JPS603778B2 - semiconductor integrated circuit - Google Patents

semiconductor integrated circuit

Info

Publication number
JPS603778B2
JPS603778B2 JP52077767A JP7776777A JPS603778B2 JP S603778 B2 JPS603778 B2 JP S603778B2 JP 52077767 A JP52077767 A JP 52077767A JP 7776777 A JP7776777 A JP 7776777A JP S603778 B2 JPS603778 B2 JP S603778B2
Authority
JP
Japan
Prior art keywords
region
integrated circuit
semiconductor
semiconductor integrated
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52077767A
Other languages
Japanese (ja)
Other versions
JPS5413282A (en
Inventor
哲也 高屋敷
正之 河東
俊夫 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP52077767A priority Critical patent/JPS603778B2/en
Publication of JPS5413282A publication Critical patent/JPS5413282A/en
Publication of JPS603778B2 publication Critical patent/JPS603778B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は耐圧の高い素子を、特性を損なうことなく安定
に集積化する事を目的とした半導体集積回路である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a semiconductor integrated circuit which is intended to stably integrate elements with high breakdown voltage without deteriorating their characteristics.

従来の半導体集積回路の構造断面図の一部をダイオード
を例にして第1図に示す。
FIG. 1 shows a part of a structural cross-sectional view of a conventional semiconductor integrated circuit using a diode as an example.

第1図において1は半導体基体、2は基体1とは反導電
型の高耐圧を得るための比較的低不純物濃度をもつ半導
体領域、3は領域2とは反導電型の領域、4は領域2と
同導電型でオーミックコンタクト性を改善するために設
けられた高不純物濃度領域、5は表面保護膜、61と6
2は各々領域3と領域4からの取出し電極配線である。
7は電極配線61に任意の電位が加えられたとき、保護
膜5を介在して電荷が蓄積した領域2における反転層で
ある。
In FIG. 1, 1 is a semiconductor substrate, 2 is a semiconductor region having a relatively low impurity concentration to obtain a high breakdown voltage and is of a conductivity type opposite to that of the substrate 1, 3 is a region of a conductivity type opposite to that of the region 2, and 4 is a region. High impurity concentration region with the same conductivity type as 2 and provided to improve ohmic contact, 5 is a surface protective film, 61 and 6
Reference numerals 2 denote lead-out electrode wirings from regions 3 and 4, respectively.
Reference numeral 7 denotes an inversion layer in the region 2 where charges are accumulated with the protective film 5 interposed when an arbitrary potential is applied to the electrode wiring 61.

一例として領域2及び領域4をn形、領域3をp形とし
た場合電極配線61に負電位Vを加えた状態を考える。
尚、基体1は絶縁物基板でも、もちろんさしつかえない
。絶縁膜5の誘電率をご、厚さをtとすると、領域2と
絶縁膜5の界面には、単位面積あたりQ=vx÷ の正電荷が生ずる。
As an example, consider a state in which a negative potential V is applied to the electrode wiring 61 when regions 2 and 4 are n-type and region 3 is p-type.
Incidentally, the base body 1 may of course be an insulating substrate. Letting the dielectric constant of the insulating film 5 be t, and the thickness of the insulating film 5 to be t, a positive charge of Q=vx÷ is generated per unit area at the interface between the region 2 and the insulating film 5.

領域2が比較的低不純物濃度基板である場合、前記正電
荷Qが大きくなれば、領域2の表面はp形に反転する。
この反転層はリーク源となり、デバイスは種々の不安定
な特性を示す事になる。従釆この欠点を解決するために
は絶縁膜5の誘電率の4・さし、ものを採用したり、厚
さtを大きくしたりする事が試みられてきたが、誘電率
ごは通常の絶縁膜では3・ごo(ごo は真空の譲露率
)以下はむづかしく、厚さtも5ミクロン前後が限度で
、それ以上になると配線が困難であった。
When region 2 is a substrate with relatively low impurity concentration, the surface of region 2 is inverted to p-type as the positive charge Q increases.
This inversion layer becomes a source of leakage, and the device exhibits various unstable characteristics. In order to solve this drawback, attempts have been made to adopt a dielectric constant of 4 mm or increase the thickness t of the insulating film 5, but the dielectric constant is It is difficult for an insulating film to have a thickness of less than 3.0 cm (G o = vacuum yield rate), and the maximum thickness t is around 5 microns, and wiring becomes difficult when it is larger than that.

