JPS6036739A - Control apparatus for internal-combustion engine - Google Patents

Control apparatus for internal-combustion engine

Info

Publication number
JPS6036739A
JPS6036739A JP58145454A JP14545483A JPS6036739A JP S6036739 A JPS6036739 A JP S6036739A JP 58145454 A JP58145454 A JP 58145454A JP 14545483 A JP14545483 A JP 14545483A JP S6036739 A JPS6036739 A JP S6036739A
Authority
JP
Japan
Prior art keywords
signal
operating
waveform
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58145454A
Other languages
Japanese (ja)
Inventor
Ryuichi Sagawa
佐川 隆一
Osamu Nagata
修 永田
So Kashima
宗 鹿嶌
Toshiharu Ozaki
年春 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58145454A priority Critical patent/JPS6036739A/en
Publication of JPS6036739A publication Critical patent/JPS6036739A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To enable to obtain highly reliable and optimum engine performance under any circumstances, by detecting the operation timing of an operation valve by analyzing the wave-form of an electric signal applied to an electromagnetic solenoid, and correcting the output timing of said electric signal. CONSTITUTION:A control unit 30 consisting of a micro-computer determines the operation timing of an operation valve on the basis of the turning angle of an internal-combustion engine detected by a detecting means 21 and various data representing the operational conditions of the engine which are detected by an operation variable detecting means 25 and actuates the operation valve by an electric signal 32 by the aid of a driving circuit 33 and an electromagnetic solenoid 24. Further, an electric signal 34 applied to the solenoid 24 is furnished to a wave-form detector 35 as a current signal 48, in which the wave-form of a pulse signal 32 from the time of its rising is detected. The delay time of its operation is detected by a timer 36 and inputted to the control unit 30. The control unit 30 corrects the operation timing of the operation valve on the basis of the above delay time. With such an arrangement, it is enabled to obtain highly reliable and optimum engine performance under any circumstances.

Description

【発明の詳細な説明】 本発明は内燃機関の回転に同期して作動する燃料弁や給
排気弁の作動時期を制御する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the operating timing of a fuel valve or an air supply/exhaust valve that operates in synchronization with the rotation of an internal combustion engine.

従来、内燃機関の電気的運転装置として用いられている
ものとしては第1図のブロック線図に例示したものがあ
る。このブロック線図において回転角度信号装#L1は
内燃機関(図示せず)の回転軸2に取付けられており回
転軸2の回転位fillディジタル量に変換し、制御ユ
ニット3(7)ffイクロコンピュータ10に回転角度
信号6を送っている。他方上記機関の運転状態?検出す
る運転変数検出装[5が制御ユニット3に接続されてい
る。この運転変数検出装#:、5は例えば回転速度計7
、冷却水温度計8などのほか必要にエフ空気流量計、排
気ガス温度計、給気圧力計などの組付せにエフ構成され
ている0この運転変数検出装に5のアナログ量の出力信
号はアナログ−ディジタル変換器9にエフディジタル蓋
に変換されマイクロコンピュータ−0に読込まれる。マ
イクロコンピュータ−0は、リードオンリーメモリー1
に格納されているプログラムに従って例えば回転速度と
冷却水温度とから機関の運転弁の最適な作動時期r求め
る。更に上記回転角度信号6と、該最適な作動時期?比
較して次段の駆動回路13に出力としてパルス信号12
ケ送る。パルス信号12は駆動回路13で付勢され電気
信号14として電磁ソレノイド4に印加される。ここで
電磁ソレノイド4は直接にまたは油圧などの流体力を介
して内燃機関の運転弁例えば燃料弁、給気弁、排気弁な
ど運転に必要な弁類(図示せず)?駆動する工うになっ
ている。
DESCRIPTION OF THE RELATED ART Conventionally, there are those illustrated in the block diagram of FIG. 1 as electrical operating devices for internal combustion engines. In this block diagram, the rotation angle signal device #L1 is attached to the rotation shaft 2 of the internal combustion engine (not shown), converts the rotation position of the rotation shaft 2 into a digital quantity, and controls the control unit 3 (7)ff microcomputer. A rotation angle signal 6 is sent to 10. On the other hand, what is the operating status of the above engine? A detecting operating variable detection device [5 is connected to the control unit 3. This operating variable detection device #: 5 is, for example, a tachometer 7
In addition to the cooling water temperature gauge 8, the F air flow meter, exhaust gas temperature gauge, supply air pressure gauge, etc. are assembled into the F configuration. is converted into an F-digital signal by an analog-to-digital converter 9 and read into the microcomputer-0. Microcomputer-0 has read-only memory 1
According to a program stored in the engine, the optimum operating timing r of the operating valves of the engine is determined from, for example, the rotational speed and the cooling water temperature. Furthermore, the above rotation angle signal 6 and the optimum operation timing? The pulse signal 12 is compared and output to the next stage drive circuit 13.
Send. The pulse signal 12 is energized by a drive circuit 13 and applied as an electric signal 14 to the electromagnetic solenoid 4. Here, the electromagnetic solenoid 4 directly or through fluid force such as oil pressure is used to operate the operating valves (not shown) of the internal combustion engine, such as fuel valves, air supply valves, exhaust valves, etc. It is designed to be driven.

運転弁の駆動方法としては電磁ソレノイド4で切換弁を
駆動し、もって高圧の油圧回路を切換え制御tおこなう
方法やまた燃料弁の場合にril’X射ノズルへ供給す
る茜圧の燃料油の油路紮前記切換弁で切換えて制御する
という構成?とる方法がある。
The operating valve can be driven by driving the switching valve with an electromagnetic solenoid 4, thereby switching and controlling the high pressure hydraulic circuit, or in the case of a fuel valve, using fuel oil at a madder pressure to be supplied to the ril'X injection nozzle. Is it a configuration in which the road is switched and controlled using the switching valve mentioned above? There is a way to do it.

