JPS6036546A - Polyethylene resin composition - Google Patents

Polyethylene resin composition

Info

Publication number
JPS6036546A
JPS6036546A JP14438583A JP14438583A JPS6036546A JP S6036546 A JPS6036546 A JP S6036546A JP 14438583 A JP14438583 A JP 14438583A JP 14438583 A JP14438583 A JP 14438583A JP S6036546 A JPS6036546 A JP S6036546A
Authority
JP
Japan
Prior art keywords
polyethylene
molecular weight
polymerization
composition
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14438583A
Other languages
Japanese (ja)
Inventor
Kisoo Moriguchi
森口 基十雄
Tadashi Ikegami
正 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14438583A priority Critical patent/JPS6036546A/en
Priority to US06/599,401 priority patent/US4536550A/en
Priority to CA000451826A priority patent/CA1218181A/en
Priority to DE8484302681T priority patent/DE3470168D1/en
Priority to EP84302681A priority patent/EP0129312B1/en
Publication of JPS6036546A publication Critical patent/JPS6036546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a composition exhibiting excellent moldability by blow molding, extrusion molding, etc., and having high impact resistance and environmental stress cracking resistance, by compounding two kinds of specific polyethylenes composed of an ethylene homopolymer and an ethylene/alpha-olefin copolymer. CONSTITUTION:The objective polyethylene resin composition is produced by compounding (A) 90-35wt% polyethylene selected from an ethylene homopolymer and an ethylene/alpha-olefin copolymer polymerized by a magnesium compound- based Ziegler catalyst, and composed of a low molecular weight part (A-L) having a molecular weight of 9,000-90,000 and a high molecular weight part (A-H) having a molecular weight of 100,000-1,500,000 wherein the molecular weight ratio of (A-H)/(A-L) is 4-200 and the weight ratio of (A-L)/(A-H) is 70:30-30:70 and (B) 10-65wt% polyethylene having a molecular weight of 50,000-500,000 and selected from an ethylene homopolymer and an ethylene/alpha- olefin copolymer polymerized by a supported chromium compound catalyst combined with an organometallic compound.

Description

【発明の詳細な説明】 本発明は、秀れた物理的、化学的性質と成形加工性を有
するポリエチレン組成物に関し、と(に中空、押出、イ
ンジェクション−ブロー成形用途等で、秀れた成形加]
性、秀れた耐衝撃性および耐環境応力亀裂性(以下、E
scRと言う)等の物性なイjするポリエチレン組成物
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyethylene composition having excellent physical and chemical properties and molding processability, and which has excellent molding properties in hollow, extrusion, injection-blow molding applications, etc. ]
properties, excellent impact resistance and environmental stress cracking resistance (hereinafter referred to as E
It relates to a polyethylene composition having good physical properties such as scR.

ポリエチレンの中空、1す(υ」、インジェクンヨンー
ブロー成形用途等では、分子量が比較的高く、分子量分
布の比較的広(・ポリマーが適している。
Polymers with a relatively high molecular weight and a relatively wide molecular weight distribution are suitable for use in polyethylene hollow, single-sided (υ), injection molding and blow molding applications.

分子9”分布の広いポリエチレンの製造方法として、幾
つかの方法が提案されている。
Several methods have been proposed for producing polyethylene with a wide molecular 9'' distribution.

1つの方法とし2て、高分子量ポリエチレンと低分子量
のポリエチレンとを混合する方法が提案されている(特
電IJ、15−3215号公報、特公昭45−2200
7号公報、特開昭54−.100444号公報、特開昭
54−100445号公報、特開昭54−1(il、6
57号公報、特開昭55−6(1542号公報、特開昭
55−60543 号公’iJi、4> Uil DB
 56− :: 7841号公報、特開昭4i7−13
3]36号公報)、。
As one method, a method of mixing high molecular weight polyethylene and low molecular weight polyethylene has been proposed (Tokuden IJ, No. 15-3215, Japanese Patent Publication No. 45-2200).
Publication No. 7, Japanese Unexamined Patent Publication No. 1983-. 100444, JP 54-100445, JP 54-1 (IL, 6
No. 57, JP 55-6 (1542, JP 55-60543) iJi, 4> Uil DB
56-:: Publication No. 7841, JP-A-4i7-13
3] Publication No. 36).

又、別の方法として、2段以上の多段重合方法が試みら
れてぎた(特公昭46−11349号公報、特公昭48
−42775号公報、特開昭51−47 (179号公
報、特開昭5219788号公報ン。
In addition, as another method, a multi-stage polymerization method of two or more stages has been attempted (Japanese Patent Publication No. 11349/1983, Japanese Patent Publication No. 11349/1983).
-42775, JP-A-51-47 (JP-A-179, JP-A-5219788).

