JPS6038818B2 - Color cathode ray tube landing characteristic measuring device - Google Patents

Color cathode ray tube landing characteristic measuring device

Info

Publication number
JPS6038818B2
JPS6038818B2 JP13704278A JP13704278A JPS6038818B2 JP S6038818 B2 JPS6038818 B2 JP S6038818B2 JP 13704278 A JP13704278 A JP 13704278A JP 13704278 A JP13704278 A JP 13704278A JP S6038818 B2 JPS6038818 B2 JP S6038818B2
Authority
JP
Japan
Prior art keywords
cathode ray
color cathode
ray tube
electron beam
landing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13704278A
Other languages
Japanese (ja)
Other versions
JPS5563180A (en
Inventor
辰則 火原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13704278A priority Critical patent/JPS6038818B2/en
Publication of JPS5563180A publication Critical patent/JPS5563180A/en
Publication of JPS6038818B2 publication Critical patent/JPS6038818B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、カラ−受像管の電子ビームランディング特
性の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring electron beam landing characteristics of a color picture tube.

カラー受像管(以下CPTと称す)や偏向ョ−クの設計
にあたっては、ランディング誤差量と称して、電子ビー
ムの中心が蟹光体ドットの中心からどれくらいずれてい
るか、そのずれの量を正確に求める必要がある。従釆、
このずれ量を求める方法としては、6ぴ音または8の苦
の倍率を有し、最小目盛2肌肘程度のスケールを内蔵し
た顕微鏡を用いて目視によって行なう方法があった。第
1図はカラーブラウン管の管面における電子ビ−ムのラ
ンデイング状態を拡大して示している。
When designing color picture tubes (hereinafter referred to as CPTs) and deflection hawks, it is important to accurately determine how much the center of the electron beam deviates from the center of the crab light dot, which is called the amount of landing error. need to ask. subordinate,
One way to determine this amount of deviation is to visually observe it using a microscope that has a magnification of 6 pitches or 8, and has a built-in scale with a minimum scale of about 2 inches. FIG. 1 shows an enlarged view of the landing state of an electron beam on the surface of a color cathode ray tube.

図において、1は電子ビーム、2は赤(R)、緑(G)
または青(B)の蟹光体、3はブラックストライプ、4
はシャドウマスクの影である。
In the figure, 1 is the electron beam, 2 is red (R), green (G)
Or blue (B) crab light body, 3 is black stripe, 4
is the shadow of the shadow mask.

第1図のような蟹光面のランディング状態を測定する場
合は、ブラックストラップ3の存在により電子ビームー
の外形が不明であるためシャドウマスクの影4の形状に
よって判断していた。
When measuring the landing state of the crab light surface as shown in FIG. 1, the outer shape of the electron beam is unknown due to the presence of the black strap 3, so it is determined based on the shape of the shadow 4 of the shadow mask.

ところがシャドウママスクの影4は明瞭でないため、影
4の状態から電子ビーム1の中心を求めることは困難で
あった。また蟹光体2とブラックストライプ3の境も均
一でないため、蜜光体2の中心を求めることも容易でな
かった。のように従来のランディング特性の測定は目視
による方法であったため、測定値にばらつきを生じ易く
、精度よく測定しようとすると塾練を要したり、時間が
長くかかるなどの欠点があった。
However, since the shadow 4 of the shadow mask is not clear, it is difficult to determine the center of the electron beam 1 from the state of the shadow 4. Furthermore, since the boundary between the crab phosphor 2 and the black stripe 3 is not uniform, it is also not easy to find the center of the honey phosphor 2. Conventional methods for measuring landing characteristics have been based on visual inspection, which tends to cause variations in the measured values, and has drawbacks such as requiring training and taking a long time to measure accurately.