本発明の目的はこれらの欠点を除去するため、表面保護
膜と配線の間に空気を介在させ、コンデンサとしての値
を小さくする事によって、表面反転層の発生を防止し、
多くの高耐圧デバイスを安定に集積化させた半導体集積
回路に関するもので以下に詳細に述べる。第2図は本発
明の第1の実施例で、1は半導体基体、2は半導体領域
、3は領域2とは反導電型の領域、4は高不純物濃度領
域、5は表面保護膜、61と62は取出し電極配線、8
は本発明による表面保護膜と配線との間の空隙である。
The purpose of the present invention is to eliminate these drawbacks by interposing air between the surface protective film and the wiring to reduce the value of the capacitor, thereby preventing the formation of a surface inversion layer.
This relates to a semiconductor integrated circuit that stably integrates many high-voltage devices, and will be described in detail below. FIG. 2 shows a first embodiment of the present invention, in which 1 is a semiconductor substrate, 2 is a semiconductor region, 3 is a region of the opposite conductivity type to region 2, 4 is a high impurity concentration region, 5 is a surface protective film, 61 and 62 are the extraction electrode wiring, 8
is a gap between the surface protection film and the wiring according to the present invention.

第3A図〜第3C図に本発明の半導体集積回路を簡単に
実現する製造方法の一例を示す。第3A図、第3B図、
第3C図は本発明の半導体集積回路を簡単に実現する製
造方法の一例である。
An example of a manufacturing method for easily realizing the semiconductor integrated circuit of the present invention is shown in FIGS. 3A to 3C. Figure 3A, Figure 3B,
FIG. 3C is an example of a manufacturing method for easily realizing the semiconductor integrated circuit of the present invention.

まず第3A図において11は半導体基体、21は半導体
領域、31は前記領域21と反対電型の領域、41は高
不純物濃度領域、51は表面保護膜、52はエッチング
液たとえば強弗酸に対して、マスク作用が非常に強い膜
、たとえば窒化シリコン膜などが望ましいが、場合によ
っては必ずしも必要としない。次に第3B図の53は、
前記エッチング液に対して、エッチング速度が非常に速
い(数千オングスト。ーム/秒)膜、たとえば高濃度の
りンガラス等が適しており、それを選択的に膜52の上
に残したものである。次に第3C図において63,64
は取出し電極配線である。
First, in FIG. 3A, 11 is a semiconductor substrate, 21 is a semiconductor region, 31 is a region of the opposite electric type to the region 21, 41 is a high impurity concentration region, 51 is a surface protective film, and 52 is an etching liquid such as strong hydrofluoric acid. Therefore, it is desirable to use a film with a very strong masking effect, such as a silicon nitride film, but this is not always necessary depending on the case. Next, 53 in Figure 3B is
A film with a very fast etching rate (several thousand angstroms per second) for the etching solution, such as high concentration phosphorus glass, is suitable and is selectively left on the film 52. be. Next, in Figure 3C, 63, 64
is the extraction electrode wiring.

材料としては一般に広く用いられるアルミニウムが適し
ている。第3C図において、これを膜53のエッチング
液に数秒ひたすことにより第2図に示す構造をとる事が
可能になる。以上説明したように本発明の半導体集積回
路によれば、チャンネル反転によりIJ小ク電流を生ず
る恐れのあるPN接合表面を横切る電極配線は、該配線
と表面保護膜の間に空隙をもうけてあるので、第2図に
示す低木純物濃度の半導体領域2と表面保護膜5の界面
に、配線61のために発生する電荷量が少ない、仮に表
面保護膜5の誘電率を3ごo、厚みをt、第2図におけ
る空隙8の厚さを圭とすれば、第1図ではQ・=C・V
=学xv 第2図では Q2=C2V考X千v となり、第1図の場合にくらべて約言にも低下する。
Aluminum, which is generally widely used, is suitable as a material. In FIG. 3C, the structure shown in FIG. 2 can be obtained by immersing the film 53 in an etching solution for several seconds. As explained above, according to the semiconductor integrated circuit of the present invention, the electrode wiring that crosses the PN junction surface, which may cause a small IJ current due to channel inversion, has a gap between the wiring and the surface protective film. Therefore, the amount of charge generated due to the wiring 61 at the interface between the semiconductor region 2 and the surface protection film 5, which has a low purity concentration as shown in FIG. If t is the thickness of the air gap 8 in FIG. 2, then Q・=C・V in FIG.
= Science xv In Fig. 2, Q2 = C2V x 1,000v, which is even lower than in the case of Fig. 1.

