JPS6036921A - Optical load detector - Google Patents

Optical load detector

Info

Publication number
JPS6036921A
JPS6036921A JP14495983A JP14495983A JPS6036921A JP S6036921 A JPS6036921 A JP S6036921A JP 14495983 A JP14495983 A JP 14495983A JP 14495983 A JP14495983 A JP 14495983A JP S6036921 A JPS6036921 A JP S6036921A
Authority
JP
Japan
Prior art keywords
load
light
optical fiber
optical
transmission loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14495983A
Other languages
Japanese (ja)
Inventor
Toru Hasegawa
徹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14495983A priority Critical patent/JPS6036921A/en
Publication of JPS6036921A publication Critical patent/JPS6036921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To improve resistance to noise and provide an excellent insulating characteristic and separability from other system by detecting load with light as a medium by making use of the characteristic of an optical fiber which increases a light transmission loss with a side pressure. CONSTITUTION:Light Lis is made incident into an optical fiber 1a on a load detection side from a light transmitter 2. The light Lo generating a light transmission loss by passing through a load detecting part 5 is transmitted to a light receiver 3a on the load detection side. The same light Lis as 1a is made incident into an optical fiber 1b on a reference light side from the transmitter 2 and the reference light Li generating no loss with load is transmitted to a light receiver 3b on the reference light side having the same characteristic as the receiver 3a. An arithmetic circuit 4 receives the signals Lo', Li' amplified and converted by the receivers 3a, 3b and calculates the load from the light transmission loss by operating log (Lo'/Li'). The part 5 transmits the load to a body 7 for applying a nonuniform side pressure upon receiving load W and applies the nonuniform side pressure to the fiber 1a.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、物体に加えられる力を検出する荷重検出器に
係わり、特に強電、磁界に対する耐雑音性、温度・湿度
等に対する耐環境性に優れ、光情報伝達処理システムの
センナとして整合する荷重検出器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a load detector that detects force applied to an object, and has particularly excellent noise resistance against strong electric currents and magnetic fields, and environmental resistance against temperature, humidity, etc. , relates to a load detector compatible with a sensor of an optical information transfer processing system.

〔発明の背景〕[Background of the invention]

ためには、加えられている力をバネ等によって機械的変
形量に変換して、検出する方法がとられている。
In order to do this, a method is used to convert the applied force into a mechanical deformation amount using a spring or the like and then detect it.

この変形量を荷重に換算するためには、変形量を直接読
み取る方法と、電気量に変換して表示する方法とがある
In order to convert this amount of deformation into a load, there are two methods: directly reading the amount of deformation, and converting it into an electrical quantity and displaying it.

また、荷重による変形量が小さい場合は、力を受ける物
体に生じる歪をストレンゲージによる抵抗変化や磁歪現
象を利用して電気量に変換するような方法が一般にとら
れている。
Furthermore, when the amount of deformation due to a load is small, a method is generally used in which the strain produced in the object subjected to the force is converted into an electrical quantity by using a resistance change using a strain gauge or a magnetostrictive phenomenon.

このようなストレングージ方式は、その出力値が、大き
くとも数iomv程度である。従って電磁雑音の発生の
可能性のある場所、あるいは高湿度の場所への設置は極
めて不利である。
The output value of such a strong method is about several iomv at most. Therefore, it is extremely disadvantageous to install it in a place where electromagnetic noise may occur or in a place with high humidity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は・耐雑音性、絶縁性に優れ・光情報伝達
処理システムのセンナとして整合する光荷重検出器を提
供することにある。
An object of the present invention is to provide an optical load detector that has excellent noise resistance and insulation properties and is suitable as a sensor for an optical information transmission processing system.

〔発明の概要〕[Summary of the invention]

つに側圧特性がある。これは光ファイバに不均一な側圧
が作用すると、マイクロベンディングが生じて光伝達損
失が増大すると云う特性である。例えば、不均一な側圧
を与える不均二側圧印加俸として、サンドペーパを2枚
使い、この間に光ファイバを入れて荷重をかけた場合の
荷重と光伝達損失増加の測定例を第1図に示す。すなわ
ち荷重をW・荷重Wにより発生した光伝達損失をξとす
れば、ξはWの関数として表わされる ξ=f(ロ) (d B ) (1) また、逆関数をとれば w=g(ξ) (Kg) (2) すなわち、光伝達損失増加分ξから荷重Wを知ることが
できる。
has lateral pressure characteristics. This is a characteristic that when nonuniform lateral pressure acts on an optical fiber, microbending occurs and light transmission loss increases. For example, Figure 1 shows an example of measuring the load and increase in optical transmission loss when two sheets of sandpaper are used to apply uneven lateral pressure, and an optical fiber is inserted between them and a load is applied. . In other words, if the load is W and the optical transmission loss caused by the load W is ξ, ξ is expressed as a function of W. (ξ) (Kg) (2) That is, the load W can be known from the optical transmission loss increase ξ.