以上述べた工うな内燃機関の電気的運転装置の目的とす
るところは機関の負荷や周囲条件に工り刻々に変化する
運転条件のもとにおいて機関の排出ガスのlF分ケ低減
し、燃料消費の改善?おこなうとともに負荷に対する追
従性の向上−?機関騒音の低下2図り効率のよい機関の
運転状態を確保することにある。即ち内燃機関において
は燃料の噴射時期f給排気弁の作動時期が排出ガス成分
、燃料消費、騒音、負荷追従性などの機関の性能?決定
する基本的要因であり各種の運転条件に応じて燃料弁ヤ
給排気弁の作動時期をきめ細かく制御することにエフ常
に最適な機関性能を発揮することができるものである。
The purpose of the electric operating system for internal combustion engines described above is to reduce engine exhaust gas by 1F and fuel consumption under operating conditions that change from moment to moment depending on the engine load and surrounding conditions. improvement? Improving followability to load as time goes on? The objective is to reduce engine noise and ensure efficient engine operation. In other words, in an internal combustion engine, the fuel injection timing f and the operation timing of the supply and exhaust valves are affected by engine performance such as exhaust gas components, fuel consumption, noise, and load followability. This is the fundamental determining factor, and optimal engine performance can always be achieved by finely controlling the operating timing of the fuel valve and supply/exhaust valve according to various operating conditions.

しかし実際には上記の電気信号14か電磁ソレノイド4
に印加されて電磁ソレノイド4が作動し、引続き運転弁
が作動する1でに時間的な遅れが存在し、この時間的な
遅れが不確定な要因にエフ変化するために、運転弁の作
動時期の制御に誤差が生じ従来の電気的運転装置におい
ては最適な機関性能會得ることが困難である。
However, in reality, the above electric signal 14 or electromagnetic solenoid 4
There is a time delay between when the electromagnetic solenoid 4 is applied and the operating valve is subsequently operated, and this time delay changes due to an uncertain factor, so the operating timing of the operating valve is Errors occur in the control of the engine, making it difficult to obtain optimal engine performance using conventional electric drive systems.

特にこの傾向は機関の回転速度が大きくなるにつれて顕
著になり、ついには運転に支障tきたすという欠点ケ有
している。
In particular, this tendency becomes more noticeable as the rotational speed of the engine increases, and it has the disadvantage that it eventually becomes a hindrance to the engine's operation.

このLうな欠点を解消するために電気的運転装置の他の
公知の方法として、例えば運転弁にその揚程を計るため
のリフトセンナ會設けこのリフトセンサからの信号にエ
リ運転弁の作動時期音検知し電磁ソレノイド4に印加す
る電気信号の送出時期を補正し運転弁?正確に制御する
という方法がある。しかしこの方法においてはりフトセ
ンサは高価であるばかりではなくこれが装着される場所
が高温で、かつ振動も大きいために故障し易く信頼性に
欠けるという欠点ケ有し、また燃料弁についてはリフト
が0.218乃至1.01111といった如く非常に小
さく、す7トセンサの取付は調整に手数がかかるという
欠点?有している。
In order to solve this drawback, another known method for electric operating devices is to provide a lift sensor for measuring the lift height of the operating valve, and use the signal from the lift sensor to detect the operating timing sound of the operating valve. Correct the sending timing of the electric signal applied to the electromagnetic solenoid 4 and operate the valve? There is a way to precisely control it. However, this method has the disadvantage that the lift sensor is not only expensive, but also prone to failure and lack of reliability due to the high temperature and large vibrations where it is installed.Furthermore, the lift sensor for the fuel valve has the disadvantage that the lift is 0. 218 to 1.01111, and the disadvantage is that it takes a lot of effort to adjust the sensor installation. have.

本発明は電気的運転装置における上記の問題(5) 点を解決するためになされたものであり、電磁ソレノイ
ドに印加する電気信号の波形ケ解析することにエリ運転
弁の作動時期を検知し電磁ソレノイドに印加する電気信
号の送出時期を補正することに↓り安価にして且つ信頼
性が高くま7c嘔付調整にも手数がかからず常に最適な
機関性能を得ることができる内燃機関の制御装置會提供
することであり、その構成は内燃機関の回転角度全検出
する装置と、電磁ソレノイドを介して駆動される運転弁
の作動時期を設定する装置と、内燃機関の回転角度と電
磁ソレノイドの作動時期を比較して電気信号音発生する
装置と、この電気信号にエフ作動する電磁ソレノイドに
より運転される内燃機関の電気的運転装置Hcおいて、
上記の電気信号の波形を解析し電磁ソレノイドの作動時
期を検知する検出器を備え、この検出器の出力に応じて
運転弁の作動時期を修正設定することを特徴とする内燃
機関の制御装置である。
The present invention was made in order to solve the above-mentioned problem (5) in electrical operating devices, and it detects the actuation timing of an electric operating valve by analyzing the waveform of an electrical signal applied to an electromagnetic solenoid. Control of an internal combustion engine that corrects the sending timing of an electric signal applied to a solenoid, is inexpensive and highly reliable, and does not require any effort to adjust the internal combustion engine so that optimum engine performance can always be obtained. It consists of a device that detects the entire rotation angle of the internal combustion engine, a device that sets the operating timing of the operating valve driven via the electromagnetic solenoid, and a device that detects the rotation angle of the internal combustion engine and the electromagnetic solenoid. A device that generates an electric signal sound by comparing operating timing, and an electric operating device Hc for an internal combustion engine that is operated by an electromagnetic solenoid that is activated in response to this electric signal,
A control device for an internal combustion engine, comprising a detector that analyzes the waveform of the electric signal and detects the activation timing of the electromagnetic solenoid, and corrects and sets the activation timing of the operating valve according to the output of the detector. be.

