JPH0245068B2 - - Google Patents

Info

Publication number
JPH0245068B2
JPH0245068B2 JP56022288A JP2228881A JPH0245068B2 JP H0245068 B2 JPH0245068 B2 JP H0245068B2 JP 56022288 A JP56022288 A JP 56022288A JP 2228881 A JP2228881 A JP 2228881A JP H0245068 B2 JPH0245068 B2 JP H0245068B2
Authority
JP
Japan
Prior art keywords
valve
signal
solenoid valve
plunger
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56022288A
Other languages
Japanese (ja)
Other versions
JPS57137784A (en
Inventor
Makoto Anzai
Hidetoshi Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2228881A priority Critical patent/JPS57137784A/en
Publication of JPS57137784A publication Critical patent/JPS57137784A/en
Publication of JPH0245068B2 publication Critical patent/JPH0245068B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電磁弁、例えば電子式燃料噴射装置
に用いる燃料噴射弁の動作状態を正確に判断する
ようにした電磁弁動作状態判断装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solenoid valve operating state determination device that accurately determines the operating state of a solenoid valve, such as a fuel injection valve used in an electronic fuel injection device. It is something.

[従来技術] 燃料噴射弁等、内燃機関用電磁弁は、どのよう
な運転条件下においても確実に作動することが要
求され、プランジヤのステイツク等によつて電磁
弁が初期の性能を発揮できない場合には、内燃機
関を安定して運転することができない。そこで、
この種電磁弁の作動状態を監視することが必要と
なり、従来は次のようにして電磁弁の作動状態を
判断している。
[Prior art] Solenoid valves for internal combustion engines, such as fuel injection valves, are required to operate reliably under any operating conditions. In this case, the internal combustion engine cannot be operated stably. Therefore,
It is necessary to monitor the operating state of this type of solenoid valve, and conventionally the operating state of the solenoid valve has been determined as follows.

電磁弁、例えば燃料噴射弁は、励磁コイルを巻
回しコイルコアの内部に摺動可能にプランジヤが
配設されており、励磁コイルに電流を流すことに
よりプランジヤを移動させて開弁し、燃料を内燃
機関の各気筒に供給している。そこで従来は、プ
ランジヤが移動して停止する時の自己インダクタ
ンスの変化を利用して電磁弁の作動状態を判断し
ている(特開昭53―43230号公報参照)。
A solenoid valve, such as a fuel injection valve, has an excitation coil wound around it and a plunger slidably disposed inside the coil core.By passing current through the excitation coil, the plunger is moved to open the valve, and the fuel is internally combusted. It supplies each cylinder of the engine. Conventionally, therefore, the operating state of the solenoid valve has been determined using the change in self-inductance when the plunger moves and stops (see Japanese Patent Application Laid-Open No. 1983-43230).

第1図は電磁弁の励磁コイルに流れる電流の時
間に対する変化の状態を示し、時点T0において
プランジヤの移動を開始させるために励磁コイル
に駆動電圧を印加する。コイルに流れる電流に対
して発生する力は比例しているので、この力が復
帰ばね(図示せず)の力以上になつたとき、プラ
ンジヤが移動し始める。すなわち、時点T0以降
のある時点(点TEよりも前の時点)から移動し
始める。ここで、プランジヤの移動前と移動中に
ついては、コイルに流れる電流は正の変化率で上
昇する。しかし、プランジヤが移動可能な限界位
置まで復帰ばねに抗して移動し、そして時点TE
で停止するとコイルの自己インダクタンスの影響
で、電流の変化率が負の方向へ変化し、第1図に
示す如く、コイルに流れる電流が減少する。そし
てプランジヤ停止後は、徐々に自己インダクタン
スの影響がなくなるので若干電流が増加し、それ
以降コイルに流れる電流は一定の値となる。
FIG. 1 shows how the current flowing through the excitation coil of the solenoid valve changes over time, and at time T 0 a driving voltage is applied to the excitation coil in order to start moving the plunger. Since the force generated is proportional to the current flowing through the coil, when this force exceeds the force of a return spring (not shown), the plunger begins to move. That is, it starts moving from a certain point after time T 0 (a point before point TE). Here, before and during movement of the plunger, the current flowing through the coil increases at a positive rate of change. However, the plunger moves against the return spring to its maximum movable position, and at the time TE
When the coil stops at , the rate of change of current changes in the negative direction due to the influence of the coil's self-inductance, and as shown in FIG. 1, the current flowing through the coil decreases. After the plunger stops, the influence of self-inductance gradually disappears, so the current increases slightly, and from then on, the current flowing through the coil remains at a constant value.