第1図では、荷重Wと損失増加ξが非直線の例を一般例
として示しであるが、光フアイバコアの被服層のつけ方
等でWとξが直線性を示す光ファイバを得ることができ
る。このような光ファイバの場合は、(1)、 (2)
式の関係はξ=α・W (dB) (1)’ W=1・ξ (Kg) (2)’ α となる。
Although Fig. 1 shows a general example in which the load W and loss increase ξ are non-linear, it is possible to obtain an optical fiber in which W and ξ are linear by changing the way the coating layer is attached to the optical fiber core. . In the case of such an optical fiber, (1), (2)
The relationship between the equations is ξ=α·W (dB) (1)' W=1·ξ (Kg) (2)' α.

一方、第2図に示すように、1本の光ファイノくを1.
2・・・nに区分し、それぞれの区間で荷重wl 、W
2・・・Wlにより不”均一側圧を加えて・それぞれの
区間内の損失増加が、ξ1 ξ2・・・ξn、光ファイ
バ入射光11+s出射光LO区間境界の光の強さをそれ
ぞれLl 、L2・・・Lll−1とすればの関係が成
り立つ。両辺の対数をとり、20を乗すると 右辺の各項は、それぞれξ1.ξ3・・・ξnに等しい
。すなわち (1)7式の関係から が得られ、人、出射光を測定し、演算すれば、複数区間
で、光ファイバにかけられた荷重の和をめ得ることを示
す。これは例えば複雑な形状の物体に、光ファイバを沿
わせ、該物体にか\る力の総和を1本の光ファイバでめ
る可能性を示すものである。
On the other hand, as shown in Fig. 2, one optical fiber is connected to 1.
2...n, and load wl, W in each section
2... By applying non-uniform side pressure by Wl, the loss increase in each section becomes ξ1 ξ2...ξn, the light intensity of the optical fiber input light 11+s output light at the boundary of the LO section becomes Ll, L2, respectively. ...If Lll-1, then the relationship holds true.If you take the logarithm of both sides and multiply it by 20, each term on the right side is equal to ξ1.ξ3...ξn.In other words, from the relationship of equation (1) 7, This shows that by measuring and calculating the emitted light, it is possible to determine the sum of the loads applied to the optical fiber in multiple sections. , which shows the possibility of measuring the total force exerted on the object with a single optical fiber.

また検出原理として、光ファイノくの光伝達損失増加特
性を利用するので、検出器自体が電磁界の影響を受けな
いこと・検出量の伝達が光で行われるので、伝送路も電
磁界の影響を受けないこと。
In addition, as the detection principle uses the optical transmission loss increasing characteristic of optical fibers, the detector itself is not affected by electromagnetic fields.Since the detection amount is transmitted by light, the transmission path is also not affected by electromagnetic fields. Do not receive.

加えてストレンゲージの場合と異なり、検出部と伝送路
図に接続部を設ける必要が原理的になく。
In addition, unlike the case of strain gauges, there is no need in principle to provide a connection between the detection section and the transmission line diagram.

光フアイバ自体が温度、湿度等の環境に対する耐性が大
きいこと等から現状技術の欠点を除くことが可能とガる
◎ 〔発明の実施例〕 以下本発明の実施例を以下図を以って説明する。
Since the optical fiber itself has high resistance to environments such as temperature and humidity, it is possible to eliminate the drawbacks of the current technology. [Embodiments of the Invention] Examples of the present invention will be explained below with reference to the drawings. do.