通常電気信号ケ送出してから運転弁が作動す(6) るまでの時間遅れは、電磁ソレノイドの作動の遅れと運
転弁の作動遅れから成っている。電磁ソレノイドで直接
に運転弁を作動せしめるときは電磁ソレノイドの作動の
遅れだけで運転弁の作動遅れはない。また、流体力即ち
油圧力など會介して運転弁?駆動するときは流体源の圧
力を一定に保つことにエフ運転弁の作動の遅れケ一定と
することができる。−万電磁ソレノイドの作動の遅れは
電磁ソレノイドそれ自体のコイルの温度や切換弁に働く
摩擦力などにエフ影響奮うけるものである。即ち周囲温
度や電気信号のパルス幅が変化すれば上記コイルの温度
が変るのでコイルの抵抗値が変化し電磁ソレノイドの電
気的応答性が変化する。また上記摩擦力の変化は機械的
な応答性に影響する。更にこの摩擦力やコイルの温度特
性は経年的にも変化ケもたらすものである。ここで周囲
条件や経年変化などの影響奮うける電磁ソレノイドの作
動遅れが判ればその遅れケ補正して運転弁?適切にまた
タイミングよく制御することが可能となり最適な機関性
能を得る内燃機関の電気的運転装置を得ることが可能と
なるのである。
Normally, the time delay between sending an electric signal and operating the operating valve (6) consists of a delay in the operation of the electromagnetic solenoid and a delay in the operation of the operating valve. When the operating valve is operated directly by the electromagnetic solenoid, there is only a delay in the operation of the electromagnetic solenoid, and there is no delay in the operation of the operating valve. Also, is the valve operated through fluid force, that is, hydraulic pressure? When driving, by keeping the pressure of the fluid source constant, the delay in the operation of the F operation valve can be kept constant. -The delay in the operation of an electromagnetic solenoid is affected by the temperature of the coil of the electromagnetic solenoid itself and the frictional force acting on the switching valve. That is, if the ambient temperature or the pulse width of the electrical signal changes, the temperature of the coil changes, the resistance value of the coil changes, and the electrical responsiveness of the electromagnetic solenoid changes. Furthermore, the change in the frictional force affects the mechanical response. Furthermore, this frictional force and the temperature characteristics of the coil change over time. If we know that there is a delay in the operation of the electromagnetic solenoid, which is affected by ambient conditions and aging, we can correct the delay and adjust the operating valve. This makes it possible to obtain an electrical operating device for an internal combustion engine that can control the engine appropriately and in a timely manner and achieves optimal engine performance.

以下本発明の実施例を示す図面に基づき説明すると、第
2図は本発明の構成?しめずブロック線図であり21は
回転角度検出装置であり、内燃機関(図示せず)の回転
軸22に取付けられており回転軸22の回転位置?ディ
ジタル量に変換し、制御ユニット231’iのマイクロ
コンピュータ30に回転角度信号26ケ送っている。
Embodiments of the present invention will be explained below based on drawings showing embodiments of the present invention. Fig. 2 shows the configuration of the present invention. 21 is a rotation angle detecting device, which is attached to a rotating shaft 22 of an internal combustion engine (not shown) and detects the rotational position of the rotating shaft 22. It is converted into a digital quantity and sent to the microcomputer 30 of the control unit 231'i with 26 rotation angle signals.

25は運転変数検出装置であり、これは例えば回転速度
計27、冷却水温度計28の他、図示はないが必要に工
り空気流量針、排気ガス温度計、給気圧力計などの適当
な組合せにより構成されており、この運転変数検出装[
25のアナログ量の出力信号はアナログ−ディジタル変
換器29にエフディジタル量に変換されマイクロコンピ
ュータ30に読込まれる。31はリードオンリーメモリ
でありこの装置の必要なプログラムが記憶されている。
25 is an operating variable detection device, which includes, for example, a tachometer 27, a cooling water temperature gauge 28, and other suitable devices such as an air flow rate needle (not shown), an exhaust gas temperature gauge, and a supply air pressure gauge. This operating variable detection device [
The output signal of analog quantity 25 is converted into an F-digital quantity by an analog-to-digital converter 29 and read into a microcomputer 30. A read-only memory 31 stores programs necessary for this device.

33は駆動回路であり第3図はこの回路構成の実施例t
しめしており、マイクロコンピュータ30エクパルスM
 号Va32をうけてこれtバッファ増幅器ケ介してス
イッチ回路においてエミッタ接地トランジスタTri4
5が作動し、コレクタ接地トランジスタTr246が導
通して電磁ソレノイド24に電源電圧+vcc47が印
加されVb34なる電気信号が流れる工うになっている
030は電流検出抵抗であり1オ一ム未満の小さな抵抗
値kNl、電磁ソレノイド34に流れる電流音検出する
。この検出された電流信号はパンファ増幅器40に弁し
てVc4Bとして波形検出器35に伝えられる。
33 is a drive circuit, and FIG. 3 shows an embodiment of this circuit configuration.
The microcomputer 30 Xpulse M
In response to No. Va32, the common emitter transistor Tri4 is connected in the switch circuit via the buffer amplifier.
5 is activated, the collector-grounded transistor Tr246 becomes conductive, and the power supply voltage +Vcc47 is applied to the electromagnetic solenoid 24, causing an electrical signal Vb34 to flow.030 is a current detection resistor with a small resistance value of less than 1 ohm. kNl, the sound of the current flowing through the electromagnetic solenoid 34 is detected. This detected current signal is passed through the amplifier amplifier 40 and transmitted to the waveform detector 35 as Vc4B.