そこで、従来は励磁電流の変化率が負の方向へ
変化する点の有無を検出してプランジヤが作動
(移動)しているか否かを判断していた。
Therefore, conventionally, it has been determined whether the plunger is operating (moving) by detecting the presence or absence of a point where the rate of change of the excitation current changes in the negative direction.

このような従来の電磁弁動作状態判断装置で
は、上述のようにしてプランジヤが作動している
か否かを判断していたため、上記変化の有無から
では、プランジヤがどの程度移動してどの程度の
燃料が電磁弁を流れているのか判断できなかつ
た。また、プランジヤがごみ等により完全にもと
の状態に戻つているか否かも判断できなかつた。
In such conventional solenoid valve operating state determination devices, it was determined whether or not the plunger was operating as described above. Therefore, based on the presence or absence of the above change, it is difficult to determine how far the plunger has moved and how much fuel has been consumed. It was not possible to determine whether the current was flowing through the solenoid valve. Furthermore, it was not possible to determine whether the plunger had completely returned to its original state due to dust or the like.

そこで、電磁弁の開閉時期を検出するものとし
て、実開昭55―78873号公報に記載されているよ
うなものが知られている。
Therefore, there is a known device for detecting the opening/closing timing of a solenoid valve, as described in Japanese Utility Model Application Publication No. 78873/1983.

本例では、可動鉄心に直接ピンが接続され、ピ
ンがレバーを押し上げたりレバーから離れたりす
ることでマイクロスイツチがオンオフして電磁弁
の開閉時期を検知する伝達手段を設けている。
In this example, a pin is directly connected to the movable iron core, and when the pin pushes up a lever or moves away from the lever, a micro switch is turned on and off, thereby providing a transmission means for detecting the opening/closing timing of the solenoid valve.

[発明が解決しようとする課題] しかしながらこのようなプランジヤの実際の移
動位置に基づい電磁弁の動作状態を判別するの
に、機械的な伝達手段を用いると、流体通路開閉
弁の開閉のタイミングと磁気回路の内外に移動す
るタイミングとの設計誤差や移動による遅れ等に
より、開閉時期の検出に誤差が生じたり開閉時期
を検出する応答性が悪化する。そこで、正確な開
弁時間が検出できないと共に、特に電磁弁に内燃
機関の燃料噴射弁のような高速動作を行わせる
と、その開閉時期の検出が前述の遅れにより追随
できず正確な検出が難しい。従つて、正確かつ高
速動作で燃料供給を行う燃料噴射弁の動作状態を
正確に判断しにくいという欠点がある。
[Problems to be Solved by the Invention] However, if a mechanical transmission means is used to determine the operating state of the solenoid valve based on the actual moving position of the plunger, the timing of opening and closing of the fluid passage on-off valve and Due to design errors in the timing of movement into and out of the magnetic circuit, delays due to movement, etc., errors occur in detecting the opening/closing timing and responsiveness in detecting the opening/closing timing deteriorates. Therefore, it is not possible to accurately detect the valve opening time, and especially when a solenoid valve operates at high speed like a fuel injection valve in an internal combustion engine, the opening/closing timing cannot be detected due to the aforementioned delay, making accurate detection difficult. . Therefore, there is a drawback that it is difficult to accurately determine the operating state of the fuel injection valve that supplies fuel accurately and at high speed.

本発明の目的は、上述した従来の欠点に鑑み、
正確かつ高速動作で燃料供給を行う燃料噴射弁の
動作状態を正確に判断することができる電磁弁動
作状態判断装置を提供することにある。
In view of the above-mentioned conventional drawbacks, an object of the present invention is to
An object of the present invention is to provide an electromagnetic valve operating state determination device that can accurately determine the operating state of a fuel injection valve that supplies fuel accurately and at high speed.