これらの方法によって製造されるポリマーは、分子量分
布が広く、且つE S CRが良好である。
Polymers produced by these methods have a wide molecular weight distribution and good E S CR.

本願発明者らは、マグネシウム化合物系チーグラー型触
媒により、上記に示される殻っかの例を検討してみると
、分子量分布は広く出来、且っE S CRも改良され
たが、−力、それらのポリエチレンは衝撃強度が低い、
さらに成形加工時の溶融粘弾性特性が悪(、成形品に厚
4斑力″−発生し易い、あるいは複雑な形状の成形品は
成形出来ない等、実用特性の点で幾多の欠点があること
が解った。
The inventors of the present application investigated the example of the shell shown above using a magnesium compound-based Ziegler type catalyst, and found that the molecular weight distribution was widened and the E S CR was improved, but -force, Those polyethylenes have low impact strength,
Furthermore, there are many disadvantages in terms of practical properties, such as poor melt viscoelastic properties during molding (thickness of 4" - easy to occur in molded products, and the inability to mold molded products with complex shapes. I understand.

本願発明は、マグネシウム化合物系チーグラー型触媒に
よって重合された低分子量部と高分子量部とから成るポ
リエチレンのこれらの欠点を改良し、加工性および物性
ともに総合的に秀れたポリエチレン組成物を提供するも
のである。
The present invention improves these drawbacks of polyethylene composed of a low molecular weight part and a high molecular weight part polymerized by a magnesium compound-based Ziegler type catalyst, and provides a polyethylene composition that is comprehensively excellent in both processability and physical properties. It is something.

す7Zわち、本発明は、エチレンの単独重合体およびエ
チレンとα−オレフィンの共重合体からなるmから選ば
れるポリエチレンな)およびIB)とから成り、 (It ポリエチレン(A)は、マグネシウム化合物系
チーグラー型触媒によって重合されたものであり、ポリ
エチレン(Blは有機金属化合物を組み合せたクロム化
合物担持系触媒によって重合されムニものであり、 (11) ポリエチレン+A+は分子量が0.5〜9万
の低分子月゛部(A、−L )と分子量が10〜150
万の高分子−61部(A−H)とから成り、A−Hの分
子量/ A −L ノ分子景が4〜200であり、且つ
、A−LのIN対A −Ilの量は重量比で70対30
かも30対70の範囲であり、 (#l) ポリエチレン[J3)の分子量は5〜50万
であり、組成物中の(Blの量は10〜65重量%であ
るポリエチレン樹脂組成物に係るものである。
7Z That is, the present invention consists of a polyethylene (m) and IB) selected from a homopolymer of ethylene and a copolymer of ethylene and α-olefin, and (It polyethylene (A) is a magnesium compound (11) Polyethylene+A+ is polymerized using a Ziegler type catalyst, and polyethylene (Bl is a monomer polymerized using a chromium compound-supported catalyst combined with an organometallic compound. Low molecular weight (A, -L) and molecular weight of 10 to 150
The molecular weight of A-H/the molecular weight of A-L is 4 to 200, and the amount of IN of A-L to A-Il is the weight of 70:30 ratio
The molecular weight of (#l) polyethylene [J3) is 50,000 to 500,000 to 500,000, and the amount of (Bl) in the composition is 10 to 65% by weight. It is.

本発明によれば、工業的に適用範囲の広い、秀れた耐衝
撃性、ESCR1剛性等の物性と、秀れた成形加工性と
を併せ有し、中空、押出およびインジェクション−プロ
ー成形用途等に適したポリエチレン組成物が与えらJし
る。
According to the present invention, it has both physical properties such as excellent impact resistance and ESCR1 rigidity, which have a wide range of industrial applications, and excellent molding processability, and has applications such as hollow, extrusion and injection blow molding. A suitable polyethylene composition is given.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の構成成分であるポリエチレン(AIとIB)は
エチレンの単独重合体および上ナレンとα−オレフィン
との共重合体からなる群から選ばλしる。
The polyethylenes (AI and IB) which are the constituent components of the present invention are selected from the group consisting of ethylene homopolymers and copolymers of upper nalene and α-olefins.