このバンファ増幅器40は省略可能でありまた上記駆動
回路33も他の公知の回路ケ利用してもよい。第4a図
は波形検出器35の回路構成の実施例をしめしており2
つの微分器41a、41bおLび波形整形器42から構
成されている0ここで第5回置乃至(F′Iは上記装置
の各部における信号波形會しめしたものであり囚はマイ
クロコンピュータ30から送られるパルス信号Va32
゜IBIはt′aiソレノイド24に印加される電気信
号(9) Vb34 、 TCIは電磁ソレノイド24ケ流れる電
流信号Vc48であり、電磁ソレノイドは誘導性の負荷
であるから上記Vb34の投入、遮断時に急峻な尖頭電
圧が表われ、また電流18号Vc48は遅れケ供なって
電流は増加するが電磁ソレノイド24がその負荷である
可動鉄心ケ吸引し始めると、その移動による逆起電力の
ために電流が一時減少し、可動鉄心の移動が完了すると
電流は再び急激に増加する。従ってここでパルス信号V
a32の立上りから電流信号Vc48の図示a点までの
作動遅れ時間τ5oli計測すれば電磁ソレノイド24
の作動遅れケ検知することができる。[Dlおよび(E
lf−jそれぞれ波形検出器35の微分器41a、41
bO出力Vdl 49 、 Vd250’t6、!OI
Fは波形整形器42の出力であり波形検出信号Ve51
として計時器36に送られる。計時器36Uマイクロコ
ンピユータ30エクのパルス信号Vaの立上りから上記
波形検出信号Veの立上りまでの時間が計時されマイク
ロコンピュータ30に送られる。
This bumper amplifier 40 can be omitted, and other known circuits may be used for the drive circuit 33. FIG. 4a shows an embodiment of the circuit configuration of the waveform detector 35.
The device is composed of two differentiators 41a, 41b, and a waveform shaper 42.Here, F'I is a combination of signal waveforms in each part of the above device. Pulse signal Va32 sent
゜IBI is the electric signal (9) Vb34 applied to the t'ai solenoid 24, and TCI is the current signal Vc48 flowing through the 24 electromagnetic solenoids, and since the electromagnetic solenoid is an inductive load, there is a sharp rise when the above Vb34 is turned on and off. A peak voltage appears, and the current No. 18 Vc48 is delayed and the current increases, but when the electromagnetic solenoid 24 starts to attract the movable iron core that is its load, the current increases due to the back electromotive force caused by its movement. The current decreases temporarily, and when the movement of the movable iron core is completed, the current increases rapidly again. Therefore, here the pulse signal V
If the operation delay time τ5oli from the rising edge of a32 to the point a in the figure of the current signal Vc48 is measured, the electromagnetic solenoid 24
It is possible to detect delays in operation. [Dl and (E
Differentiators 41a and 41 of the waveform detector 35 for lf-j, respectively.
bO output Vdl 49, Vd250't6,! OI
F is the output of the waveform shaper 42 and is the waveform detection signal Ve51
The signal is sent to the timer 36 as a signal. The time from the rise of the pulse signal Va of the timer 36U to the rise of the waveform detection signal Ve is measured and sent to the microcomputer 30.

(lO) 第4b図は隷普器36の回路構成の例示でありフリラグ
フロック800セント端子(図示S、)とリセツト端子
(図示R,)には夫々パルス信号Va32と波形検出信
号Ve51がコンデンサお工び抵抗体で構成される微分
回路84ケ介して接続されており、フリソグフロング8
0はパルス信号Va32の立上りでセントされ、波形検
出信号Ve51の立上りでリセツトされる。発振器81
と7リツプフロング80とがANDゲート82に接続さ
れておりフリングフロング80がセントされているとき
のみ発振器81の出力パルスはカウンタ83で計数され
る。カウンタ83にはANDゲート82の他にフリング
フロング80エクのセント端子が接続されており計数?
始める前にカウンタ83はクリアにされる。発振器81
は水晶ケ利用し7c高精度の発振器が使用され、マイク
ロコンピュータ30はパルスM 号Va 32を出力す
る前にカウンタ83の出力Vf64a−読み込めばvL
磁ソレノイド34の前回における作動遅れr知ることが
できる。
(lO) Fig. 4b shows an example of the circuit configuration of the slave unit 36, and the pulse signal Va32 and the waveform detection signal Ve51 are connected to the free lag block 800 cent terminal (S, shown in the figure) and the reset terminal (R, shown in the figure), respectively. It is connected through 84 differentiating circuits composed of manufactured resistors, and 84
0 is set at the rising edge of the pulse signal Va32 and reset at the rising edge of the waveform detection signal Ve51. Oscillator 81
and 7 lip-fronts 80 are connected to an AND gate 82, and the output pulses of the oscillator 81 are counted by a counter 83 only when the flip-flops 80 are centered. In addition to the AND gate 82, the counter 83 is connected to the cent terminal of Fling Flong 80 Ex, and is counted?
Before starting, counter 83 is cleared. Oscillator 81
A 7C high-precision oscillator using a crystal is used, and the microcomputer 30 reads the output Vf64a of the counter 83 before outputting the pulse M No. Va32.
The previous activation delay r of the magnetic solenoid 34 can be known.

波形検出器35の第2の実施例35′ヲ第6図に示す0
この実施例においては微分器を用いずダイオードと増幅
器とから波形の傾斜の変化を計算して、上記第5図(C
1に表われ′fc、電流信号VcOa点即ち電磁ソレノ
イド24の作動時期音検知するものであり第7回置乃至
IGI ri第6図の各部の信号波形をしめしたもので
ある。第6図においてA152はバンファ増幅器であり
入力信号である電流信号Vc48にそのまま次のA25
3とA356の増幅器に伝えるものであp、A3はピー
クホルダ54でありコンデンサC161にはピーク電圧
が保持される。電流信号Vcが増加から減少に転じると
ダイオードD158は遮断し増幅器A253のθ端子の
電位が■端子エフ大となるので増幅器A253の出力は
負の大きな値をとる。(第7図IBI 診照)QA4は
波形整形用増幅器55であり電流信号Vcが小さい間は
この増幅器A455の出力が大きいのでダイオードD2
59が導通し増幅器A356の出力は正の最大値をとる
A second embodiment 35' of the waveform detector 35 is shown in FIG.
In this example, the change in the slope of the waveform is calculated from the diode and the amplifier without using a differentiator.
1, 'fc' is used to detect the current signal VcOa point, that is, the operating timing sound of the electromagnetic solenoid 24, and the signal waveforms at various parts of FIG. 6 are shown. In FIG. 6, A152 is a bumper amplifier, and the current signal Vc48, which is the input signal, is directly connected to the next A25.
A3 is a peak holder 54, and the peak voltage is held in a capacitor C161. When the current signal Vc changes from increasing to decreasing, the diode D158 is cut off and the potential at the θ terminal of the amplifier A253 becomes large, so that the output of the amplifier A253 takes a large negative value. (See Figure 7 IBI) QA4 is a waveform shaping amplifier 55, and while the current signal Vc is small, the output of this amplifier A455 is large, so the diode D2
59 becomes conductive and the output of amplifier A356 takes the maximum positive value.

電流信号Vc48か減少に転じ波形整形用増幅器A45
5の出力が負になるとダイオードD259は遮断し、増
幅器A356お工びA657は入力信号の電流信号Vc
に追従して変化する。このA657は最低値ケ保持する
増幅器でありコンデンサC262にその値が保持される
The current signal Vc48 starts to decrease and the waveform shaping amplifier A45
When the output of 5 becomes negative, the diode D259 is cut off, and the amplifier A356 and A657 output the current signal Vc of the input signal.
changes according to. This A657 is an amplifier that holds the lowest value, and that value is held in the capacitor C262.

