JPS5856016B2 - Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers - Google Patents
Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangersInfo
- Publication number
- JPS5856016B2 JPS5856016B2 JP55040198A JP4019880A JPS5856016B2 JP S5856016 B2 JPS5856016 B2 JP S5856016B2 JP 55040198 A JP55040198 A JP 55040198A JP 4019880 A JP4019880 A JP 4019880A JP S5856016 B2 JPS5856016 B2 JP S5856016B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid passage
- aluminum alloy
- heat exchangers
- alloy extruded
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Extrusion Of Metal (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
【発明の詳細な説明】
本発明は、熱交換器用アルミニウム合金押出形材および
その製造法に関するもので、より詳細には熱交換器とし
ての耐蝕性に優れ、かつ押出性および曲げ加工性を改善
したアルミニウム熱交換器の流体通路材に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy extruded shape for heat exchangers and a method for manufacturing the same, and more specifically, it has excellent corrosion resistance as a heat exchanger, and has improved extrudability and bending workability. The present invention relates to fluid passage materials for aluminum heat exchangers.
近年、運輸機器、産業機器関係でアルミニウム製熱交換
器の用途が著しく拡大されている。In recent years, the use of aluminum heat exchangers in transportation equipment and industrial equipment has expanded significantly.
これらはろう付けで製造されることが多く、部材の一部
にAl−8i系のろう合金をクラッドしたプレージング
シートが用いられている。These are often manufactured by brazing, and a plating sheet clad with an Al-8i brazing alloy is used as a part of the member.
例えば自動車用のカーエアコンでは、作動流体(例えば
フレオンガス)通路材に純アルミニウムの管材(形材も
含)が、又、空気側の冷却フィンにAl−M n、 A
l−Mg−8i系合金を心材とし、Al−8i )Al
Si −Mg系合金を皮材とするプレージングシートが
用いられている。For example, in a car air conditioner for an automobile, the working fluid (e.g. Freon gas) passage material is pure aluminum pipe material (including shapes), and the cooling fins on the air side are made of Al-Mn, A.
l-Mg-8i alloy as core material, Al-8i) Al
A plating sheet whose skin material is a Si-Mg alloy is used.
しかしながら、かかる熱交換器が厳しい腐食環境で使用
されると、流体通路材の外側(空気側)より孔食を生じ
、作動流体の漏洩を起すことがある。However, when such a heat exchanger is used in a severely corrosive environment, pitting corrosion may occur from the outside (air side) of the fluid passage material, resulting in leakage of the working fluid.
これを図面によって説明すると、第1図において、1は
流体通路材、2はフィンであり、両者はフィレット部3
によって真空ろう付けされているが、従来の構成材料で
はフィレット部3の電位が貴となり、流体通路材1側が
アノードとなって、腐食電流が矢印の如く流れ、流体通
路材2に孔食4が発生する。To explain this using drawings, in FIG. 1, 1 is a fluid passage member, 2 is a fin, and both are fillet portions 3
However, with conventional constituent materials, the potential of the fillet portion 3 becomes noble, the fluid passage material 1 side becomes an anode, a corrosion current flows as shown by the arrow, and pitting corrosion 4 occurs in the fluid passage material 2. Occur.
かかる孔食の防止法としてフィンに卑な電位をもつアル
ミニウム合金(例えばAl−Zn1AlSn系)を使用
し、その犠牲陽極作用によって、流体通路材を防食する
ことが検討されている。As a method for preventing such pitting corrosion, it has been considered to use an aluminum alloy (for example, Al-Zn1AlSn system) having a base potential for the fins, and to prevent the fluid passage material from corroding by its sacrificial anode action.
そして例えばA3003合金は、熱交換器用ユニットと
しての耐食性はすぐれているが、押出性が悪いため、素
材価格が高く、かつ曲げ加工性が劣るため、製品精度が
悪くなる欠点がある。For example, the A3003 alloy has excellent corrosion resistance as a heat exchanger unit, but it has poor extrudability, resulting in high material costs and poor bending workability, resulting in poor product precision.
