JPS6037186B2 - Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability - Google Patents

Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability

Info

Publication number
JPS6037186B2
JPS6037186B2 JP9819177A JP9819177A JPS6037186B2 JP S6037186 B2 JPS6037186 B2 JP S6037186B2 JP 9819177 A JP9819177 A JP 9819177A JP 9819177 A JP9819177 A JP 9819177A JP S6037186 B2 JPS6037186 B2 JP S6037186B2
Authority
JP
Japan
Prior art keywords
weight
final
temperature
deep drawing
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9819177A
Other languages
Japanese (ja)
Other versions
JPS5432113A (en
Inventor
秀彦 石井
晴樹 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP9819177A priority Critical patent/JPS6037186B2/en
Publication of JPS5432113A publication Critical patent/JPS5432113A/en
Publication of JPS6037186B2 publication Critical patent/JPS6037186B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は深絞り加工性の優れた山一Mn−Mg合金硬質
板の製造方法に関し、特に所謂D1(DeepDraw
ing & Ironing)缶材として優れた特性を
有するN−Mn−Mg合金硬質板の適切な製造方法を提
供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a Yamaichi Mn-Mg alloy hard plate having excellent deep drawability, and in particular to a method for producing a so-called D1 (DeepDraw) hard plate.
The purpose of the present invention is to provide an appropriate method for manufacturing an N-Mn-Mg alloy hard plate having excellent properties as a can stock.

所謂DI缶用のアルミニウム合金板には深絞り加工後に
しごき加工が行われるため高い強度を有し、深絞り耳率
の低いこと(例えば4%以下)が要求されると共に加工
時に肌荒れを発生せず、又加工も容易であること等の深
絞り加工に通した諸特性が要求されておりこれらの要望
に即応したアルミニウム合金としてMn:1.0〜1.
5重量%,Mg:0.8〜1.丸重量%,Feo.2〜
0.7重量%,Si:0.1〜0.3重量%を含有し、
必要に応じてTi:0.05重量%以下、B:0.05
重量%以下、Cu:0.2重量%以下の何れか1種又は
2種以上を含有し、残部がAI及び不可避不純物から成
るアルミニウム合金が開発されており、主としてAA3
004合金なる名称の下に利用されている。
Aluminum alloy plates for so-called DI cans are ironed after deep drawing, so they are required to have high strength and have a low deep drawing selvage ratio (for example, 4% or less), as well as to prevent surface roughness during processing. In addition, there are demands for various properties that are suitable for deep drawing, such as ease of processing, and aluminum alloys with Mn: 1.0 to 1.0 are required to meet these demands.
5% by weight, Mg: 0.8-1. Round weight %, Feo. 2~
0.7% by weight, Si: 0.1 to 0.3% by weight,
Ti: 0.05% by weight or less, B: 0.05 as necessary
Aluminum alloys have been developed that contain one or more of Cu: 0.2% by weight or less, with the balance consisting of AI and unavoidable impurities.
It is utilized under the name 004 alloy.