つぎに電流信号Vcが増加に転じるとダイオードD36
0は遮断となり増幅器へ657はその最低値を保持し増
幅器A356の■端子がO端子エフ大きくなるので増幅
器A356の出力はその最大値をとる。増幅器A455
が正の最大値に復帰すると再びダイオードD259は導
通し最初の状態にもどる。波形検出信号Ve51は増幅
器A356の出カケコンデンサ0363’に介して得る
ことができる。なお適当な時期において図示はないがス
イフチにエフコンデンサC262の電位?放電し0−ボ
ルトにもどす。
Next, when the current signal Vc starts to increase, the diode D36
0 is cut off, and 657 to the amplifier holds its lowest value, and since the ■ terminal of the amplifier A356 becomes larger than the O terminal F, the output of the amplifier A356 takes its maximum value. Amplifier A455
When D returns to its maximum positive value, diode D259 becomes conductive again and returns to its initial state. The waveform detection signal Ve51 can be obtained via the output capacitor 0363' of the amplifier A356. Although it is not shown in the figure, at an appropriate time, the potential of the F capacitor C262 was detected in the swift. Discharge and return to 0-volt.

波形検出器15の第3の実施例として第3図における電
流信号Vc 481にアナログ−ディジタル変換器を介
してマイクロコンピュータ30に読込み数値解析により
第5図に示し′fc電硯ンレ(13) ノイドの作動遅れ時間τsol f検知しても工い。
As a third embodiment of the waveform detector 15, the current signal Vc 481 shown in FIG. It does not work even if the activation delay time τsol f is detected.

この数値解析の手順を第8図のフロー図に示している。The procedure for this numerical analysis is shown in the flow diagram of FIG.

ここでマイクロコンピュータ30がパルス信号Va32
に出力するとπたちにステップ100Vcおいて電流信
号Ve 48 k読み込む。この読み込みのサンプルピ
ンチjjと読込みデータ数Nは予め定めておくものとし
、例えばjtilOμ旗、Ni200としても工い。次
にステップ101にてf′LK?を計算する。計算式は
例えばfI′に=11争fK+4−560fK+3+1
14・fK+2−104@fK+1+35@fK・(υ
を利用するOfKはkII目のサンプル値である。
Here, the microcomputer 30 generates a pulse signal Va32.
When outputting to π, a current signal Ve 48k is read at a step of 100Vc. The sample pinch jj for reading and the number N of read data are determined in advance, and may be set as, for example, jtilOμ flag and Ni200. Next, in step 101, f'LK? Calculate. For example, the calculation formula is fI'=11fK+4-560fK+3+1
14・fK+2−104@fK+1+35@fK・(υ
OfK using is the kIIth sample value.

f″にの計算は上記(2)式でなく次式ケ利用しても差
支えない。
To calculate f'', the following equation may be used instead of the above equation (2).

f′に=−fK+2+16fK+、−50fK+16’
fK−1−fK−2・・・(2) ステップ102においては予め定めておいた定数Mと比
較し、上記で計算され3 f#にの値がこのM工り小さ
ければkklつ増してステップ101に戻りf#KがM
エフ大きければこのときのサンプル(14) 値fKが第5図[C1のa点であるのでステップ104
において作動遅れ時間τsol k計算する。計算式%
式%(3) このτsolの計算ケ第9図のフロー図に工ってめても
よい。第9図は最大値のあとの最小値?見出すことにエ
フ作動遅れ時間τsol ’i検知するフローである。
to f' = -fK+2+16fK+, -50fK+16'
fK-1-fK-2...(2) In step 102, it is compared with a predetermined constant M, and if the value of 3 f# calculated above is smaller than this M, the step is increased by kkl. Return to 101 and f#K is M
If f is larger, the sample (14) at this time is the value fK at point a in Figure 5 [C1, so step 104
Calculate the activation delay time τsol k. a formula%
Equation % (3) This calculation of τsol may be carried out using the flowchart shown in FIG. Is Figure 9 the minimum value after the maximum value? This is a flow for detecting the F operation delay time τsol'i.

マイクロコンピュータ30がパルス信号Va32に出力
するとただちにステップ100で電流信号Vc48に読
み込む。第8図と同様にに番目のサンプル値?fKとし
ている。
Immediately after the microcomputer 30 outputs the pulse signal Va32, it is read into the current signal Vc48 in step 100. Similarly to Figure 8, the second sample value? It is set as fK.

ステップ106で前回のサンダル値fK−1と今回のそ
の値fKが比較され、前回の値fK−1が小さければk
klつ増してステップ106に戻る。前回のサンプル値
fK−1が今回のその値fKに等しいかこれエフ大きけ
ればそのときのfKの値が最大値である。
In step 106, the previous sandal value fK-1 and the current value fK are compared, and if the previous value fK-1 is smaller, k
The number is increased by kl and the process returns to step 106. If the previous sample value fK-1 is equal to or greater than the current value fK, then the value of fK at that time is the maximum value.

ステップ106と107で最大値?検出すれば、ステッ
プ108と109で最小値を探すことになる。
Maximum value at steps 106 and 107? If detected, steps 108 and 109 search for the minimum value.

即ち、前回のサンプル値fK−1が今回の値rKiT回
ればそのときのサンプル値fKが第5図1cIにあられ
しFe2点であるのでステップ110において(3)式
により電磁弁の作動遅れ倉計算する。
That is, if the previous sample value fK-1 rotates around the current value rKiT, the sample value fK at that time is 2 points Fe as shown in FIG. do.

電磁ソレノイド24の種類に工っては電流信号vc48
が異なる場合がある。即ち第10図に示す(A)と[B
lであり、tR1図にしめすごとき波形の特性を有する
電磁ソレノイドは、波形の変化率がその電流の上昇過程
において負にならないので前記した波形検出器15の第
2の実施例に示した第6図の回路の適用お工び第3の実
施例で示した第10図のフローによる作動遅れ時間τs
ol 請求める回路または式としては使用できない。
The type of electromagnetic solenoid 24 is the current signal VC48.
may be different. That is, (A) and [B
In an electromagnetic solenoid having a waveform characteristic as shown in the tR1 diagram, the rate of change of the waveform does not become negative during the rising process of the current. Application of the circuit shown in the figure Operation delay time τs according to the flow shown in Fig. 10 shown in the third embodiment
ol Cannot be used as a claimable circuit or formula.