またこのような欠点を解消する従来装置として、特関昭
50一21633号公報に示されるようなものもあった
。これは、管面上の電子ビームを楠位させたとき、光出
力の特性曲線は対称となるということに着目し、電子ビ
ームに周期的対称偏位を与えながら、該電子ビームによ
る対称対応の発光点を等量だけ偏位させ、それらの対応
する出力が等しくなる点を検出して、その偏位量をラソ
デイングのずれ量とするものである。すなわち、上記従
来の方法は光出力特性曲線が対称であるということを前
提としてなされたものである。しかるに、ビームランデ
ィング特性は、電子ビームの対称性、形状によって影響
を受け、さらに電子ビームの形状は電子銃に含まれてい
るホーカレンズによっても大きく影響させるものであり
、そのため上記測定の前に、まず所定のビーム形状のC
PTを選別し、しかも測定時にはCPTのホーカスレン
ズの調整状態を常に管理しなければならず、その測定は
極めて煩雑となり、実際問題として不可能に近いもので
あるという問題があった。この発明はかかる点に鑑みて
なされたもので、最適なランディング時に蟻光面の発光
量が最大になった状態を光霧変換素子で検出することに
より、電子ビームのランディング特性を煩雑な管理をい
っさい必要とせず、簡単でしかも高速かつ高精度に測定
するようにしたランディング特性測定装置を提供するこ
とを目的としている。第2図にこの発明の原理図を示す
In addition, as a conventional device which solves the above-mentioned drawbacks, there is also a device as disclosed in Tokukan Sho 50-121633. This method focuses on the fact that the characteristic curve of optical output becomes symmetrical when the electron beam on the tube surface is placed in a symmetrical position, and by giving a periodic symmetrical deviation to the electron beam, the symmetrical response by the electron beam is calculated. The light emitting points are deviated by an equal amount, a point where their corresponding outputs are equal is detected, and the amount of deviation is taken as the amount of deviation in lasoding. That is, the above conventional method was performed on the premise that the optical output characteristic curve is symmetrical. However, the beam landing characteristics are affected by the symmetry and shape of the electron beam, and the shape of the electron beam is also greatly affected by the Hawker lens included in the electron gun. C for a given beam shape
The problem is that the PT must be selected and the adjustment state of the CPT focus lens must be constantly managed during measurement, making the measurement extremely complicated and almost impossible in practice. This invention was made in view of this point, and by detecting the state in which the amount of light emitted from the ant light surface reaches its maximum during optimal landing using a light fog conversion element, it is possible to easily manage the landing characteristics of the electron beam. It is an object of the present invention to provide a landing characteristic measuring device that does not require any of the following methods and can perform measurements simply, at high speed, and with high accuracy. FIG. 2 shows a diagram of the principle of this invention.

色純度がよいという状態は、姿光体2を電子ビーム1が
最も効率よく発光させている状態であり、第2図の実線
で示す電子ビーム1の中心と姿光体2の中心が一致して
いる状態である。
A state of good color purity is a state in which the electron beam 1 is most efficiently emitting light from the phosphor 2, and the center of the electron beam 1 and the center of the phosphor 2 coincide with each other, as shown by the solid line in FIG. It is in a state of being

この状態において、電子ビームーに外部から磁界を与え
、第2図aの破線を示すように電子ビームを左右に変位
させると、電子ビームla,lbと蜜光体2の中心とが
ずれて電子ビームla,lbは隣接する蟹光体を発光さ
せる状態となる。このように電子ビーム1を外部磁界で
左右に変位させ、蟹光面の発光量を光学フィル夕(第2
図の場合は緑色フィル夕)を通して光電変換素子で受光
すると、外部磁界1の強さと光電変換素子の出力Bは第
2図のようになる。第2図bは蟹光体2と電子ビーム1
の中心が一致している場合の出力曲線であるため、外部
磁界1が0の時光電光変換素子の出力Bが最大となって
いるが、第3図のように最初から蟹光体2と電子ビーム
1の中心が4×だけずれている場合は、外部磁界1がi
の時光電光変換素子の出力Bが最大となっており、外部
磁界i分がランデイングのずれ量となる。したがってあ
らかじめ磁界の強度に対する電子ビームの変位を求めて
お仇よ、光電変換素子から得られる光世力が最大の点の
磁界の強度から電子ビームの蟹光体に対するランディン
グのずれ量が求まる。なお第2図および第3図は説明の
便宜のため、1つのシャドウマスク穴を通った電子ビー
ムに外部磁界を与えた場合を示しており、実線は外部磁
界0の時の電子ビーム1の位置を示し、破線は外部磁界
を与えた場合の電子ビームla,lbの位置を示す。第
4図にこの発明の一実旋例のブロック図を示す。
In this state, if a magnetic field is applied to the electron beam from the outside and the electron beam is displaced from side to side as shown by the broken line in FIG. la and lb are in a state where adjacent crab light bodies are made to emit light. In this way, the electron beam 1 is displaced left and right by an external magnetic field, and the amount of light emitted from the crab light surface is controlled by the optical filter (second
When light is received by a photoelectric conversion element through a green filter (in the case of the figure), the strength of the external magnetic field 1 and the output B of the photoelectric conversion element become as shown in FIG. Figure 2b shows crab light body 2 and electron beam 1.
Since the output curve is for the case where the centers of If the center of beam 1 is shifted by 4×, then external magnetic field 1 is i
When , the output B of the photoelectric-optical conversion element is at its maximum, and the amount of external magnetic field i becomes the amount of landing deviation. Therefore, the displacement of the electron beam with respect to the intensity of the magnetic field is determined in advance, and the amount of deviation of the landing of the electron beam with respect to the crab light body is determined from the intensity of the magnetic field at the point where the optical force obtained from the photoelectric conversion element is maximum. For convenience of explanation, Figures 2 and 3 show the case where an external magnetic field is applied to the electron beam passing through one shadow mask hole, and the solid line indicates the position of the electron beam 1 when the external magnetic field is 0. The broken lines indicate the positions of the electron beams la and lb when an external magnetic field is applied. FIG. 4 shows a block diagram of an example of the present invention.

