island region separated by an insulating film, covering the inner surface of the recess with an insulating film, and forming a capacitor on the insulating film. A step of forming a film for a lower electrode and electrically connecting it to the semiconductor substrate in the island-like region, and a step of forming a capacitor insulating film and an upper electrode film on the lower electrode film to form a capacitor. A method for manufacturing a semiconductor device, characterized in that:
JP58146394A 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof Granted JPS6038855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146394A JPS6038855A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146394A JPS6038855A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6038855A true JPS6038855A (en) 1985-02-28
JPH0426217B2 JPH0426217B2 (en) 1992-05-06

Family

ID=15406704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146394A Granted JPS6038855A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6038855A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184861A (en) * 1985-02-12 1986-08-18 Matsushita Electronics Corp Semiconductor device
JPS61208256A (en) * 1985-03-13 1986-09-16 Toshiba Corp Semiconductor memory device
JPS61229349A (en) * 1985-04-03 1986-10-13 Matsushita Electronics Corp Manufacture of mos capacitor
JPH01217964A (en) * 1988-02-26 1989-08-31 Toshiba Corp Manufacture of semiconductor device
JPH01287956A (en) * 1987-07-10 1989-11-20 Toshiba Corp Semiconductor memory and manufacture thereof
US5422294A (en) * 1993-05-03 1995-06-06 Noble, Jr.; Wendell P. Method of making a trench capacitor field shield with sidewall contact

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184861A (en) * 1985-02-12 1986-08-18 Matsushita Electronics Corp Semiconductor device
JPS61208256A (en) * 1985-03-13 1986-09-16 Toshiba Corp Semiconductor memory device
JPS61229349A (en) * 1985-04-03 1986-10-13 Matsushita Electronics Corp Manufacture of mos capacitor
EP0197762A2 (en) * 1985-04-03 1986-10-15 Matsushita Electronics Corporation MOS capacitor and method of manufacturing the same
US4797719A (en) * 1985-04-03 1989-01-10 Matsushita Electronics Corporation MOS capacitor with direct polycrystalline contact to grooved substrate
JPH01287956A (en) * 1987-07-10 1989-11-20 Toshiba Corp Semiconductor memory and manufacture thereof
US5106774A (en) * 1987-07-10 1992-04-21 Kabushiki Kaisha Toshiba Method of making trench type dynamic random access memory device
JPH01217964A (en) * 1988-02-26 1989-08-31 Toshiba Corp Manufacture of semiconductor device
US5422294A (en) * 1993-05-03 1995-06-06 Noble, Jr.; Wendell P. Method of making a trench capacitor field shield with sidewall contact

Also Published As

Publication number Publication date
JPH0426217B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US4992389A (en) Making a self aligned semiconductor device
US4446613A (en) Integrated circuit resistor and method of fabrication
US5189501A (en) Isolator for electrically isolating semiconductor devices in an integrated circuit
EP0284065B1 (en) Structure of complementary field effect transistor
US4420874A (en) Method of producing an IIL semiconductor device utilizing self-aligned thickened oxide patterns
US6432799B1 (en) Method of manufacturing semiconductor integrated circuit device
KR20010014899A (en) Formation of 5f2 cell with partially vertical transistor and gate conductor aligned buried strap with raised shallow trench isolation region
KR100673673B1 (en) Dram cell arrangement and method for fabricating it
US5789792A (en) Isolation trench structures protruding above a substrate surface
US6812092B2 (en) Method for fabricating transistors having damascene formed gate contacts and self-aligned borderless bit line contacts
JPH0648719B2 (en) Semiconductor memory device
JPS6038855A (en) Semiconductor device and manufacture thereof
JPS58220445A (en) Manufacture of semiconductor integrated circuit
JPH0412563A (en) Semiconductor device and its manufacture
US6329238B1 (en) Method of fabricating a memory device having a long data retention time with the increase in leakage current suppressed
US6365464B1 (en) Method to eliminate shorts between adjacent contacts due to interlevel dielectric voids
KR20010019346A (en) Method of forming a self aligned contact in a semiconductor device
EP0060205A2 (en) Low temperature melting binary glasses for leveling surfaces of integrated circuits containing isolation grooves
US5227319A (en) Method of manufacturing a semiconductor device
KR20020050697A (en) Semiconductor device and method of manufacturing the same
KR100609534B1 (en) Manufacturing method for semiconductor device
US6028346A (en) Isolated trench semiconductor device
KR20000003940A (en) Method for forming polysilicon plug using chemical mechanical polishing
KR0134859B1 (en) Fabrication method of contact hole in semiconductor device
US20020126548A1 (en) Dram bit lines