第3図は、光荷重検出器の一実施例である。1aは光発
信器2より光LLs を入射され、荷重検出部5を通過
して光伝達損失を発生した光Loを荷重検出側光受信3
aに伝達する荷重検出側光ファイバ、1bは光発信器2
より18と同じ光Lisを入射され・荷重による損失を
発生しな−基準光Liを3aと同一特性をもつ基準光側
光受信器3bに伝達する基準光側光ファイバ(laと同
一仕様)、4は受信器3a、、3bにより増巾・変換L
O′ された信号L n’ HL I’ を受けて tOg(
T7)の演算を行ない光伝達損失から荷重を算出する演
算回路である。こ\で、荷重検出部5は第4図に構造例
を示すように、荷重Wを受けて、不均一側圧印加体7に
荷重を伝える荷重受、この荷重を受けて7は荷重検出光
ファイバ1aに不一−側圧を印加する。8はこれらを収
めるケースである。
FIG. 3 is an example of an optical load detector. 1a is the light LLs input from the optical transmitter 2, and the light Lo that has passed through the load detection unit 5 and generated optical transmission loss is sent to the load detection side optical receiver 3.
1b is the optical transmitter 2.
A reference light side optical fiber (same specifications as la) that receives the same light Lis as 18 and transmits the reference light Li to the reference light side optical receiver 3b having the same characteristics as 3a without causing loss due to load; 4 is amplified/converted L by receivers 3a, 3b
tOg(
This is a calculation circuit that performs the calculation of T7) and calculates the load from the optical transmission loss. As shown in FIG. 4, the load detection unit 5 is a load receiver that receives a load W and transmits the load to the non-uniform side pressure applying body 7, and a load detection optical fiber 7 that receives the load W. Apply uneven lateral pressure to 1a. 8 is a case that accommodates these.

本実施例では、基準光側光ファイバ1b、基準光側光受
信器3bを使用しているが、厳密な補正を必要としない
場合、あるいは荷重検出部5に荷重をかけない状態での
38入射光LOを基準光Llとして演算回路4に記憶さ
ぜ、荷重検出部に荷重を加えた後の38の入射光Loと
の間で所要演算を行う回路を4に追加すれば、第3図に
おける基準光側光ファイバ1b、基準光側光受信器を省
略することができる。
In this embodiment, the reference light side optical fiber 1b and the reference light side optical receiver 3b are used, but when strict correction is not required or when no load is applied to the load detection section 5, the 38-injection If the light LO is stored in the arithmetic circuit 4 as the reference light Ll, and a circuit is added to 4 to perform the necessary calculations between the 38 incident lights Lo after applying a load to the load detection section, the result shown in FIG. The reference light side optical fiber 1b and the reference light side optical receiver can be omitted.

第3図の実施例では荷重検出部5は1つであるが、第5
図の如く複数個の荷重検出部5a、5b・・・5nに順
次荷重検出側光ファイバを通して荷重和をめることも1
本発明の他の実施例として可能である。
In the embodiment shown in FIG. 3, there is one load detection section 5, but the fifth
As shown in the figure, it is also possible to calculate the load sum by sequentially passing the load detection side optical fiber through a plurality of load detection units 5a, 5b, . . . 5n.
Other embodiments of the invention are possible.

また、第4図にお匹て荷重受6をプロセス圧力で変位す
るダイアフラム等に置きかえればプロセス圧力や液位の
測定も可能であり、これらも本発明の実施例の一つであ
る。
Further, if the load receiver 6 is replaced with a diaphragm or the like that is displaced by the process pressure as shown in FIG. 4, it is possible to measure the process pressure and liquid level, and these are also examples of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ファイバの側圧−光伝達損失増大特
性を利用して光を媒体として荷重を検出できるので (1)強電磁界中に置いても・電気的ノイズが入り込ま
ないので、耐ノイズ性の極めて高い荷重検出ができる。
According to the present invention, the load can be detected using light as a medium by utilizing the lateral pressure-light transmission loss increase characteristic of the optical fiber. Load detection with extremely high accuracy is possible.

(2)光ファイバを使用するので、絶縁性、他系統との
分離性が優れている。
(2) Since optical fiber is used, insulation and isolation from other systems are excellent.

(3)光フアイバ自体が高温・高湿に対する耐性が高い
ので、耐環境性が優れている。
(3) Since the optical fiber itself has high resistance to high temperature and high humidity, it has excellent environmental resistance.

(4)荷重検出部の直列使用により、荷重総和がめられ
る等応用計測の可能性が大きい。
(4) By using the load detection units in series, there is great potential for applied measurements such as being able to determine the total load.