運転弁の操作に電磁ソレノイドを利用する内燃機関の電
気的運転装置において、運転弁の開と閉の双方に電磁ソ
レノイド會利用するいわゆるダブルソレノイドと、゛開
17jは閉のどちらか片方に電磁ソレノイドを利用し他
の側はバネなどの反カケ利用するいわゆるシングルソレ
ノイドがある。第11図にダブルソレノイドによる排気
弁の操作方法を例示し、1t@弁70の実施例を第12
図に示す。この工うな例では開用の電磁ソレノイド72
alC電気信号が印加されると排気弁71は閉となり、
開用の電磁ソレノイド?2bに電気信号が印加されると
開となり、閉。
In the electric operating system of an internal combustion engine that uses an electromagnetic solenoid to operate the operating valve, there is a so-called double solenoid that uses an electromagnetic solenoid to both open and close the operating valve. There is a so-called single solenoid that uses a spring or other anti-chip device on the other side. FIG. 11 shows an example of how to operate an exhaust valve using a double solenoid, and shows an example of the 1t@valve 70 in the 12th example.
As shown in the figure. In this example, the open electromagnetic solenoid 72
When the alc electric signal is applied, the exhaust valve 71 closes,
Opening electromagnetic solenoid? When an electric signal is applied to 2b, it opens and closes.

開の電磁ソレノイドは夫々側の駆動回路で付勢されるの
で第2図の実施例において駆動回路33 。
Since the open electromagnetic solenoids are energized by the drive circuits on each side, the drive circuit 33 in the embodiment of FIG.

波形検出器35.計時器36は夫々開用と開用の2組?
用意することにエフ排気弁は開閉ともに電磁ソレノイド
の作動遅れが正確に検出できる。またこれは排気弁の代
りに給気弁や燃料噴射弁であってもよい。
Waveform detector 35. Are there two sets of clocks 36, one for opening and one for opening?
In addition, the F exhaust valve can accurately detect delays in the operation of the electromagnetic solenoid when opening and closing. Moreover, this may be an air supply valve or a fuel injection valve instead of an exhaust valve.

以上の如くにして電気信号Vb34のtR,〜9波形は
直接またはバンファ増幅器40L−介して波形検出器3
5に伝えられ、ここで計時器36はパルス信号Va32
と、上記波形検出器35の出力信号である波形検出信号
Ve51の間の時間を計時しマイクロコンピュータ30
に作動遅れ信号Vf64を発信する。マイクロコンピュ
ータ30は運転変数検出装置125からの信号に基づき
公知の方法にて最適作動時期eoptktt算するO他
(17) 方計時器36から電磁ソレノイド24の作動遅れrso
lk読み込み、下記(4)式にエフパルス信号Va32
の送出時期op?計算し回転角度信号26がθpに一致
したときパルス信号Va32に送出するO θp=θopt−6n(rsol+rv) a*+m+
e*(4)ここで n;機関の回転数(回転数/毎分)
τV;運転弁の作動遅れ(秒) なおここで運転弁の作動遅れτVは予めリードオンリー
メモリ11に記憶させておくものとし、また電磁ソレノ
イドの作動遅れτsolとして作動遅れ信号vfO数サ
イすル分の移動平均tとっても工い。
As described above, the tR,~9 waveform of the electric signal Vb34 is transmitted to the waveform detector 3 directly or via the bumper amplifier 40L.
5, where the timer 36 receives the pulse signal Va32.
and the waveform detection signal Ve51 which is the output signal of the waveform detector 35, and the microcomputer 30
The operation delay signal Vf64 is transmitted. The microcomputer 30 calculates the optimum operating timing eoptktt using a known method based on the signal from the operating variable detection device 125.
lk read, F-pulse signal Va32 is calculated by the following formula (4).
Is the release date OP? Calculated and when the rotation angle signal 26 matches θp, the pulse signal Va32 is sent. θp=θopt-6n(rsol+rv) a*+m+
e*(4) where n; engine speed (rotations/per minute)
τV: Actuation delay of the operating valve (seconds) Here, the actuation delay τV of the operating valve shall be stored in the read-only memory 11 in advance, and the actuation delay signal vfO several cycles is set as the electromagnetic solenoid actuation delay τsol. The moving average t is very difficult.

なお、シングルソレノイドを利用した排気弁73の操作
方法ケ第13図に例示する。この方法では電磁ソレノイ
ド74に電気信号が印加されると排気弁71が閉じ、電
気信号がなくなれば開く構造となっており、この場合の
パルス信号Va32と電流信号V6の波形を第14図に
しめす。電磁ソレノイド74を消磁した場合の電流(1
8) 波形v6は励磁される場合とは逆の応答をするのでパル
ス信号Va32の立上りと電流信号vものb点の間の時
間が排気弁が開く場合のt磁針の応答遅れとなる。
An example of how to operate the exhaust valve 73 using a single solenoid is shown in FIG. In this method, the exhaust valve 71 closes when an electric signal is applied to the electromagnetic solenoid 74, and opens when the electric signal disappears. The waveforms of the pulse signal Va32 and current signal V6 in this case are shown in FIG. . Current when the electromagnetic solenoid 74 is demagnetized (1
8) Since the waveform v6 has a response opposite to that when it is excited, the time between the rise of the pulse signal Va32 and the point b of the current signal v becomes the response delay of the t magnetic needle when the exhaust valve opens.

排気弁の閉じる場合のmatソレノイドの作動遅れは前
述した方法で検出可能である。排気弁が開く場合の電磁
ソレノイドの作動遅れは演算増幅器を利用しである大き
な一定11Nから電流信号Vらt減ずれば上述した方法
がそのまま利用できるものである。
The delay in actuation of the mat solenoid when closing the exhaust valve can be detected using the method described above. The delay in the operation of the electromagnetic solenoid when the exhaust valve opens can be determined by subtracting the current signal V from a large constant 11N using an operational amplifier, and the method described above can be used as is.