なおこの合金においてMn,Mg,Fe,Siの各組成
範囲は各成分間の相互作用をも考慮して強度、限界絞り
比、耳率バラッキの減少、肌荒れやフローマーク発生防
止等の観点から求められたものであり、TiおよびBは
結晶微細化剤として添加され、又Cuは籾性並びに深絞
り性向上のために添加されるものである。ところでこの
合金は上記したような特性を有するとしても熱処理条件
や加工条件によって製品特性が種々変化し、例えば均質
処理→熱間圧延→冷間圧延→中間暁純→最終冷間圧延→
製品というような工程において製造されている従来一般
法の場合において適正な製品強度を得るために冷間加工
率を上げると圧延450方位の耳が大きく増大し又加工
性を良好にするために碗鈍を行うと肌荒れを発生したり
するようなこととなり、特に実施的に4%以下の深絞り
耳率のものを安定的に得ることが困難であるという不備
を有する。本発明は前述したような実情に鑑み検討を重
ねて創案されたものであって、上記したような合金組成
のアルミニウム合金を例えば均質化処理→熱間圧延→冷
間圧延した後に部分燐鈍工程を行い、次いで軽度の袷間
圧延及び最終焼鈍工程を経て最終冷間圧延をなして製品
とするものであり、しかもこの場合において以下に述べ
るような各条件を満足する条件下において施すことによ
り深絞り加工性の優れたアルミニウム合金硬質板を安定
的に得るものである。即ち上記したような組成を有する
アルミニウム合金塊を熱間圧延するに先だって、1段又
は多段で加熱することにより530〜61000の温度
で1〜24時間均質化処理を行う。
The composition ranges of Mn, Mg, Fe, and Si in this alloy are determined from the viewpoints of strength, critical drawing ratio, reduction of selvage variation, prevention of rough skin and flow marks, etc., taking into account the interaction between each component. Ti and B are added as crystal refiners, and Cu is added to improve grain quality and deep drawability. By the way, even if this alloy has the above-mentioned properties, the product properties vary depending on the heat treatment conditions and processing conditions. For example, homogeneous treatment → hot rolling → cold rolling → intermediate cold rolling → final cold rolling →
In the conventional general method for manufacturing products, increasing the cold working rate in order to obtain appropriate product strength greatly increases the selvage in the 450 direction of rolling. If blunting is performed, the surface may become rough, and in particular, it is difficult to stably obtain a deep-drawn selvage ratio of 4% or less in practice. The present invention was devised after repeated studies in view of the above-mentioned circumstances, and includes an aluminum alloy having the above-mentioned alloy composition, which is subjected to, for example, homogenization treatment, hot rolling, cold rolling, and then a partial phosphorous annealing process. The product is then subjected to light cross-rolling and final annealing to produce a final cold-rolled product, and in this case, the product is deep-rolled by performing it under conditions that satisfy the following conditions. A hard aluminum alloy plate with excellent drawing workability can be stably obtained. That is, prior to hot rolling an aluminum alloy ingot having the composition as described above, it is homogenized by heating in one stage or in multiple stages at a temperature of 530 to 61,000 for 1 to 24 hours.

この均質化処理は最終板の強度、鞠性、深絞り加工性の
向上及び深絞り耳率のバラッキ減少等のため有効な処理
であって、それが530午0以下或いは1時間以下の場
合には何れにしても充分な均質化が得られないことより
して最終冷間圧延前の燐鈍時において大きな00〜9び
方位耳を附与することが困難となる。又この均質化処理
が61000以上になると銭塊表面に膨れを生じたりす
ることとなり、しかも2独時間以上加熱しても顕著な効
果が得られない。上記のように均質化処理された鋳塊は
熱間で3〜1仇豚、好ましくは5〜7肋厚まで圧延され
る。
This homogenization treatment is effective for improving the strength, ballability, and deep drawing workability of the final board, as well as reducing variations in the deep drawing edge ratio, and is effective when the homogenization process is less than 530 minutes or less than 1 hour. Since sufficient homogenization cannot be obtained in any case, it becomes difficult to impart a large 00 to 9 azimuth radius during phosphor dulling before final cold rolling. If the homogenization process exceeds 61,000, the surface of the coin will swell, and no significant effect will be obtained even if the coin is heated for more than two hours. The ingot homogenized as described above is hot rolled to a thickness of 3 to 1 mm, preferably 5 to 7 mm.

なお銭塊は通常半連続鋳造によって300〜60仇枕程
度の断面厚さに製造されており、鎌塊の厚さに関係なく
熱間圧延仕上りを前記した3〜1仇伽の範囲とすること
が望まれ、3肌以下では肌荒れが発現し易く又1仇肋以
上では45o方位耳が出やすくなると共にコィリングに
際しての巻取りその他の取扱いも困難になる。上記のよ
うな熱間圧延板は引続き加工率50〜85%の冷間圧延
が施され、適度の加工歪を附与させる。
Note that coin coins are usually manufactured by semi-continuous casting to have a cross-sectional thickness of about 300 to 60 meters, and regardless of the thickness of the coin coins, the hot rolled finish should be in the range of 3 to 1 inch as described above. If it is less than 3 ribs, rough skin tends to occur, and if it is more than 1 rib, 45o azimuth ears are likely to appear and winding and other handling during coiling becomes difficult. The hot-rolled sheet as described above is subsequently cold-rolled at a processing rate of 50 to 85% to impart appropriate processing strain.