(5)光情報処理システムに整合している。(5) Compatible with optical information processing systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ファイバの不均一側圧荷重と光伝達損失増加
の特性図、第2図は1本の光ファイバに複数荷重をかけ
た場合の諸量の説明図、第3図は本発明の詳細な説明図
、第4図は第3図の荷重検出部の構造図、第5図は第3
図の荷重検出部を複数にした応用例の説明図である。 1a・・・荷重検出光ファイバ、1b・・・基準光用光
ファイバ・2・・・光発信器、3a・・・荷重検出側光
受信器、3b・・・基準光側光受信器、4・・・演算回
路、5・・・荷重検出部・6・・・荷重受、7・・・不
均一側圧印加俸・ $ l 図 荷電 (勺) $2 囚 第30 ど j1ζ5G?]
Figure 1 is a characteristic diagram of the uneven lateral pressure load of an optical fiber and increase in optical transmission loss, Figure 2 is an explanatory diagram of various quantities when multiple loads are applied to one optical fiber, and Figure 3 is a diagram of the characteristics of the optical fiber of the present invention. Detailed explanatory drawings, Figure 4 is a structural diagram of the load detection section in Figure 3, Figure 5 is the structural diagram of the load detection section in Figure 3.
FIG. 3 is an explanatory diagram of an application example in which a plurality of load detection units are provided in the figure. 1a...Load detection optical fiber, 1b...Reference light optical fiber, 2...Optical transmitter, 3a...Load detection side optical receiver, 3b...Reference light side optical receiver, 4 ...Arithmetic circuit, 5...Load detection unit, 6...Load receiver, 7...Ununiform lateral pressure application salary. ]

Claims (1)

【特許請求の範囲】[Claims] 1、光発信器と光受信器および両者を光で結合する光フ
ァイバよりなる光送受信装置において、該光ファイバと
して不均一側圧を受けた場合に発生する光伝達損失増大
が予め知られている光ファイバを使用し荷重を不均一側
圧印加俸を介して光ファイバに匁え発生する損失増大を
測定して、荷重に換算する回路により荷重を読み取るこ
とを特徴とする光荷重検出器。
1. In an optical transmitting/receiving device consisting of an optical transmitter, an optical receiver, and an optical fiber that optically couples the two, it is known in advance that the optical transmission loss will increase when the optical fiber is subjected to uneven lateral pressure. An optical load detector is characterized in that the load is read by a circuit that uses a fiber to apply uneven lateral pressure to the optical fiber, measures the increase in loss that occurs in the optical fiber, and converts it into a load.
JP14495983A 1983-08-10 1983-08-10 Optical load detector Pending JPS6036921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14495983A JPS6036921A (en) 1983-08-10 1983-08-10 Optical load detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14495983A JPS6036921A (en) 1983-08-10 1983-08-10 Optical load detector

Publications (1)

Publication Number Publication Date
JPS6036921A true JPS6036921A (en) 1985-02-26

Family

ID=15374171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14495983A Pending JPS6036921A (en) 1983-08-10 1983-08-10 Optical load detector

Country Status (1)

Country Link
JP (1) JPS6036921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107402A1 (en) * 2008-02-29 2009-09-03 学校法人創価大学 Weight-measuring element and weighing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107402A1 (en) * 2008-02-29 2009-09-03 学校法人創価大学 Weight-measuring element and weighing apparatus

Similar Documents

Publication Publication Date Title
US4734577A (en) Continuous strain measurement along a span
US4947693A (en) Discrete strain sensor
CN107923816B (en) Mode dependent loss measurement method and measurement device
JPH0283402A (en) Multimode optical fiber sensor and method of detecting physical oscillation along multimode optical fiber
JP4127413B2 (en) Method and apparatus for measuring voltage
DE60035872D1 (en) ELIMINATION OF POLARIZATION DAMPING IN UNSATURATED OPTICAL MEASURING INTERFEROMETERS
JPS6036921A (en) Optical load detector
CN104848879B (en) Fiber Bragg grating sensor signal demodulating method based on linear work grating matching method
CN110045457A (en) A kind of sound wave enhanced sensitivity optical fiber based on covering softening and more cladding structures
JPH033164B2 (en)
Fontaine et al. Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers
CN101526377A (en) Polarization fiber grating sensor
CN115144712B (en) Partial discharge optical ultrasonic detection system
JP2005351663A (en) Fbg humidity sensor and humidity measuring method using the fbg humidity sensor
Ye et al. A multichannel optic fiber sensing system based on hybrid Sagnac structure
Morshed et al. Multimode optical fiber strain monitoring for smart infrastructures
Pindera Response of photoelastic systems
CN116046025B (en) Method and system for realizing online detection of fiber optic gyroscope based on photon lantern
JPS627020A (en) Optical fiber hydrophone
Shan et al. Differential transmissive fiber‐optic distance sensor
JPH05272920A (en) Optical-fiber displacement gage
JP2000193539A (en) Force sensor and force measurement system using the same
JPH11173902A (en) Optical fiber weight sensor
Beheim et al. Fiber-optic photoelastic pressure sensor with fiber-loss compensation
KR20220085711A (en) Metal foreign object detecting system using resonance frequency shift in wireless power transfer