以上の如く本発明はtiソレノイドに印加する電気信号
の波形忙解析し、その作動時期を検知して周囲条件や経
年変化によりかわる電磁ソレノイドの作動遅れを検出し
運転弁の作動時期の設定を修正するという極めて安価に
てかつ信頼性に優れたまた取付満整の容易な装置にエフ
常に最適な機関性能を発揮しうる内燃機関の制御装fi
lik提供するものである。
As described above, the present invention analyzes the waveform of the electric signal applied to the TI solenoid, detects its activation timing, detects the activation delay of the electromagnetic solenoid that changes due to ambient conditions and aging, and corrects the activation timing setting of the operating valve. This is an extremely inexpensive, highly reliable, and easy-to-install device.
lik is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の運転装置の実施例のブロック線図、第2
図は本発明の運転装置の実施例のブロック線図、第3図
は本発明の装置の駆動回路実施例の回路構成図、第4a
図は本発明の装置の波形検出器実施例の回路構成図、第
4b図は本発明の装置の計時器実施例の回路構成図、第
5図は本発明の装置の各部の信号波形図、第6図は本発
明の装置の波形検出器の第2の実施例の回路構成図、第
7図は第6図の装置の各部の信号波形図、第8図は本発
明の波形検出器の第3の実施例の解析手順フロー図、第
9図は第8図の応用例の70−図、第10図は電磁ソレ
ノイドの作動電流波形図、第11図、第13図は排気弁
操作例示図、第12図は電磁弁の例示断面図、第14図
は第13図の電磁ソレノイドの作動電流波形図である。 21・・・N転角度検出装置 22・・・回転軸23・
・・制御ユニット 24・・・電磁ソレノイド25・・
・運転変数検出装置t 26・・・回転角度信号 29
・・・アナログディジタル変換器30・・・マイクロコ
ンピュータ 31・・・リートオンリーメモリ 82,
34.4B、l。 ・50,51,64・・・信号 33・・・駆動U路3
5 、35’・・・波形検出器 36・・・計時器40
・・・パンファ増幅器 41a、41b・・・微分器4
2・・・波形整形器 52乃至57・・・増幅器58乃
至60・・・ダイオード 61乃至63・・・コンデン
サ 10.73・・・電磁弁 71・・・機関排気9F
’ 72a、?2b174・・−電磁ソレノイド 出願人 川崎重工業株式会社 (21) 第9図 第8図 286− 臓 域 側13図 第14図 手続補正書・(自発) 1、事件の表示 昭和58年特 許 該第145454号3、 補正をす
る者 事件との関係 特許出願人 4、 代 理 人 〒103 8、補正の内容
Figure 1 is a block diagram of an embodiment of a conventional operating device;
The figure is a block diagram of an embodiment of the driving device of the present invention, FIG. 3 is a circuit configuration diagram of a drive circuit embodiment of the device of the present invention, and FIG.
FIG. 4B is a circuit diagram of a waveform detector embodiment of the device of the present invention, FIG. FIG. 6 is a circuit configuration diagram of a second embodiment of the waveform detector of the device of the present invention, FIG. 7 is a signal waveform diagram of each part of the device of FIG. 6, and FIG. 8 is a diagram of the waveform detector of the present invention. Analysis procedure flow diagram of the third embodiment, FIG. 9 is a 70-diagram of the application example of FIG. 8, FIG. 10 is an operating current waveform diagram of an electromagnetic solenoid, and FIGS. 11 and 13 are examples of exhaust valve operation. 12 is an exemplary sectional view of the electromagnetic valve, and FIG. 14 is an operating current waveform diagram of the electromagnetic solenoid shown in FIG. 13. 21... N rotation angle detection device 22... Rotating shaft 23.
...Control unit 24...Electromagnetic solenoid 25...
- Operating variable detection device t 26...Rotation angle signal 29
... Analog-digital converter 30 ... Microcomputer 31 ... Read-only memory 82,
34.4B, l.・50, 51, 64...Signal 33...Drive U path 3
5, 35'... Waveform detector 36... Clock 40
...Pamper amplifier 41a, 41b...Differentiator 4
2... Waveform shaper 52 to 57... Amplifier 58 to 60... Diode 61 to 63... Capacitor 10.73... Solenoid valve 71... Engine exhaust 9F
'72a,? 2b174...-Electromagnetic solenoid applicant Kawasaki Heavy Industries, Ltd. (21) Figure 9 Figure 8 286- Visceral side Figure 13 Figure 14 Procedural amendment (voluntary) 1. Indication of the case 1982 patent Applicable No. 145454 No. 3, Relationship with the case of the person making the amendment Patent applicant 4, Agent 103 8, Contents of the amendment

Claims (1)

【特許請求の範囲】 (υ 予め設定された機関運転弁の作動プログラムと、
運転変数を検出する装置エフの信号と、機関の回転角度
を検出する装置エフの信号と、にエフ機関運転弁の作動
時期を算出しこの出力を電気信号として電磁ソレノイド
を介して上記運転弁を作動せしめる機関の電気的運転装
置において、上記電気信号の波形を解析する波形検出器
と、該検出器の出力から電磁弁の作動時期を検出する計
時器とt備え、該計時器の出力信号にエフ機関運転弁の
作動時期を修正設定することを特徴とする内燃機関の制
御装置。 (2)増幅器、ダイオード、コンデンサお工び抵抗体エ
フ構成され電気信号の波形解析?おこなう波形検出器を
備えた特許請求の範囲第1項に記載の内燃機関の制御装
置。 (3)2組の微分回路お工び波形整形回路エフ構成され
電気信号の波形解析會おこなう波形検出器を備えた特許
請求の範囲第1項に記載の内燃機関の制御装置。
[Claims] (υ A preset engine operation valve operating program,
The operating timing of the F engine operating valve is calculated using the signal from the device F that detects operating variables and the signal from the device F that detects the rotation angle of the engine, and this output is used as an electric signal to activate the above operating valve via an electromagnetic solenoid. An electrical operating device for an engine to be operated includes a waveform detector that analyzes the waveform of the electrical signal, and a timer that detects the timing of operation of the solenoid valve from the output of the detector, and includes an output signal of the clock. A control device for an internal combustion engine, characterized in that the operating timing of an F engine operation valve is corrected and set. (2) Waveform analysis of electrical signals composed of amplifiers, diodes, capacitors, and resistors? 2. A control device for an internal combustion engine according to claim 1, comprising a waveform detector for controlling a waveform. (3) A control device for an internal combustion engine according to claim 1, comprising a waveform detector configured with two sets of differential circuits and a waveform shaping circuit F to perform waveform analysis of electrical signals.
JP58145454A 1983-08-09 1983-08-09 Control apparatus for internal-combustion engine Pending JPS6036739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145454A JPS6036739A (en) 1983-08-09 1983-08-09 Control apparatus for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145454A JPS6036739A (en) 1983-08-09 1983-08-09 Control apparatus for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6036739A true JPS6036739A (en) 1985-02-25