図し、おいて、5はカラーブラウン管、6はカラーブラ
ウン管5からの光のうち特定の色の光だけを通す光学フ
ィル夕、7は光学フィル夕6の出力を電気信号に変換す
る光電変換素子、8は前記光電変換素子7の出力を一時
的に保持する入力回路、9は入力回路8からの光電変換
素子7の出力を記憶する制御回路、10Gま副偏向用の
外部磁界発生コイル、11は制御回路9よりの外部磁界
信号1により、この外部磁界発生コイル10を駆動する
駆動回路、12は制御回路9よりの色信号とラスター信
号Vによりカラーブラウン管5の画面を制御するテレビ
ジョン回路、13は制御回路9によるビームランディン
グ特性の測定結果を表示する表示器である。そして前記
制御回路9はカラーブラウン管5を駆動するテレビジョ
ン回路12に色信号とラスター信号Vを加えてカラーブ
ラウン管5の管面を赤、緑、青のいずれかの単色に発光
させる単色発光手段として動作し、かつ外部磁界信号1
を駆動回路11に加えて副偏向用の外部磁界発生コイル
10を駆動し、電子ビームに任意量の変位を与える副偏
手段としても動作し、さらに管面の発光色を切換え、か
つ電子ビームの変位量を切換えたときの光電変換素子7
の出力Bと比較演算してランディング特性を測定する演
算手段としても動作する。次に動作について説明する。
In the figure, 5 is a color cathode ray tube, 6 is an optical filter that passes only a specific color of light from the color cathode ray tube 5, and 7 is a photoelectric conversion element that converts the output of the optical filter 6 into an electrical signal. , 8 is an input circuit that temporarily holds the output of the photoelectric conversion element 7, 9 is a control circuit that stores the output of the photoelectric conversion element 7 from the input circuit 8, 10G or an external magnetic field generating coil for sub-deflection, 11 12 is a drive circuit that drives the external magnetic field generating coil 10 using the external magnetic field signal 1 from the control circuit 9; 12 is a television circuit that controls the screen of the color cathode ray tube 5 using the color signal and raster signal V from the control circuit 9; Reference numeral 13 denotes a display device for displaying the measurement results of the beam landing characteristics by the control circuit 9. The control circuit 9 serves as a monochromatic light emitting means that applies a color signal and a raster signal V to the television circuit 12 that drives the color cathode ray tube 5 to cause the tube surface of the color cathode ray tube 5 to emit light in a single color of red, green, or blue. operating and external magnetic field signal 1
In addition to the drive circuit 11, it also drives the external magnetic field generating coil 10 for sub-deflection, and also operates as a sub-deflection means to give an arbitrary amount of displacement to the electron beam.Furthermore, it switches the luminescent color of the tube surface and changes the direction of the electron beam. Photoelectric conversion element 7 when switching the amount of displacement
It also operates as a calculating means for measuring the landing characteristics by comparing with the output B of the. Next, the operation will be explained.