[課題を解決するための手段] かかる目的を達成するために、本発明は、燃料
噴射弁の燃料噴射量を制御する弁駆動信号により
励磁コイルを励磁してプランジヤを移動させ、ま
た励磁コイルを消磁してばねによりプランジヤを
元の位置に復帰させて弁の開閉を行うようにした
電磁弁と、電磁弁に取り付けられた振動センサ
と、振動センサからの信号を入力し、励磁および
消磁に伴うプランジヤの移動による振動に起因す
る高周波成分を取り出して信号を出力するフイル
タ手段と、フイルタ手段の出力信号に基づいて燃
料噴射弁の開弁時から閉弁時までの時期を検出す
る開閉時期検出手段とを有し、開閉時期検出手段
からの出力信号と弁駆動信号とを比較して電磁弁
の動作状態を判断するようにしたことを特徴とす
るものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention moves a plunger by exciting an excitation coil by a valve drive signal that controls the fuel injection amount of a fuel injection valve, and also moves the plunger by exciting an excitation coil by a valve drive signal that controls the fuel injection amount of a fuel injection valve. A solenoid valve that is demagnetized and returns the plunger to its original position by a spring to open and close the valve, a vibration sensor attached to the solenoid valve, and a signal from the vibration sensor are input, and A filter means that extracts a high frequency component caused by vibration caused by the movement of the plunger and outputs a signal, and an opening/closing timing detection means that detects the timing from when the fuel injection valve opens to when it closes based on the output signal of the filter means. The present invention is characterized in that the operating state of the electromagnetic valve is determined by comparing the output signal from the opening/closing timing detection means and the valve drive signal.

[作用] そこで、このように構成した電磁弁動作状態判
断装置では、励磁コイルの励磁および消磁時にプ
ランジヤの移動により発生する振動が振動センサ
によつて検知され、さらにフイルタ手段によりそ
の内の高周波成分が取出されるので、これらの高
周波成分に基づいて開閉時期検出手段により検出
された開弁時から閉弁時までを示す信号から電磁
弁がいつからいつまで作動したか、その作動状態
を知ることができる。
[Function] Therefore, in the electromagnetic valve operating state determination device configured as described above, the vibration generated by the movement of the plunger during the excitation and demagnetization of the excitation coil is detected by the vibration sensor, and the high frequency component of the vibration is detected by the filter means. is extracted, so it is possible to know from when to when the solenoid valve was activated and its operating state from the signal indicating the time from valve opening to valve closing detected by the opening/closing timing detection means based on these high frequency components. .

[実施例] 以下、図面に基づいて本発明を詳細に説明す
る。
[Example] Hereinafter, the present invention will be described in detail based on the drawings.

第2図は本発明における電磁弁の構成の一例を
示し、ここで、1は例えば燃料噴射弁としての電
磁弁、2は電磁弁1に燃料を供給する燃料パイ
プ、3は燃料噴射口であり、所望のタイミングで
電磁弁1を開弁させて噴射口3から燃料を噴射さ
せる。4は電磁弁1の作動状態を判断するための
振動センサである。振動センサ4の出力信号を第
3図に示す信号処理回路で処理して、電磁弁1の
作動状態を判断する。
FIG. 2 shows an example of the configuration of a solenoid valve according to the present invention, where 1 is a solenoid valve as a fuel injection valve, 2 is a fuel pipe that supplies fuel to the solenoid valve 1, and 3 is a fuel injection port. , the solenoid valve 1 is opened at a desired timing to inject fuel from the injection port 3. 4 is a vibration sensor for determining the operating state of the solenoid valve 1. The output signal of the vibration sensor 4 is processed by a signal processing circuit shown in FIG. 3 to determine the operating state of the solenoid valve 1.

第3図および第4図に基づいて、振動センサ4
の出力信号の処理の手順について説明する。
Based on FIGS. 3 and 4, the vibration sensor 4
The procedure for processing the output signal will be explained.