逆に言えば本発明によれば、従来の3倍の耐圧をもつデ
バイスを安定に集積化できる事になる。
Conversely, according to the present invention, it is possible to stably integrate a device with a breakdown voltage three times that of the conventional device.

さらに本発明の半導体集積回路をエッチング液に弗酸、
中間膜に高濃度リンガラス、配線材料にアルミニウムで
構成すれば、一般に集積回路製造に用いられているもの
だけで構成されているので製造が容易である。エッチン
グ方法は強弗酸で数秒のエッチング時間で終らせるのが
良好な結果が得られる。第1の実施例はダイオードを例
にとったが、第4図に示すように絶縁物基板12内に形
成された低不純物濃度領域22中に該領域22と反対導
電型の領域32が形成され、その周囲を領域32と同導
電型領域33が閉じた形で存在する場合がある。
Furthermore, the semiconductor integrated circuit of the present invention is etched with hydrofluoric acid,
If the intermediate film is made of high-concentration phosphorus glass and the wiring material is made of aluminum, manufacturing is easy because only materials that are generally used in integrated circuit manufacturing are used. Good results can be obtained by etching using strong hydrofluoric acid and completing the etching in a few seconds. In the first embodiment, a diode is used as an example, but as shown in FIG. In some cases, the region 32 and the region 33 of the same conductivity type exist in a closed manner around the region 32 .

第4図において54は表面保護膜、65,66は霞極取
出し配線で各々領域32と領域33に接続されている。
81は本発明によって形成された空隙である。
In FIG. 4, 54 is a surface protection film, and 65 and 66 are haze electrode wirings connected to the region 32 and the region 33, respectively.
81 is a void formed according to the present invention.