制御回路9からの色信号とラスター信号Vによりテレビ
ジョン回路12はカラーブラウン管5の画面を単色にす
る。光学フィル夕6は前記操作によって選択された画面
の色のみ通過させる。たとえば、管面が緑単色であれば
緑色のみ通過させる。このような状態で光電変換素子7
からの出力を入力回路8を介して制御回路9に光世力B
として記憶する。この時の駆動回路11への外部磁界信
号1も併せて制御回路9に記憶する。時に外部磁界信号
1を変化させ、前記操作を繰返しつつ、各光出力Bを制
御回路9で比較演算することにより、第2図b、第3図
bの曲線におけるピーク値の外部磁界信号1を求める。
求まった外部磁界信号1にビームの動きから求まる電流
係数を乗じて表示器13に表示すれば光電変換素子7と
光学フィル夕6の取付けられた位置のランディング状態
が一目瞭然となる。次に制御回路9からテレビジョン回
路12への色信号を切換えると同時に、光学フィル夕6
を切換えて同様の測定を行なえば、3色それぞれのラン
ディング状態を求めることができる。なお、光学フィン
夕6を機械的に切換ることも可能であるが赤、緑、青の
光学フィル夕と光電変換素子を対で設置しておき、光電
変換素子7の出力を切換えれば測定を高速に行なうこと
ができる。また入力回路8は光電変換素子7からの出力
を一時的に保持する回路であるが、テレビジョン画面の
ようにラスタ−走査方式であると単位面鰭における光電
変換素子7の出力は第5図のようになるため、入力回路
8においては第5図の特定の点の出力を保持する必要が
ある。
Using the color signal and raster signal V from the control circuit 9, the television circuit 12 makes the screen of the color cathode ray tube 5 monochromatic. The optical filter 6 passes only the color of the screen selected by the above operation. For example, if the tube surface is monochromatic green, only the green color is allowed to pass through. In this state, the photoelectric conversion element 7
The output from the control circuit 9 is sent to the control circuit 9 via the input circuit 8.
be memorized as . The external magnetic field signal 1 to the drive circuit 11 at this time is also stored in the control circuit 9. By changing the external magnetic field signal 1 from time to time and repeating the above operation, the control circuit 9 compares and calculates each optical output B, thereby obtaining the external magnetic field signal 1 at the peak value in the curves shown in FIGS. 2b and 3b. demand.
By multiplying the obtained external magnetic field signal 1 by the current coefficient obtained from the movement of the beam and displaying it on the display 13, the landing state of the position where the photoelectric conversion element 7 and the optical filter 6 are attached can be seen at a glance. Next, at the same time the color signal is switched from the control circuit 9 to the television circuit 12, the optical filter 6
If the same measurement is performed by switching between the two colors, the landing state of each of the three colors can be determined. Although it is possible to mechanically switch the optical filter 6, it is also possible to install red, green, and blue optical filters and a photoelectric conversion element in pairs, and then switch the output of the photoelectric conversion element 7 to perform measurement. can be done quickly. In addition, the input circuit 8 is a circuit that temporarily holds the output from the photoelectric conversion element 7, but in the case of a raster scanning system like a television screen, the output of the photoelectric conversion element 7 for a unit surface fin is as shown in Fig. 5. Therefore, it is necessary for the input circuit 8 to hold the output at a specific point in FIG.

績分回路、、サンプルホールド回路、ピークホールド回
路はすべてA/D変換器と粗合せて入力回路8とするこ
とが可能である。なお、第5図において波形の各々のピ
ーク間が水平走査時間(約63.5rsec)に対応す
る。なお、前記実旋例では外部磁界発生コイル10をカ
ラーブラウン管5のネック部に設置しているが管面の前
面に設けてもよい。また前記実旋例ではランディング状
態の測定のみについて説明したが、管面上の数ケ所に取
付ければ色純度調整装置としても使用可能である。
The output circuit, sample hold circuit, and peak hold circuit can all be roughly combined with the A/D converter to form the input circuit 8. Note that in FIG. 5, the distance between each peak of the waveform corresponds to the horizontal scanning time (about 63.5 rsec). In the above-described practical example, the external magnetic field generating coil 10 is installed at the neck portion of the color cathode ray tube 5, but it may be installed at the front surface of the tube. Further, in the above-described practical example, only the measurement of the landing state was explained, but it can also be used as a color purity adjusting device by attaching it at several locations on the tube surface.