第4図Aは電磁弁1に供給した弁駆動信号11
の波形を示す。いま、このような弁駆動信号11
が電磁弁1に供給されると、その信号の立上がり
により不図示のプランジヤが励磁によつて駆動さ
れ、移動を開始したプランジヤが復ばね(不図
示)の力に抗して移動可能な限界位置まで移動し
て停止したときに、振動センサ4は、第4図Bに
示すような波形信号41を出力する。この振動波
形41はプランジヤが停止したとき、すなわち電
磁弁が開弁した時に衝突により発生する振動に起
因するものである(プランジヤの移動距離は短い
ため、プランジヤの停止時と電磁弁の開き終りの
時期とは一致しているとみなせる)。いま電磁弁
1が開弁状態となり、燃料が噴射口3から噴射さ
れる。次いで、弁駆動信号11を立下げると、プ
ランジヤは復帰ばねにより元の位置まで戻り、停
止する。このとき振動センサ4は、第4図Bに示
すような振動波形42を出力する。この振動波形
42はプランジヤが停止したとき、すなわち電磁
弁が閉じ終つたときに衝突により発生する振動に
起因するものである。このとき電磁弁1は閉弁状
態なので燃料は遮断される。
Figure 4A shows the valve drive signal 11 supplied to the solenoid valve 1.
The waveform of is shown. Now, such a valve drive signal 11
is supplied to the solenoid valve 1, a plunger (not shown) is driven by excitation due to the rise of the signal, and the plunger, which has started moving, moves to the limit position where it can move against the force of a return spring (not shown). When the vibration sensor 4 moves up to and stops, the vibration sensor 4 outputs a waveform signal 41 as shown in FIG. 4B. This vibration waveform 41 is caused by the vibration that occurs due to a collision when the plunger stops, that is, when the solenoid valve opens. (It can be considered that the timing coincides with that.) The solenoid valve 1 is now in an open state, and fuel is injected from the injection port 3. Next, when the valve drive signal 11 is lowered, the plunger returns to its original position by the return spring and stops. At this time, the vibration sensor 4 outputs a vibration waveform 42 as shown in FIG. 4B. This vibration waveform 42 is caused by vibrations generated by a collision when the plunger stops, that is, when the solenoid valve finishes closing. At this time, the electromagnetic valve 1 is in a closed state, so fuel is cut off.

そこで、これら出力信号41および42を、第
3図に示す信号処理回路の入力端子21を介して
増幅器22に供給する。さらにハイパスフイルタ
23で高周波信号のみを取り出し、第4図Cに示
す信号51および52を出力する。すなわち、信
号51はプランジヤが移動可能な範囲の限界で停
止した時に発生する振動であり、信号52はプラ
ンジヤが復帰ばねの力により限界位置から元の位
置に移動して停止したときに発生する振動であ
る。これらの信号51および52を第1比較回路
24に供給して、第4図Cに一点鎖線で示すレベ
ルの信号50と比較し、第4図Dに示す信号61
および62を出力する。この信号61,62を急
速充電緩慢放電回路(以下、充放電回路という)
25に供給する。信号61および62が“1”レ
ベルのときは、充放電回路25のコンデンサ26
がダイオード27を介して急速に充電され、“0”
レベルのときは抵抗28を介してコンデンサ26
の充電電荷が充電時間に対してゆつくりした時間
で放電される。しかして、第4図Eに示す信号7
1および72が得られる。次いで、信号71およ
び72を第2比較回路29に供給し、第4図Eに
示すレベルの信号70と比較して波形整形を施
し、第4図Fに示す方形波信号81および82を
出力する。すなわち、最初に発生する信号81に
よつて、電磁弁の開弁時(開き終えた時点)を知
ることができ、そのすぐ後に続く信号82によつ
て電磁弁の閉弁時(閉じ終えた時点)を知ること
ができる。
Therefore, these output signals 41 and 42 are supplied to an amplifier 22 via an input terminal 21 of a signal processing circuit shown in FIG. Further, a high-pass filter 23 extracts only the high frequency signal and outputs signals 51 and 52 shown in FIG. 4C. That is, the signal 51 is the vibration that occurs when the plunger stops at the limit of its movable range, and the signal 52 is the vibration that occurs when the plunger moves from the limit position to the original position due to the force of the return spring and stops. It is. These signals 51 and 52 are supplied to the first comparison circuit 24, and compared with the signal 50 at the level shown by the dashed line in FIG. 4C, the signal 61 shown in FIG. 4D is obtained.
and 62 are output. These signals 61 and 62 are connected to a rapid charging/slow discharging circuit (hereinafter referred to as a charging/discharging circuit).
25. When the signals 61 and 62 are at the "1" level, the capacitor 26 of the charging/discharging circuit 25
is rapidly charged through the diode 27 and becomes “0”
At the level, the capacitor 26 is connected via the resistor 28.
The charge is discharged in a time that is slow compared to the charging time. Therefore, the signal 7 shown in FIG.
1 and 72 are obtained. Next, the signals 71 and 72 are supplied to the second comparison circuit 29, where they are compared with the signal 70 at the level shown in FIG. 4E, subjected to waveform shaping, and square wave signals 81 and 82 shown in FIG. 4F are output. . That is, the signal 81 that is generated first allows us to know when the solenoid valve is open (when it has finished opening), and the signal 82 that immediately follows can tell us when the solenoid valve is closed (when it has finished closing). ) can be known.