Family

ID=15385599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145454A Pending JPS6036739A (en) 1983-08-09 1983-08-09 Control apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6036739A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131643A (en) * 1984-07-20 1986-02-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fuel jet amount controller of internal combustion engine
JPS6293459A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid value of internal combustion engine
JPS6293458A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid value of internal combustion engine
JPS6483838A (en) * 1987-09-28 1989-03-29 Diesel Kiki Co Solenoid-valve controlled distributor type fuel injection device
JP2010144929A (en) * 2008-12-16 2010-07-01 Hydril Usa Manufacturing Llc Operation detecting circuit of solenoid shear seal valve on subsea pressure control system, and method of detecting operation of solenoid actuator
WO2014174916A1 (en) * 2013-04-26 2014-10-30 日立オートモティブシステムズ株式会社 Electromagnetic valve control unit and internal combustion engine control device using same
JP2015092077A (en) * 2013-10-29 2015-05-14 コンチネンタル オートモーティブ システムズ インコーポレイテッドContinental Automotive Systems, Inc. Method and apparatus for detecting selective catalytic reduction injector opening time
JP2015121108A (en) * 2013-12-20 2015-07-02 株式会社デンソー Pump control device
JP2015521712A (en) * 2012-06-27 2015-07-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for controlling an internal combustion engine and system comprising an internal combustion engine and a controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569626A (en) * 1979-07-04 1981-01-31 Nippon Denso Co Ltd Fuel injection device
JPS58131334A (en) * 1982-02-01 1983-08-05 Nissan Motor Co Ltd Apparatus for controlling fuel injection timing of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569626A (en) * 1979-07-04 1981-01-31 Nippon Denso Co Ltd Fuel injection device
JPS58131334A (en) * 1982-02-01 1983-08-05 Nissan Motor Co Ltd Apparatus for controlling fuel injection timing of internal-combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131643A (en) * 1984-07-20 1986-02-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fuel jet amount controller of internal combustion engine
JPS6293459A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid value of internal combustion engine
JPS6293458A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Solenoid current control method for intake air quantity control solenoid value of internal combustion engine
JPH03494B2 (en) * 1985-10-21 1991-01-08 Honda Motor Co Ltd
JPH0363660B2 (en) * 1985-10-21 1991-10-02 Honda Motor Co Ltd
JPS6483838A (en) * 1987-09-28 1989-03-29 Diesel Kiki Co Solenoid-valve controlled distributor type fuel injection device
JP2010144929A (en) * 2008-12-16 2010-07-01 Hydril Usa Manufacturing Llc Operation detecting circuit of solenoid shear seal valve on subsea pressure control system, and method of detecting operation of solenoid actuator
JP2015521712A (en) * 2012-06-27 2015-07-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for controlling an internal combustion engine and system comprising an internal combustion engine and a controller
US9617946B2 (en) 2012-06-27 2017-04-11 Robert Bosch Gmbh Method for controlling an internal combustion engine, and system having an internal combustion engine and a control device
WO2014174916A1 (en) * 2013-04-26 2014-10-30 日立オートモティブシステムズ株式会社 Electromagnetic valve control unit and internal combustion engine control device using same
JP2014214837A (en) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 Control device for solenoid valve, and control device for internal combustion engine using the same
US10240551B2 (en) 2013-04-26 2019-03-26 Hitachi Automotive Systems, Ltd. Electromagnetic valve control unit and internal combustion engine control device using same
US11300070B2 (en) 2013-04-26 2022-04-12 Hitachi Astemo, Ltd. Electromagnetic valve control unit and internal combustion engine control device using same
JP2015092077A (en) * 2013-10-29 2015-05-14 コンチネンタル オートモーティブ システムズ インコーポレイテッドContinental Automotive Systems, Inc. Method and apparatus for detecting selective catalytic reduction injector opening time
JP2015121108A (en) * 2013-12-20 2015-07-02 株式会社デンソー Pump control device

Similar Documents

Publication Publication Date Title
US7240665B2 (en) Method and apparatus for controlling motor-driven throttle valve, automobile, method of measuring temperature of motor for driving automotive throttle valve, and method of measuring motor temperature
US6016778A (en) Magnet valve, in particular for inlet and outlet valves of internal combustion engines
US6640168B2 (en) Method for detecting errors in a motor vehicle engine cooling system
US20140069533A1 (en) Method for Detecting a Closing Time Point of a Valve Having a Coil Drive, and Valve
JP3827717B2 (en) Method and apparatus for controlling electromagnetic load
JPS6036739A (en) Control apparatus for internal-combustion engine
JPH0368522B2 (en)
US6518748B2 (en) Method for determining the position of an armature
JPS6220378B2 (en)
US20020112682A1 (en) Method for controlling an electromechanical actuator drive
US20030098686A1 (en) Device and method for detecting the position of an object
JP3364722B2 (en) Solenoid valve control device
US4211119A (en) Self-standardizing pressure sensor for use in an electronic fuel control system
US6112724A (en) Throttle position filtering method
US4641624A (en) Exhaust gas recirculation control method and apparatus for internal combustion engine
JP3386968B2 (en) Control device for solenoid valve
JPS59110846A (en) Method and device for processing signal from measuring sensor of internal combustion engine
US5119683A (en) Solenoid controller with flyback pulses useful for diagnostics and/or control
JP3763492B2 (en) Valve operating device for internal combustion engine
JPH05118463A (en) Control device for solenoid valve
JPH0245068B2 (en)
JPS6022229B2 (en) Solenoid valve operating condition monitoring device
JPH027245Y2 (en)
JPH05168294A (en) Controller for throttle valve
JPS59158335A (en) Idle speed controller of diesel engine