本発明は、防食効果をいっそう高め、かつ押出性、曲げ
加工性も良く、安価で製品精度も良好な熱交換器用アル
ミニウム合金押出形材を提供せんとするものである。The present invention aims to provide an aluminum alloy extruded shape for a heat exchanger that further enhances the anticorrosion effect, has good extrudability and bending workability, is inexpensive, and has good product precision.
すなわち、本発明は、M n 0.30〜0.7%、C
u0.07〜0.20%および0.06%以下のTiと
0.05%以下のBとの合計で0.01〜0.06%を
含み、さらにFe≦0.60%、Si≦0.30%、M
g≦0.05%、Cr≦0.05%、Zn≦0.20%
を許容し、ただしFeはSiよりも必ず多く、残りAl
よりなることを特徴とする熱交換器の流体通路材用アル
ミニウム合金押出形材である。That is, in the present invention, M n 0.30 to 0.7%, C
Contains u0.07-0.20% and 0.06% or less Ti and 0.05% or less B in total of 0.01-0.06%, further Fe≦0.60%, Si≦0 .30%, M
g≦0.05%, Cr≦0.05%, Zn≦0.20%
However, Fe is always larger than Si, and the remaining Al
This is an aluminum alloy extruded shape for a fluid passage material of a heat exchanger, characterized by comprising the following.
本発明は又、上記組成の合金材料を500〜620’C
で3時間以上ソーキングした後、押出して製造すること
を特徴とする熱交換器用アルミニウム合金押出形材の製
造法である。The present invention also provides an alloy material having the above composition at a temperature of 500 to 620'C.
This is a method for manufacturing an aluminum alloy extruded shape for a heat exchanger, which is characterized in that the aluminum alloy extruded shape for a heat exchanger is manufactured by soaking for 3 hours or more and then extruding.
本発明に係る合金組成において、Mnは熱交換器におけ
る流体通路材の電位を貴にして、防食フィン材との相対
電位差を大きくして、流体通路材を防食するのに役立た
しめるもので、0.30%より少ないことの効果がなく
、0.7%を超えると押出性および曲げ加工性が低下す
るので好ましくない。In the alloy composition according to the present invention, Mn enhances the potential of the fluid passage material in the heat exchanger and increases the relative potential difference with the anti-corrosion fin material, making it useful for preventing corrosion of the fluid passage material. If it is less than .30%, there is no effect, and if it exceeds 0.7%, the extrudability and bending workability deteriorate, which is not preferable.
CuはMn同様流体通路材としての電位を責にして、そ
の防食に役立つもので、0.07%より少ないことの効
果がなく、0.20%を超えると押出性が低下し、かつ
流体通路材の自己腐食が増大する。Like Mn, Cu is responsible for the potential as a fluid passage material and is useful for its corrosion prevention.If it is less than 0.07%, it has no effect, and if it exceeds 0.20%, the extrudability decreases and the fluid passage material is Self-corrosion of the material increases.
TiとBとは鋳塊の組織を微細化して、その押出性およ
び曲げ加工性を改善するのに役立つ。Ti and B serve to refine the structure of the ingot and improve its extrudability and bendability.
TiとBを両者台せて0.01%より少ないと、上記の
効果はなく、又両者の合計量が0.06%を超えると鋳
造時に化合物を形成して素材欠陥の原因となる。If the total amount of both Ti and B is less than 0.01%, the above effect will not be obtained, and if the total amount of both exceeds 0.06%, a compound will be formed during casting, causing material defects.
F eXS t N Mgs CrlZ nは上限を超
えると押出性を阻害する。F eXS t N Mgs CrlZ When n exceeds the upper limit, extrudability is inhibited.
特にCrは曲げ加工性も阻害し、又、Znは電位を卑に
して、流体通路材の耐食性を劣化させる。In particular, Cr also inhibits bending workability, and Zn makes the potential less noble and deteriorates the corrosion resistance of the fluid passage material.
又、製造法において、500〜620℃で3時間以上ソ
ーキングすることは、これによって共晶組成は溶入化し
、マトリックスで、Mnが適当に凝集して析出し、押出
性を改善し、かつ再結晶粒の粗大化を防止するのに有効
である。In addition, in the manufacturing method, soaking at 500 to 620°C for 3 hours or more causes the eutectic composition to infiltrate, and Mn appropriately aggregates and precipitates in the matrix, improving extrudability and improving re-extrudability. It is effective in preventing coarsening of crystal grains.