この場合の加工率が85%以上であると45o方位耳を
発生させる結晶組織を著しく成長させることになって好
ましくなく、又50%以下では冷間圧延による適当な加
工歪を得ることができない。上記の如くして得られる圧
延材は、本発明において更に部分焼錨、軽度の冷間圧延
及び最終凝鈍工程を経て通常の袷間圧延を行い製品化さ
れることは前記の通りであるが、この部分暁錨は230
〜27000の温度条件で10分から2時間程度行い、
一般にH滋,日24,日2虎脇質処理と言われる調質効
果を発現させ、再結晶化率が25〜75%程度になるよ
うにし最終嬢鎚処理において00〜900方位耳を充分
に得られるようにする。この場合において230℃以下
及び1び分以下ではその処理効果が不充分であり、28
ぴ0以上及び2時間以上の処理では再結晶化が75%以
上となって0〜900方位耳が適切に得られず、又結晶
粒の粗大化を招いて肌荒れの原因となり、何れも好まし
くないこととなる。上記した部分競錨後における軽度の
冷間圧延は5〜35%の範囲で行うことが望ましくそれ
が5%以下および35%以上の場合には何れも最終暁鎚
処理後においてoo〜900方位耳が充分に得られない
ことになる。最終焼鈍は300〜50ぴCの温度条件で
30分以上5時間程度施す。
In this case, if the working rate is 85% or more, the crystal structure that causes the 45o-oriented ears will grow significantly, which is undesirable, and if it is less than 50%, it is impossible to obtain an appropriate working strain due to cold rolling. As mentioned above, in the present invention, the rolled material obtained as described above is further subjected to partial sintering, mild cold rolling, and final solidification steps, and then subjected to normal cross-rolling to be manufactured into a product. , this part of Akatsuki Anchor is 230
It is carried out for about 10 minutes to 2 hours at a temperature of ~27,000℃,
In general, a refining effect called ``H, 24, and 2 Kowaki treatment'' is expressed, and the recrystallization rate is about 25 to 75%, and the 00 to 900 direction ears are sufficiently removed in the final round treatment. make sure you get it. In this case, the treatment effect is insufficient at temperatures below 230°C and below 1 minute;
If the treatment is for more than 0 pi or for more than 2 hours, recrystallization will be more than 75%, making it impossible to properly obtain 0-900 azimuth ears, and will also lead to coarsening of crystal grains, causing rough skin, both of which are undesirable. It happens. It is desirable that the mild cold rolling after the above-mentioned partial racing anchor be carried out in the range of 5 to 35%, and if it is less than 5% or more than 35%, after the final Akatsuma process, it will be 0 to 900 azimuth rolling. This means that you will not be able to obtain enough. The final annealing is performed at a temperature of 300 to 50 picoC for 30 minutes or more and about 5 hours.

即ち上記したような各工程における効果とこの最終嬢銘
とが相挨つて次の袷間圧延においてoo〜90o方位耳
が1〜5%程度発現するようにした後加工度50〜90
%の最終冷間圧延を行う。これによって450耳が発現
しても前工程までに附与された00〜900方位耳と相
殺し全体として所望の4%以下の深絞り耳率を有する板
材が得られることとなると同時に所望の強度と加工性を
有する板材が得られる。然して上記のような工程を経し
めることにより深絞り耳率4%以下の板材を安定的に得
ることができるが、斯かる板材に関して本発明者等が検
討した結果、肌荒れ条件についてはなお必ずしも好まし
いものとなっておらずこの原因について追求を重ねた結
果、最終焼鎚工程においては競錨温度への昇温速度が重
要な因子となっており、均質化処理条件との関連の上で
適当な条件に設定されないと製品に肌荒れが発生するこ
とを知った。
In other words, the effects of each step as described above and this final mark are combined to produce a 1 to 5% oo to 90o orientation selvage in the next rolling.
% final cold rolling. As a result, even if the 450 selvage is produced, it is offset by the 00 to 900 azimuth selvage imparted in the previous process, and a board having the desired deep-drawn selvage ratio of 4% or less is obtained as a whole, and at the same time, the desired strength is obtained. A plate material with workability is obtained. Although it is possible to stably obtain a plate material with a deep-drawn selvage ratio of 4% or less by going through the above process, as a result of the inventors' studies regarding such a plate material, it is not necessarily preferable for rough skin conditions. As a result of repeated investigations into the cause of this problem, it was found that the rate of temperature rise to the competitive anchor temperature is an important factor in the final shogun process, and an appropriate I learned that if the conditions are not met, the product will cause skin irritation.