このように領域32が領域33に囲まれて、なおかつ外
部に配線を引出さざるをえない状況では、本発明によら
なければ二つの領域32と33は配線による反転層の発
生によって、相互につながってしまい、全く機能を失っ
てしまう。この場合、本発明による空隙81を形成する
事により、かかる問題は解消される。このように、本発
明はpnpトランジスタ、サイリスタ、ガードリング付
プレーナ素子等に適用する時その効果が大きくなる。本
発明は、表面保護膜と配線との間に空隙を設けているた
め、低不純物濃度の半導体基板表面に反転層が形成され
にくくなるので、高耐圧デバイスを集積化するのに適し
ている。
In this situation where the region 32 is surrounded by the region 33 and the wiring has to be drawn outside, the two regions 32 and 33 would not be able to interact with each other due to the generation of an inversion layer due to the wiring, unless the present invention is adopted. It becomes connected and loses its functionality completely. In this case, this problem can be solved by forming the void 81 according to the present invention. As described above, the present invention becomes more effective when applied to pnp transistors, thyristors, planar elements with guard rings, and the like. The present invention is suitable for integrating high-voltage devices because a gap is provided between the surface protection film and the wiring, making it difficult to form an inversion layer on the surface of a semiconductor substrate with a low impurity concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路の構造断面図、第2図は
本発明による半導体集積回路の構造断面図、第3A図、
第3B図、第3C図は本発明の一実施例を示す半導体集
積回路を簡単に実現する製造例を示す製造工程図、第4
図は本発明の他の実施例の構造断面図である。 1,1 1,12・・・・・・半導体基体または絶縁物
基板、2,21,22・・・・・・比較的低濃度不純物
の半導体領域、3,31,32・・・・・・比較的低濃
度不純物の半導体領域2,21,22とは反導電型の半
導体領域、33…・・・領域32と同導電形で領域32
の周囲を囲む半導体領域、4,41…・・・比較的低濃
度不純物の半導体領域2,21と同導電形で高木純物濃
度の半導体領域、5,51,54・・・・・・表面保護
膜、52・・・・・・弗酸に対してマスク作用の強い絶
縁膜、63・・・・・・弗酸に対してエッチング速度の
速い中間絶縁膜、61,62,63,64,65,66
・・…・半導体領域3,4,31,41,32,33か
らの露極取出し配線、8,81・・・・・・表面保護膜
と軍極取出し配線との間の空隙。 第1図第2図 第3A図 第3B図 第3C図 第4図
FIG. 1 is a structural sectional view of a conventional semiconductor integrated circuit, FIG. 2 is a structural sectional view of a semiconductor integrated circuit according to the present invention, and FIG. 3A.
3B and 3C are manufacturing process diagrams showing a manufacturing example for easily realizing a semiconductor integrated circuit according to an embodiment of the present invention;
The figure is a structural sectional view of another embodiment of the present invention. 1, 1 1, 12... Semiconductor substrate or insulator substrate, 2, 21, 22... Semiconductor region with relatively low concentration impurity, 3, 31, 32... A semiconductor region having a conductivity type opposite to that of the semiconductor regions 2, 21, and 22 with relatively low concentration impurities, 33...A semiconductor region having the same conductivity type as the region 32,
Semiconductor region surrounding 4, 41... Semiconductor region with Takagi purity concentration of the same conductivity type as semiconductor regions 2, 21 with relatively low impurity concentration, 5, 51, 54... Surface Protective film, 52...Insulating film with strong masking effect against hydrofluoric acid, 63...Intermediate insulating film with high etching rate against hydrofluoric acid, 61, 62, 63, 64, 65, 66
...Exposed electrode lead-out wiring from the semiconductor regions 3, 4, 31, 41, 32, 33, 8, 81......Gap between the surface protection film and the military electrode lead-out wiring. Figure 1 Figure 2 Figure 3A Figure 3B Figure 3C Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体表面に密接して形成された絶縁膜上の電
極配線層が、前記基体表面を異なる導電型に区切る複数
のPN接合上を横切って延在する構造の半導体装置に於
て、前記基体表面で終端する前記複数のPN接合で挟ま
れた両側表面の導電型と異なる導電型表面上に形成され
た前記絶縁膜上を横切る部分の前記電極配線層は、該絶
縁膜との間に空隙を有する様に形成された事を特徴とす
る半導体集積回路。
1. In a semiconductor device having a structure in which an electrode wiring layer on an insulating film formed closely on the surface of a semiconductor substrate extends across a plurality of PN junctions that partition the surface of the substrate into different conductivity types, A portion of the electrode wiring layer crossing over the insulating film formed on a surface of a conductivity type different from the conductivity type of the surfaces on both sides sandwiched by the plurality of PN junctions terminating at the surface has a gap between the electrode wiring layer and the insulating film. A semiconductor integrated circuit characterized in that it is formed so as to have the following characteristics.
JP52077767A 1977-07-01 1977-07-01 semiconductor integrated circuit Expired JPS603778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52077767A JPS603778B2 (en) 1977-07-01 1977-07-01 semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52077767A JPS603778B2 (en) 1977-07-01 1977-07-01 semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5413282A JPS5413282A (en) 1979-01-31
JPS603778B2 true JPS603778B2 (en) 1985-01-30

Family

ID=13643083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52077767A Expired JPS603778B2 (en) 1977-07-01 1977-07-01 semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS603778B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828184A (en) * 1971-08-18 1973-04-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828184A (en) * 1971-08-18 1973-04-13

Also Published As

Publication number Publication date
JPS5413282A (en) 1979-01-31

Similar Documents

Publication Publication Date Title
GB1219986A (en) Improvements in or relating to the production of semiconductor bodies
EP0615286B1 (en) Semiconductor device provided with isolation region
JPS6276645A (en) Structure of composite semiconductor crystal
KR960030438A (en) Semiconductor device and manufacturing method thereof
JP3818673B2 (en) Semiconductor device
JPH0441500B2 (en)
JPH0656865B2 (en) Adhesive substrate for high voltage devices
JPS603778B2 (en) semiconductor integrated circuit
JPS6146972B2 (en)
JP2840488B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2826239B2 (en) Capacitor
JPH03155659A (en) Semiconductor device
JPH0441499B2 (en)
JPS5853864A (en) Seiconductor variable capacitance element
JPS63122147A (en) Semiconductor device
JP3049703B2 (en) Planar type semiconductor device and method of manufacturing the same
JPS61127157A (en) Semiconductor device
JPH0312458B2 (en)
JPS6244430B2 (en)
JP2917428B2 (en) Semiconductor integrated circuit device
JPH05243502A (en) Integrated circuit
JPH0653310A (en) Semiconductor device and its manufacture method
JPH01201937A (en) Semiconductor device
JPS6333306B2 (en)
JPH0558256B2 (en)