以上のようにこの発明のカラーブラウン管のランデイン
グ特性測定装置によれば、電子ビームに外部磁界で微少
変位を与え、光学フィル夕を通してその光出力の変化を
比較し、該出力のピーク時の外部磁界強度からランディ
ング状態を検出するように構成したので、光学フィル夕
と光電変換素子で構成する検出部を移動させてカラーブ
ラウン管の管面の所望の位置のランディング状態の測定
を行なうことができる。したがってカラーブラウン管の
ランディング特性の測定を簡単に、しかも高速かつ高精
度に行なうことができ、カラーブラウン管の検査、調整
などに用いても大きなな効果がある。
As described above, according to the landing characteristic measuring device for a color cathode ray tube according to the present invention, an electron beam is given a minute displacement by an external magnetic field, the change in the optical output is compared through an optical filter, and the external magnetic field at the peak of the output is compared. Since the landing state is detected from the intensity, it is possible to measure the landing state at a desired position on the tube surface of the color cathode ray tube by moving the detection section composed of an optical filter and a photoelectric conversion element. Therefore, the landing characteristics of color cathode ray tubes can be easily measured at high speed and with high accuracy, and it is also very effective when used for inspection and adjustment of color cathode ray tubes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカラーブラウン管の管面の電子ビームのランン
ディング状態を示す図、第2図および第3図はこの発明
の原理を説明するためのもので、第2図aおよび第3図
aは電子ビームを磁界により変位させる状態を示す管面
の一部拡大図、第2図bおよび第3図bはそれぞれ第2
図aおよび第3図aのように電子ビームを動かしたとき
の磁界と光電変換素子の出力との関係を示す特性図、第
4図はこの発明によるカラーブラウン管のランディィン
グ特性測定装置の一美碇例のブロック図、第5図は光電
変換素子により得られる出力波形を示す図である。 1・・・・・・電子ビーム、5……カラーブラウン管、
6・・・・・・光学フィル夕、7・・…・光電変換素子
、9・・・・・・単色発光手段、演算手段、を兼ねる制
御回路、10…・・・副偏向手段としての外部磁界発生
コイル、12………テレビジョン回路。 なお、図中同一符号は同一又は相当部分を示す。第5図 第1図 第2図 第3図 第4図
Figure 1 is a diagram showing the landing state of an electron beam on the tube surface of a color cathode ray tube, Figures 2 and 3 are for explaining the principle of this invention, and Figures 2a and 3a are Figures 2b and 3b are partially enlarged views of the tube surface showing the state in which the electron beam is displaced by the magnetic field, respectively.
Figures a and 3a are characteristic diagrams showing the relationship between the magnetic field and the output of the photoelectric conversion element when the electron beam is moved, and Figure 4 is the Kazumi color cathode ray tube landing characteristic measuring device according to the present invention. FIG. 5, a block diagram of the anchor example, is a diagram showing the output waveform obtained by the photoelectric conversion element. 1...Electron beam, 5...Color cathode ray tube,
6... Optical filter, 7... Photoelectric conversion element, 9... Control circuit that also serves as monochromatic light emitting means and calculation means, 10... External as sub-deflection means. Magnetic field generating coil, 12... Television circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 5 Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 テレビジヨン回路を介してカラーブラウン管の管面
を全面単色で発光させる単色発光手段と、前記管面上の
電子ビームを外部磁を与えて変位させる副変行手段と、
前記管面に対向して設置され単色光のみを通過させる光
学フイルタと、この光学フイルタの出力光に応じた電気
信号を出力する光電変換素子と、前記副偏手段により電
子ビームに与える外部磁界の種々の値に対する前記光電
変換素子の出力を比較演算し該出力が最大になる上記外
部磁界の強度を検出して電子ビームのランデイング状態
を測定する演算手段とを備えたことを特徴とするカラー
ブラウン管のランデイング特性測定装置。 2 前記副偏手段をカラーブラウン管のネツクに設置し
たことを特徴とする特許請求の範囲第1項記載のカラー
ブラウン管のランデイング特性測定装置。 3 前記副偏手段をカラーブラウン管の管面上に設置し
たことを特徴とする特許請求の範囲第1項記載のカラー
ブラウン管のランデイング特性測定装置。
[Scope of Claims] 1. Monochromatic light emitting means for causing the entire tube surface of a color cathode ray tube to emit monochrome light via a television circuit, and auxiliary displacement means for displacing the electron beam on the tube surface by applying an external magnetism;
an optical filter that is installed opposite to the tube surface and allows only monochromatic light to pass; a photoelectric conversion element that outputs an electrical signal according to the output light of the optical filter; and an external magnetic field applied to the electron beam by the sub-polarization means. A color cathode ray tube characterized in that the color cathode ray tube is equipped with a calculation means for comparing and calculating the output of the photoelectric conversion element for various values, detecting the intensity of the external magnetic field at which the output becomes maximum, and measuring the landing state of the electron beam. Landing characteristics measuring device. 2. The landing characteristic measuring device for a color cathode ray tube according to claim 1, wherein the sub-biasing means is installed at a neck of the color cathode ray tube. 3. The landing characteristic measuring device for a color cathode ray tube according to claim 1, wherein the sub-biasing means is installed on a tube surface of the color cathode ray tube.
JP13704278A 1978-11-06 1978-11-06 Color cathode ray tube landing characteristic measuring device Expired JPS6038818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13704278A JPS6038818B2 (en) 1978-11-06 1978-11-06 Color cathode ray tube landing characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13704278A JPS6038818B2 (en) 1978-11-06 1978-11-06 Color cathode ray tube landing characteristic measuring device