即ち530〜6100Cの均質化処理を施した場合にお
いて最終焼鈍工程における昇温速度が35qo/hr以
上でないと再結晶の粗大化が生じ、このため肌荒れとな
ることが確認された。即ち530〜57ぴ0の均質化処
理を施した場合においてこの傾向が著しく、この場合に
おいては100qC/hr以上の昇温速度とすることが
望ましい。なおこの昇温速度3ず○/hrを達成する方
法としては熱風炉、電熱炉、ソルトバス炉、蓮続焼鈍炉
を適宜に使用すればよい。上記したような本発明のN−
Mn−Mg合金硬質板を製造する具体的な実施例を示す
と以下の如くである。
That is, it was confirmed that when homogenization treatment at 530 to 6100 C was performed, if the temperature increase rate in the final annealing step was not 35 qo/hr or more, coarsening of recrystallization would occur, resulting in rough skin. That is, this tendency is remarkable when a homogenization treatment of 530 to 57 psi is performed, and in this case, it is desirable to set the temperature increase rate to 100 qC/hr or more. Note that as a method for achieving this temperature increase rate of 3 mm/hr, a hot blast furnace, an electric heating furnace, a salt bath furnace, or a Rentsugi annealing furnace may be appropriately used. N- of the present invention as described above
A specific example of manufacturing a Mn-Mg alloy hard plate is as follows.

実施例 1 Mn:1.09重量%,Mg:1.2丸重量%,Fe:
0.49重量%,Si:0.2箱重量%,Ti:0.0
4重量%を含有したアルミニウム合金で厚さ508肋の
DC銭塊を550qCで7.即時間の均質処理を行ない
、5.8凧まで熱間圧延した。
Example 1 Mn: 1.09% by weight, Mg: 1.2% by weight, Fe:
0.49 weight%, Si: 0.2 box weight%, Ti: 0.0
A DC coin coin with a thickness of 508 ribs made of aluminum alloy containing 4% by weight was heated at 550qC for 7. Immediate homogenization was carried out and hot rolled to 5.8 mm.

この熱間圧延開始温度は540℃で、又終了温度は32
ぴ○であった。このものは次に加工率75%の冷間圧延
をなして後5水準の温度条件で30分間の部分燐鈍およ
び7水準の軽度の冷間圧延を施し、更に熱風炉で100
qo/hrの昇温速度で温度上昇せしめ400午○で1
時間の最終燐鈍を行い、その後加工率68%の最終冷間
圧延を行い、0.42肌の板材を得た。上記のようにし
て得られた最終燐鈍後の板材について深絞り試験をなし
得られた結果は次の第1表に示す通りである。
The hot rolling start temperature is 540°C, and the finishing temperature is 32°C.
It was perfect. This material was then cold-rolled at a processing rate of 75%, then partially phosphorous-annealed for 30 minutes at 5-level temperature conditions and mildly cold-rolled at 7-level temperature conditions, and further heated to 100% in a hot air oven.
Raise the temperature at a heating rate of qo/hr to 1 at 400 pm.
A final phosphor dulling process was carried out for an hour, and then a final cold rolling process was carried out at a processing rate of 68% to obtain a plate material with a skin thickness of 0.42. A deep drawing test was performed on the final phosphor-annealed plate material obtained as described above, and the results are shown in Table 1 below.

第1表 最終燐鈍処理材の深絞り耳率 〔注〕00−900方位耳を十の数字で、450方位耳
を−の数字で示した。
Table 1: Deep-drawn selvage ratio of final phosphorus-blunt treated material [Note] 00-900 azimuth selvage is indicated by a numeral 10, and 450 azimuth selvage is indicated by a - number.

第2表も同様である。なお深絞り耳率測定のための条件
はポンチ径50肋?、絞り率52%、ダイスクリアラン
ス19%、しわ押え荷重1000k9である。
The same applies to Table 2. Also, is the condition for measuring the deep drawing selvage rate a punch diameter of 50 ribs? , a drawing ratio of 52%, a die clearance of 19%, and a wrinkle presser load of 1000k9.

即ちこの第1表によれば部分焼鉾部村(冷間圧延加工率
0%)は45o方位耳が大きく願われるのに対して部分
競錨に続いて軽度の冷間圧延を施したその他のものは0
0〜900方位耳の形成される金属組織の生成すること
を理解でき、しかもこのoo〜90o方位耳を適度に発
現させるためには冷却暁錨温度範囲が220〜270q
oで且つ竪度冷間圧延加工率が5〜35%の範囲にある
ことが好ましいことを理解できる。又その最終冷間圧延
材についての深絞り耳率測定結果は次の第2表の通りで
ある。第2表 最終冷間圧延材の深絞り耳率 注 ×印は深絞りが不可能であった。
In other words, according to Table 1, 45o azimuth lugs are greatly desired for partially baked hokobemura (cold rolling processing rate 0%), whereas other types that have been partially cold rolled and then lightly cold rolled are Things are 0
It can be understood that a metal structure with 0 to 900 azimuth ears is formed, and in order to moderately develop this oo to 90 o azimuth ears, the cooling anchor temperature range is 220 to 270q.
It can be understood that it is preferable that the vertical cold rolling processing rate be in the range of 5 to 35%. Further, the deep drawing selvage ratio measurement results for the final cold rolled material are shown in Table 2 below. Table 2 Deep drawing selvage ratio of final cold-rolled material Note: Deep drawing was not possible with × marks.