これが500’C未満では押出性は著しく劣化し、又、
Mnは微細析出になり過ぎて結晶粒の粗大化を招く。If this temperature is less than 500'C, extrudability deteriorates significantly, and
Mn precipitates too finely, leading to coarsening of crystal grains.
620’Cを超えると、溶融の危険性があって不適当で
ある。If it exceeds 620'C, there is a risk of melting and it is inappropriate.
つぎに本発明の実施例および比較例について説明し、そ
の試験結果について述べる。Next, Examples and Comparative Examples of the present invention will be explained, and the test results will be described.
まず、合金材の化学成分については第1表に示す。First, the chemical composition of the alloy material is shown in Table 1.
上記第1表における嵐1〜嵐20の合金鋳塊を550℃
で8時間ソーキングし、5000Cで25孔を有する多
孔管に押出し、蛇管状に曲げ加工をした。The alloy ingots of Arashi 1 to Arashi 20 in Table 1 above were heated to 550°C.
The product was soaked for 8 hours at 5000C, extruded into a porous tube with 25 holes, and bent into a serpentine tube shape.
そのときの押出性および曲げ加工性についての試験結果
を第2表に示す。The test results for extrudability and bending workability are shown in Table 2.
上記押出形材を作動流体通路部として用い、方フィン材
としては、A I−1,2%Mn−0,05%Sn合金
を心材とし、A7−10%5i−1,5%Mgを皮材と
するプレージングシートを用い、10 ” Torrで
600℃、3分間の真空ろう付けを行なってカーエアコ
ンのエバポレーターを作成した。The above extruded section is used as a working fluid passage, and the fin material is made of AI-1,2%Mn-0,05%Sn alloy as the core material and A7-10%5i-1,5%Mg as the skin. An evaporator for a car air conditioner was made by vacuum brazing a plating sheet at 10'' Torr at 600°C for 3 minutes.
この作動流体通路部の3%NaC1j(pH=3)水溶
液中の電位(v:飽和カロメル電極基準)、並びに腐食
試験の結果を第3表に示す。Table 3 shows the potential of this working fluid passage in a 3% NaClj (pH=3) aqueous solution (v: saturated calomel electrode reference) and the results of the corrosion test.
腐食試験は、3%NaC1(pH=3)水溶液400C
に30分浸漬し、50℃で30分乾燥を1ケ月間くり返
す乾湿交互試験と、4%NaC1(pH=3 )と0.
26&/ 1CuCA!2の溶液40℃を1ケ月間噴霧
するCASS試験とを行なった。Corrosion test was conducted using 3% NaCl (pH=3) aqueous solution at 400C.
A dry-wet alternating test was conducted in which 4% NaCl (pH = 3) and 0.5% NaCl (pH = 3) were immersed in water for 30 minutes and dried at 50°C for 30 minutes for 1 month.
26&/1CuCA! A CASS test was conducted in which a solution of No. 2 was sprayed at 40° C. for one month.
つぎに、嵐1〜7の合金を480℃で8時間ソーキング
し、500℃で25孔を有する多孔管を押出し、蛇管状
に曲げ加工した。Next, the alloys of Arashi 1 to 7 were soaked at 480°C for 8 hours, and a porous tube having 25 holes was extruded at 500°C and bent into a serpentine tube shape.
結果を第4表に示す。The results are shown in Table 4.
以上の試験結果から明らかなとおり、本発明形材は耐食
性が良好であるばかりでなく、押出性、曲げ加工性に優
れている。As is clear from the above test results, the profile of the present invention not only has good corrosion resistance but also excellent extrudability and bending workability.
一方、各成分の組成範囲を外れ、ソーキング温度の低い
ものは所期の目的を達成し得ない。On the other hand, if the composition of each component is out of the range and the soaking temperature is low, the intended purpose cannot be achieved.