そして、第2比較回路29の出力信号(第4図
Fに示す信号)をアンドゲート30および31に
それぞれ供給する。弁駆動信号11を端子32か
らアンドゲート30へ直接供給し、インバータ3
3を介して反転した信号をアンドゲート31へ供
給する。従つて、弁駆動信号11が生起している
間に信号81が生起すると、第4図Gに示すよう
に、信号81のパルス幅に対応したアンド出力9
1が得られ、弁駆動信号11が生起していない時
に信号82が生起すると、第4図Hに示すよう
に、信号82のパルス幅に対応したアンド出力9
2が得られる。アンド出力91をフリツプフロツ
プ34のセツト端子Sに供給してフリツプフロツ
プ34をセツトし、アンド出力92をフリツプフ
ロツプ34のリセツト端子Rに供給してフリツプ
フロツプ34をリセツトするように各アンド出力
をフリツプフロツプ34に供給すると、第4図I
に示すように、アンド出力91が立上がつてから
アンド出力92が立上がるまでの間だけ、フリツ
プフロツプ34が“1”レベルの信号100を出
力する。この信号100を出力端子35から取出
し、例えば、信号100のパルス幅をデイジタル
値で表示するパルス幅カウンタ(図示せず)に信
号100を供給し、信号100のパルス幅を表示
等して電磁弁1が開き終えてから閉じ終るまでの
時間を読み取る。これにより、電磁弁1からエン
ジンに供給された燃料の量を検知することがで
き、エンジンの各気筒ごとに取付けた各燃料噴射
弁1の作動状態を判断してエンジンの各気筒のば
らつきを検知することができる。すなわち、エン
ジンの各気筒がばらついて作動するとエンジンの
動作が不安定となり、また、エミツシヨン不良
(排気ガス中に含まれる炭化水素HCなどの排出
量が基準値を越えること)等が生ずるが、燃料噴
射弁1の作動状態を監視するだけで、このような
状態を判断することができる。
Then, the output signal of the second comparison circuit 29 (signal shown in FIG. 4F) is supplied to AND gates 30 and 31, respectively. The valve drive signal 11 is directly supplied from the terminal 32 to the AND gate 30, and the inverter 3
The inverted signal is supplied to the AND gate 31 via the gate 3. Therefore, when the signal 81 occurs while the valve drive signal 11 is occurring, the AND output 9 corresponding to the pulse width of the signal 81 is generated as shown in FIG. 4G.
1 is obtained, and when the signal 82 occurs while the valve drive signal 11 is not occurring, as shown in FIG. 4H, the AND output 9 corresponding to the pulse width of the signal 82 is generated.
2 is obtained. Each AND output is applied to the flip-flop 34 such that the AND output 91 is applied to the set terminal S of the flip-flop 34 to set the flip-flop 34, and the AND output 92 is applied to the reset terminal R of the flip-flop 34 to reset the flip-flop 34. , Figure 4 I
As shown in FIG. 3, the flip-flop 34 outputs a signal 100 at the "1" level only from the time when the AND output 91 rises until the time when the AND output 92 rises. This signal 100 is taken out from the output terminal 35, and for example, the signal 100 is supplied to a pulse width counter (not shown) that displays the pulse width of the signal 100 as a digital value. Read the time from when 1 finishes opening until it finishes closing. This makes it possible to detect the amount of fuel supplied to the engine from the solenoid valve 1, and detect variations in each cylinder of the engine by determining the operating state of each fuel injection valve 1 attached to each cylinder of the engine. can do. In other words, if each cylinder of the engine operates unevenly, engine operation becomes unstable and problems such as emission failure (emissions of hydrocarbons such as HC contained in exhaust gas exceed the standard value) occur. Such a state can be determined simply by monitoring the operating state of the injection valve 1.