蓋しこの第2表によれば、適当な方位耳を発現させる範
囲が第1表の場合より若干狭く部分嬢鎚温度230〜2
70qo(軽度冷間加工率は5〜35%)の範囲である
ことが理解され、これによって00〜900方位耳も発
現すると同時に450方位耳の現われ方の減少させるこ
とができることが明かである。
According to Table 2 of the cover, the range in which an appropriate direction ear is developed is slightly narrower than that of Table 1, with a partial hammer temperature of 230 to 2.
70qo (light cold working rate is 5 to 35%), and it is clear that this makes it possible to develop the 00 to 900 azimuth selvage while at the same time reducing the appearance of the 450 azimuth selvage.

実施例 2 実施例1におけると同一組成、同一サイズのDC銭塊を
次の第3表に示すような条件で均質化処理および熱間圧
延し、5.8側厚の板材を得た。
Example 2 A DC coin coin having the same composition and size as in Example 1 was homogenized and hot rolled under the conditions shown in Table 3 below to obtain a plate material with a side thickness of 5.8 mm.

3 この熱間圧延板に加工率75%の冷間圧延260℃で3
び分間の部分焼鈍及び加工率13%の軽度冷間圧延を施
した後、昇温速度を毎時10qo,25qo,35℃,
10000及び1000qCに変えて40000に昇温
後2時間保持する最終焼銘を行い、更に加工率67%の
冷間圧延を行って0.42肋厚の板を得た。
3 This hot rolled plate was cold rolled at 260°C with a processing rate of 75%.
After partial annealing and mild cold rolling at a processing rate of 13%, the temperature increase rate was changed to 10 qo/hour, 25 qo/hour, 35°C,
The temperature was changed to 10,000 and 1,000 qC, then the final branding was performed by raising the temperature to 40,000 and holding it for 2 hours, followed by cold rolling at a processing rate of 67% to obtain a plate with a rib thickness of 0.42.

この板について深絞り試験を実施例1におけると同様に
行い肌荒れの程度を測定した結果は次の第4表の通りで
ある。第4表 肌荒れ測定結果 〔注〕 ○・・・肌荒れなし、×・・・肌荒れ有り、■
・・・僅かに肌荒れ、△・・・やや肌荒れ有り即ちこの
第4表に示されるように深絞り時の肌荒れ防止には最終
焼鈍時の昇温速度を35qo/hr以上にすることが望
ましく、それによって最終燐鈍終了時における結晶の大
きさを30〜100r程度にとどめることが可能となり
肌荒れの防止を図ることができる。
A deep drawing test was conducted on this plate in the same manner as in Example 1, and the degree of roughness of the surface was measured. The results are shown in Table 4 below. Table 4 Skin roughness measurement results [Note] ○...No rough skin, ×...Rough skin, ■
...Slightly rough skin, △...Slightly rough skin. In other words, as shown in Table 4, to prevent rough skin during deep drawing, it is desirable to increase the temperature at a rate of 35 qo/hr or more during final annealing. As a result, it is possible to keep the size of the crystals at the end of the final phosphorous dulling to about 30 to 100 r, and it is possible to prevent rough skin.

以上説明したような本発明によるときは深絞り加工に耐
える高い強度と共に深絞り耳率が低く、又加工時に肌荒
れを生ずることのない適切なAI−Mn−Mg合金硬質
板を的確に得しめることができるものであって工業的に
その効果の大きい発明である。
According to the present invention as explained above, it is possible to accurately obtain an appropriate AI-Mn-Mg alloy hard plate that has high strength that can withstand deep drawing processing, has a low deep drawing selvage rate, and does not cause roughness during processing. This invention is industrially highly effective.