本発明に係る形材はカーエアコンのエバポレーター、コ
ンデンサー、オイルクーラーなどに適するが、上記以外
の応用例を挙げるとつぎのとおりである。The shape material according to the present invention is suitable for car air conditioner evaporators, condensers, oil coolers, etc., but application examples other than those mentioned above are as follows.
応用例 1
嵐1〜7の合金鋳塊を600℃で4時間ソーキングし、
520℃で3孔を有する多孔管に押出し、蛇管状に曲げ
加工した。Application example 1 Alloy ingots of Arashi 1 to 7 were soaked at 600℃ for 4 hours,
It was extruded at 520° C. into a porous tube with 3 holes and bent into a serpentine tube shape.
一方、フィン材にはA70.6%M g −0,4%5
i−0,2%Cu合金を心材とし、l?−12%Siを
皮材とするプレージングシートを用い、上記多孔管と5
90℃で5分間フラックスろう付を行なってオイルクー
ラーを作製した。On the other hand, the fin material has A70.6%M g -0.4%5
i-0.2% Cu alloy as core material, l? - Using a plating sheet made of 12% Si as a skin material,
An oil cooler was produced by flux brazing at 90° C. for 5 minutes.
応用例 2
雁1〜7の合金鋳塊を520℃で15時間ソーキングし
、500℃で4孔を有する多孔管に押出し、蛇管状に曲
げ加工した。Application Example 2 Alloy ingots of Ganes 1 to 7 were soaked at 520°C for 15 hours, extruded at 500°C into a porous tube having 4 holes, and bent into a serpentine tube shape.
一方、フィン材にはA l −0,8%Mn−1%Zn
合金を心材とし、kl−10%5i−0,01%B i
−0,005%Beを皮材とするプレージングシート
を用い、上記多孔管とN2ガス雰囲気(露点ニー65℃
以下、酸素濃度=5咽以下)で6000012分間の不
活性ガス雰囲気ろう付を行なってカーエアコンのコンデ
ンサーを作製した。On the other hand, the fin material contains Al-0.8%Mn-1%Zn.
Using alloy as core material, kl-10%5i-0,01%B i
- Using a plating sheet made of 0,005% Be, connect the porous tube to the N2 gas atmosphere (dew point: 65°C).
Hereinafter, a condenser for a car air conditioner was manufactured by performing brazing in an inert gas atmosphere for 6,000,012 minutes at an oxygen concentration of 5 or less.
第1図は従来の熱交換器の腐食状態の説明図である。
1・・・・・・流体通路材、2・・・・・・フィン、レ
ット部、4・・・・・・孔食。
3・・・・・・フイFIG. 1 is an explanatory diagram of the corrosion state of a conventional heat exchanger. 1... Fluid passage material, 2... Fin, let portion, 4... Pitting corrosion. 3...Fui
Claims (1)
.20%および0.06%以下のTiと0.05%以下
のBとの合計で0.01〜0.06%を含み、さらにF
e≦0.60%、SiS2.30%、Mg≦0.05%
、Cr2O,05%、Zn≦0.20%を許容し、ただ
しFeはSiより必ず多く、残りAlよりなることを特
徴とする熱交換器の流体通路材用アルミニウム合金押出
形材。 2 Mn 0.30〜0.7%、Cu O,07〜0
.20%および0.06%以下のTiと0.05%以下
のBとの合計で0.01〜0.06%を含み、ざらにF
e≦0.60%、SiS2.30%、Mg≦0.05%
、Cr2O,05%、Zn≦0.20%を許容し、ただ
しFeはSiより必ず多く、残りl’よりなる合金を5
00〜620°Cで3時間以上ソーキングした後、押出
しで製造することを特徴とする熱交換器の流体通路材用
アルミニウム合金押出形材の製造法。[Claims] I Mn 0.30-0.7%, Cu O, 07-0
.. Contains 0.01 to 0.06% in total of 20% and 0.06% or less of Ti and 0.05% or less of B, and further contains F.
e≦0.60%, SiS2.30%, Mg≦0.05%
, Cr2O, 05%, and Zn≦0.20%, with the exception that Fe is always greater than Si, and the remainder is Al. 2 Mn 0.30-0.7%, CuO, 07-0
.. Contains 0.01 to 0.06% in total of 20% and 0.06% or less Ti and 0.05% or less B, and roughly F
e≦0.60%, SiS2.30%, Mg≦0.05%
, Cr2O, 05%, Zn≦0.20% is allowed, however, Fe is always greater than Si, and the remaining 1' is 5%.