また、弁駆動信号11の立上がりから検出信号
100の立上がりまでの時間、あるいは弁駆動信
号11の立下りから検出信号100の立下りまで
の時間を検出すれば、電磁弁1が完全に開いてい
るか、あるいは完全に閉じているかを判断するこ
ともでき、ごみ等によるステイツク等、電磁弁1
の動作不良を判断することができる。
Furthermore, by detecting the time from the rise of the valve drive signal 11 to the rise of the detection signal 100, or the time from the fall of the valve drive signal 11 to the fall of the detection signal 100, it is possible to determine whether the solenoid valve 1 is completely open. , or it is possible to judge whether the solenoid valve 1 is completely closed.
malfunction can be determined.

[発明の効果] 以上説明してきたように、本発明によれば、電
磁弁が動作する時に生ずる振動、すなわち、プラ
ンジヤによる開弁動作および閉弁動作に基づいて
発生する振動を振動センサによつて検知し、その
振動からフイルタ手段によつ高周波成分を取出し
た上、これらに基づいて開閉時期検出手段により
開弁時から閉弁時までの時期を検出し、これらを
弁駆動信号と比較して電磁弁の動作状態を判断す
るようにしたので、正確かつ簡単に高速動作で燃
料供給を行う燃料噴射弁の動作状態を正確に判断
することができるという効果がある。
[Effects of the Invention] As described above, according to the present invention, vibrations generated when a solenoid valve operates, that is, vibrations generated based on valve opening and closing operations by a plunger, are detected by a vibration sensor. After detecting the vibration, high frequency components are extracted from the vibration by a filter means, and based on these, the timing from the valve opening to the valve closing is detected by the opening/closing timing detection means, and these are compared with the valve drive signal. Since the operating state of the electromagnetic valve is determined, it is possible to accurately and easily determine the operating state of the fuel injection valve that supplies fuel at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

1図は従来の電磁弁動作状態判断装置における
励磁電流の変化を示す線図、第2図は本発明にお
ける電磁弁の構成の一例を示す線図、第3図は本
発明における信号処理回路の一例を示すブロツク
図、第4図はその各部の波形を示すタイミングチ
ヤートである。 1……電磁弁、2……燃料パイプ、3……燃料
噴射口、4……振動センサ、11,41,42,
51,52,61,62,71,72,81,8
2,91,92,100……信号、21,32,
35……端子、22……増幅器、23……フイル
タ、24,29……比較回路、25……充放電回
路、26……コンデンサ、27……ダイオード、
28……抵抗、30,31……アンドゲート、3
3……インバータ、34……フリツプフロツプ。
Fig. 1 is a diagram showing changes in excitation current in a conventional electromagnetic valve operating state determination device, Fig. 2 is a diagram showing an example of the configuration of the electromagnetic valve according to the present invention, and Fig. 3 is a diagram showing a signal processing circuit according to the present invention. FIG. 4 is a block diagram showing an example, and a timing chart showing waveforms of each part thereof. 1... Solenoid valve, 2... Fuel pipe, 3... Fuel injection port, 4... Vibration sensor, 11, 41, 42,
51, 52, 61, 62, 71, 72, 81, 8
2,91,92,100...signal, 21,32,
35... terminal, 22... amplifier, 23... filter, 24, 29... comparison circuit, 25... charging/discharging circuit, 26... capacitor, 27... diode,
28...Resistance, 30, 31...And gate, 3
3...Inverter, 34...Flip-flop.