Claims (1)

【特許請求の範囲】 1 Mn:1.0〜1.5重量%,Mg:0.8〜1.
3重量%,Fe:0.2〜0.7重量%,Si:0.1
〜0.3重量%を含有し、必要に応じてTi:0.05
重量%以下、B:0.05重量%以下、Cu:0.2重
量%以下の1種又は2種以上を含有し、残部がAlから
なるアルミニウム合金鋳塊を1段又は多段加熱すること
により530℃〜610℃の温度で1〜24時間のの均
質化処理を施した後3〜10mm厚に熱間圧延し、引続
き加工率50〜85%の冷間圧延並びに230〜270
℃で10分〜2時間の部分焼鈍を行い、次いで加工率5
〜35%の軽度の冷間圧延をなしてから35℃/hr以
上の昇温速度で300〜500℃の温度まで昇温せしめ
て30分以上の最終焼鈍を施し、更に加工率50〜90
%の最終冷間圧延を施すことを特徴とする深絞り加工性
の優れたAl−Mn−Ag合金硬質板の製造方法。 2 均質化処理を530〜570℃で行い、最終焼鈍時
の昇温速度を100℃/hr以上とする特許請求の範囲
第1項に記載の深絞り加工性の優れたAl−Mn−Mg
合金硬質板の製造方法。
[Claims] 1 Mn: 1.0-1.5% by weight, Mg: 0.8-1.
3% by weight, Fe: 0.2-0.7% by weight, Si: 0.1
~0.3% by weight, optionally containing Ti: 0.05
By heating an aluminum alloy ingot containing one or more of B: 0.05% by weight or less, Cu: 0.2% by weight or less, and the remainder consisting of Al in one or multiple stages. After homogenization treatment at a temperature of 530°C to 610°C for 1 to 24 hours, hot rolling to a thickness of 3 to 10 mm, followed by cold rolling at a processing rate of 50 to 85% and 230 to 270 mm.
Partial annealing was performed at ℃ for 10 minutes to 2 hours, and then the processing rate was 5.
After performing a mild cold rolling of ~35%, the material was heated to a temperature of 300 to 500°C at a heating rate of 35°C/hr or more, and subjected to final annealing for 30 minutes or more, and further processed at a processing rate of 50 to 90.
A method for producing an Al-Mn-Ag alloy hard plate having excellent deep drawing workability, the method comprising subjecting the plate to a final cold rolling of %. 2. Al-Mn-Mg with excellent deep drawability according to claim 1, wherein the homogenization treatment is performed at 530 to 570°C and the temperature increase rate during final annealing is 100°C/hr or more.
Method for manufacturing hard alloy plates.
JP9819177A 1977-08-18 1977-08-18 Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability Expired JPS6037186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9819177A JPS6037186B2 (en) 1977-08-18 1977-08-18 Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9819177A JPS6037186B2 (en) 1977-08-18 1977-08-18 Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability

Publications (2)

Publication Number Publication Date
JPS5432113A JPS5432113A (en) 1979-03-09
JPS6037186B2 true JPS6037186B2 (en) 1985-08-24

Family

ID=14213108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9819177A Expired JPS6037186B2 (en) 1977-08-18 1977-08-18 Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability

Country Status (1)

Country Link
JP (1) JPS6037186B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856016B2 (en) * 1980-03-31 1983-12-13 住友軽金属工業株式会社 Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers
JPS58224142A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate with superior formability and its manufacture
JPH01263241A (en) * 1988-04-13 1989-10-19 Sky Alum Co Ltd Aluminum alloy for stretching and its manufacture

Also Published As

Publication number Publication date
JPS5432113A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JPS6037186B2 (en) Manufacturing method of Al-Mn-Mg alloy hard plate with excellent deep drawing workability
CN109554591A (en) A kind of Kato is alloy plate strip and its manufacturing method with 5
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP2521330B2 (en) Manufacturing method of high formability aluminum alloy hard plate
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JPH04313403A (en) Manufacture of aluminum alloy plate for forming
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0257128B2 (en)
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2593479B2 (en) Manufacturing method of aluminum alloy material for forming
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
JP3051237B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPS61170549A (en) Production of aluminium foil
JPH0730405B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPS5856732B2 (en) Manufacturing method for full process non-oriented silicon steel sheet with extremely low iron loss
JP3474586B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3358138B2 (en) Method for producing semi-process non-oriented electrical steel sheet with excellent isotropic magnetic properties
JP3222048B2 (en) Manufacturing method of high purity ferritic stainless steel sheet with excellent ridging characteristics
JPS634024A (en) Production of cold rolled steel sheet for deep drawing from thin cast strip
JPS6075519A (en) Manufacture of cold rolled steel sheet for continuous annealing
JPS5830926B2 (en) Manufacturing method of semi-processed non-oriented silicon steel sheet with excellent electromagnetic properties