A method for producing an aluminum alloy extruded shape for a fluid passage material of a heat exchanger, which comprises soaking at 00 to 620°C for 3 hours or more and then extruding it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55040198A JPS5856016B2 (en) | 1980-03-31 | 1980-03-31 | Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55040198A JPS5856016B2 (en) | 1980-03-31 | 1980-03-31 | Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56136950A JPS56136950A (en) | 1981-10-26 |
JPS5856016B2 true JPS5856016B2 (en) | 1983-12-13 |
Family
ID=12574077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55040198A Expired JPS5856016B2 (en) | 1980-03-31 | 1980-03-31 | Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5856016B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621535A (en) * | 1985-06-27 | 1987-01-07 | 住友電気工業株式会社 | Composite heat-dissipating structure and manufacture thereof |
JP5906113B2 (en) * | 2012-03-27 | 2016-04-20 | 三菱アルミニウム株式会社 | Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116105A (en) * | 1975-04-04 | 1976-10-13 | Kobe Steel Ltd | A process for producing aluminum alloy sheet for deep drawing |
JPS5425207A (en) * | 1977-07-29 | 1979-02-26 | Mitsubishi Aluminium | Aluminum alloy for thin sheet having good moldability and corrosion resistivity and method of making aluminum alloy thin sheets |
JPS5432113A (en) * | 1977-08-18 | 1979-03-09 | Nitsukei Atsuen Kk | Method of producing allmnnmg alloy hard plate having deep drawability |
-
1980
- 1980-03-31 JP JP55040198A patent/JPS5856016B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116105A (en) * | 1975-04-04 | 1976-10-13 | Kobe Steel Ltd | A process for producing aluminum alloy sheet for deep drawing |
JPS5425207A (en) * | 1977-07-29 | 1979-02-26 | Mitsubishi Aluminium | Aluminum alloy for thin sheet having good moldability and corrosion resistivity and method of making aluminum alloy thin sheets |
JPS5432113A (en) * | 1977-08-18 | 1979-03-09 | Nitsukei Atsuen Kk | Method of producing allmnnmg alloy hard plate having deep drawability |
Also Published As
Publication number | Publication date |
---|---|
JPS56136950A (en) | 1981-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4357397A (en) | Brazing fin stock for use in aluminum base alloy heat exchanger | |
JPH0320594A (en) | Heat exchanger | |
JPS5831267B2 (en) | Manufacturing method of aluminum heat exchanger | |
JP3756439B2 (en) | High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger | |
JPS6248743B2 (en) | ||
JP2000212668A (en) | Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance | |
JPS5856016B2 (en) | Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers | |
JP3759441B2 (en) | High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger | |
JP3863595B2 (en) | Aluminum alloy brazing sheet | |
JPS5824719B2 (en) | Aluminum alloy heat exchanger core with good corrosion resistance and its manufacturing method | |
JPS6261104B2 (en) | ||
JPH0360896B2 (en) | ||
JPH02129333A (en) | Aluminum brazing sheet for heat exchanger | |
JPH1088267A (en) | Aluminum alloy clad fin material and heat exchanger made of aluminum alloy using the clad fin material | |
JP2691069B2 (en) | Heat exchanger with excellent corrosion resistance and heat transfer | |
JPH01152236A (en) | Al alloy for connector | |
JP2768393B2 (en) | Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect | |
JPS61195947A (en) | Core of heat exchanger made of aluminum alloy having good corrosion resistance | |
JPH0142791B2 (en) | ||
JPH0394993A (en) | Tube material made of aluminum alloy and production thereof | |
JPS5812333B2 (en) | Aluminum alloy for heat exchanger tube | |
JPH0142792B2 (en) | ||
JPS63262439A (en) | Aluminum alloy material for heat exchanger | |
JP2006037137A (en) | Highly corrosion resistant aluminum clad material for heat exchanger | |
JPS63186846A (en) | Fin material for aluminum alloyed heat exchanger |