Claims (1)

【特許請求の範囲】 1 燃料噴射弁の燃料噴射量を制御する弁駆動信
号により励磁コイルを励磁してプランジヤを移動
させ、前記励磁コイルを消磁してばねにより前記
プランジヤを元の位置に復帰させて弁の開閉を行
うようにした電磁弁と、 該電磁弁に取り付けられた振動センサと、 該振動センサからの信号を入力し、前記励磁お
よび前記消磁に伴う前記プランジヤの移動による
振動に起因する高周波成分を取り出して信号を出
力するフイルタ手段と、 該フイルタ手段の出力信号に基づいて前記燃料
噴射弁の開弁時から閉弁時までの時期を検出する
開閉時期検出手段と、 を有し、該開閉時期検出手段からの出力信号と前
記弁駆動信号とを比較して前記電磁弁の動作状態
を判断するようにしたことを特徴とする電磁弁動
作状態判断装置。
[Claims] 1. An excitation coil is excited by a valve drive signal that controls the fuel injection amount of the fuel injection valve to move the plunger, and the excitation coil is demagnetized and the plunger is returned to its original position by a spring. a solenoid valve that opens and closes the valve with a vibration; a vibration sensor attached to the solenoid valve; and a signal from the vibration sensor is inputted to detect the vibration caused by the movement of the plunger accompanying the excitation and demagnetization. a filter means for extracting a high frequency component and outputting a signal; and an opening/closing timing detection means for detecting the timing from when the fuel injection valve is opened to when it is closed based on the output signal of the filter means, A solenoid valve operating state determining device, characterized in that the operating state of the solenoid valve is determined by comparing an output signal from the opening/closing timing detection means with the valve drive signal.
JP2228881A 1981-02-19 1981-02-19 Discriminatin gunit for condition of operation of solenoid valve Granted JPS57137784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228881A JPS57137784A (en) 1981-02-19 1981-02-19 Discriminatin gunit for condition of operation of solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228881A JPS57137784A (en) 1981-02-19 1981-02-19 Discriminatin gunit for condition of operation of solenoid valve

Publications (2)

Publication Number Publication Date
JPS57137784A JPS57137784A (en) 1982-08-25
JPH0245068B2 true JPH0245068B2 (en) 1990-10-08

Family

ID=12078552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228881A Granted JPS57137784A (en) 1981-02-19 1981-02-19 Discriminatin gunit for condition of operation of solenoid valve

Country Status (1)

Country Link
JP (1) JPS57137784A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437215B1 (en) * 2001-03-16 2004-06-23 주식회사 만도 Circuit for driving solenoid valve of anti-lock brake system
JP4501487B2 (en) * 2004-03-25 2010-07-14 株式会社デンソー Solenoid valve drive inspection method
JP2008256536A (en) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd Flowmeter
DE102012010868A1 (en) * 2012-05-31 2013-12-05 Avl Deutschland Gmbh Method and device for monitoring an actuator device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399634U (en) * 1977-01-17 1978-08-12
JPS5578873U (en) * 1978-11-25 1980-05-30

Also Published As

Publication number Publication date
JPS57137784A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
US5592921A (en) Method and device for actuating an electromagnetic load
JP3827717B2 (en) Method and apparatus for controlling electromagnetic load
US8483933B2 (en) Method for operating a fuel injector
US9046442B2 (en) Method and apparatus for operating an injection valve
KR20130111249A (en) Determining the closing point in time of an injection valve on the basis of an analysis of the actuating voltage using an adapted reference voltage signal
US5880920A (en) Method and apparatus for controlling an electromagnetic switching member
JP2013514660A (en) System and method for detecting movement of a solenoid armature
US7686000B2 (en) Controller and method for controlling an ignition coil
JPS59103091A (en) Control method of electrification current for solenoid valve
US6518748B2 (en) Method for determining the position of an armature
KR101444109B1 (en) Method and device for operating an injection valve
KR20080087170A (en) Method and apparatus for operating an injection valve
US5866808A (en) Apparatus for detecting condition of burning in internal combustion engine
GB2515359A (en) Solenoid-actuator-armature end-of-motion detection
JPH0245068B2 (en)
US5433109A (en) Device for recording the instant at which injection starts in an injection valve
EP2455600A1 (en) Method and apparatus for operating an injection valve
US4641624A (en) Exhaust gas recirculation control method and apparatus for internal combustion engine
JPS6036739A (en) Control apparatus for internal-combustion engine
US4563995A (en) Method of and circuit for analyzing output signals from a sensor installed in an internal combustion engine
JPS6022229B2 (en) Solenoid valve operating condition monitoring device
US20240093655A1 (en) A method of determining closing time of needle valve of a fuel injector
JPS6319803A (en) Operation detection equipment of solenoid actuator
JP6945053B2 (en) Fuel injection control device, fuel injection control method
JPH10184975A (en) Controller for solenoid valve