Publications (2)

Publication Number Publication Date
JPS5563180A JPS5563180A (en) 1980-05-13
JPS6038818B2 true JPS6038818B2 (en) 1985-09-03

Family

ID=15189496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13704278A Expired JPS6038818B2 (en) 1978-11-06 1978-11-06 Color cathode ray tube landing characteristic measuring device

Country Status (1)

Country Link
JP (1) JPS6038818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667133U (en) * 1993-03-03 1994-09-20 愛知機械工業株式会社 Side visor mounting structure
US10667962B2 (en) 2014-11-06 2020-06-02 The Procter & Gamble Company Patterned apertured webs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298938A (en) * 1987-05-28 1988-12-06 Matsushita Electric Ind Co Ltd Purity regulating device
JPH01190194A (en) * 1988-01-26 1989-07-31 Mitsubishi Electric Corp Color purity measuring device
JP2751182B2 (en) * 1988-02-23 1998-05-18 ソニー株式会社 Landing measurement apparatus and method for color picture tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667133U (en) * 1993-03-03 1994-09-20 愛知機械工業株式会社 Side visor mounting structure
US10667962B2 (en) 2014-11-06 2020-06-02 The Procter & Gamble Company Patterned apertured webs
US10786401B2 (en) 2014-11-06 2020-09-29 The Procter & Gamble Company Apertured topsheets and methods for making the same
US10973705B2 (en) 2014-11-06 2021-04-13 The Procter & Gamble Company Apertured webs and methods for making the same
US11090202B2 (en) 2014-11-06 2021-08-17 The Procter & Gamble Company Apertured webs and methods for making the same
US11135103B2 (en) 2014-11-06 2021-10-05 The Procter & Gamble Company Apertured webs and methods for making the same
US11324645B2 (en) 2014-11-06 2022-05-10 The Procter & Gamble Company Garment-facing laminates and methods for making the same
US11633311B2 (en) 2014-11-06 2023-04-25 The Procter & Gamble Company Patterned apertured webs

Also Published As

Publication number Publication date
JPS5563180A (en) 1980-05-13

Similar Documents

Publication Publication Date Title
JPH0342553B2 (en)
JPS6038818B2 (en) Color cathode ray tube landing characteristic measuring device
JPS6246942B2 (en)
JP2835333B2 (en) Electron beam position measurement method
US4152599A (en) Method for positioning a workpiece relative to a scanning field or a mask in a charged-particle beam apparatus
US4988857A (en) Misconvergence measuring apparatus
JPH043829B2 (en)
KR100402396B1 (en) method for 3D magnetic field visulysing and system for performing the same
JPS5840391B2 (en) beam
KR19980061387A (en) Performance tester and method of screen measuring device
JP2845906B2 (en) Apparatus and method for measuring color purity
JPS5887973A (en) Evaluating device for color purity
SU1193725A1 (en) Device for displaying beam positioning error on screen of cathode-ray tube (crt)
KR830002855B1 (en) Distance Measuring Device of Scanning Electron Microscope
SU960998A1 (en) Method of measuring the response of crt to deflection
JPH0815045B2 (en) CRT landing measuring instrument
JP3250287B2 (en) Method and apparatus for measuring displacement of beam spot of cathode ray tube
KR940009313B1 (en) Landing error measuring device of color braun tube
KR920005023B1 (en) Measuring equipment of convergence aberration
JPS59944B2 (en) Inkiyokusenkanno Akarusa Chiyousei Souchi
JPH0749660A (en) Device for measuring screen address of receiver
KR20000031310A (en) Apparatus for measuring convergence of color cathode-ray tube
JP3217515B2 (en) Spot size measuring device for color cathode ray tube
KR950002575B1 (en) Measuring apparatus and method of color purity of a color cathode-ray tube
SU1003197A1 (en) Method of indicating image portion analysed by dissector