共重合に用いるα−オレンインは炭素数j〜14のもの
で、例えば、プロピレン、ブテン、ペンテン、ヘキセン
、4〜メチルベンゾン−1、;AJテン、デセン等が孕
げらtLる。
The α-olenylene used in the copolymerization has a carbon number of j to 14, and includes, for example, propylene, butene, pentene, hexene, 4-methylbenzone, decene, and the like.

ポリエチレン(A)は低分子量部(A J、〕と高分子
量部(A −H)から成るボIJ −、−−一でル、る
が、A−りの分子−Jf((M W A−L )は0.
5〜9万であり、A−Ilの分子1L (M W A−
)1 )は10〜150カである。MWA−Lが0.5
万未満では、各成分の均一分散性おまひ物性か低下し、
−力9カを越えると組成物の分子量が適度な範囲で分−
J−量分)liiを広げに(くなり、加工性が低下する
。よりtlJ”−tしくけ1〜7万である。一方MwA
−,,が1o万未満では組成物の分子量が低下し、E 
S CRも低下1−る。
Polyethylene (A) consists of a low molecular weight part (A J, ) and a high molecular weight part (A - H). L) is 0.
50,000 to 90,000, and 1 L of molecules of A-Il (M W A-
)1) is 10 to 150. MWA-L is 0.5
If the amount is less than 10,000, the uniform dispersion and physical properties of each component will decrease.
-If the force exceeds 9 forces, the molecular weight of the composition will be within an appropriate range-
J-amount)lii becomes wider (and the workability decreases.The tlJ"-t ratio is 10,000 to 70,000. On the other hand, MwA
-,, is less than 10,000, the molecular weight of the composition decreases, and E
SCR also decreased by 1-1.

150万を越えるとフィッシュアイが発生したり、組成
物中の各成分の均一分散性が低下するなど、加工性、物
性ともにバランスが悪(なる。より好ましくは20〜1
00万である。
If it exceeds 1.5 million, fish eyes may occur and the uniform dispersibility of each component in the composition may decrease, resulting in poor balance in both processability and physical properties.More preferably 20 to 1
It is 0,000,000.

また、M W A−11とMWA−Lとの比(MWA−
H/MWA−L)は4〜200であり、4未満では分子
量分布が狭く加工性が低く、本発明の秀れた物性が得ら
れない。一方、200を越えても、成形性、物性を向上
させる土で何らの利点もな(、かつ製造上も不利どなる
。より好」ニジ<は7〜150である。
In addition, the ratio between MWA-11 and MWA-L (MWA-
H/MWA-L) is 4 to 200; if it is less than 4, the molecular weight distribution is narrow and processability is low, making it impossible to obtain the excellent physical properties of the present invention. On the other hand, even if it exceeds 200, there is no advantage in improving moldability and physical properties (and there are also disadvantages in terms of manufacturing).More preferred is 7 to 150.

また、A−Lの密度は0.91〜0.98 ’I/dで
、A−Hの密度は091〜0.97 ’jlcrr?で
ある。と(にA−1tの密度がA−L及びポリエチレン
[B)の密度のいずれ」二すも低(,091〜0951
層のとぎは、押出性等の加工性、耐衝撃性、ESCR等
の物性がともに良くなり好ましい。
Also, the density of A-L is 0.91-0.98'I/d, and the density of A-H is 091-0.97'jlcrr? It is. The density of A-1t is lower than that of A-L and polyethylene [B].
Trimming of the layers is preferred because it improves both processability such as extrudability and physical properties such as impact resistance and ESCR.

ポリエチレンFBIの分子量(、MWs、)は5〜50
万であり、好ましくは8〜40万、密度は0.91〜0
.98 W/ar? 、好ましくは0.94〜097g
−□である。
The molecular weight (MWs) of polyethylene FBI is 5 to 50
10,000, preferably 80,000 to 400,000, density 0.91 to 0
.. 98 W/ar? , preferably 0.94-097g
−□.

なお、組成物の成形加工性、物性のバランスを良くする
ために、とくに望ましい態様は、M W s/MWA−
Lが12以上で、M W +) 、/ M 1νA−H
が09以下であり、さらにまたポリエチレン(A)の分
子刃、(bλll、 )より、MWBが低し・ことであ
る。
In addition, in order to improve the balance between moldability and physical properties of the composition, a particularly desirable embodiment is M W s/MWA-
When L is 12 or more, M W +), / M 1νA-H
is 09 or less, and furthermore, the MWB is lower than the molecular edge of polyethylene (A), (bλll, ).

ポリエチレン(Al中のA−Lの絹対A −11の芥は
70対30かも30対7()の範囲であり、好ましくは
60対40から40対60の範囲である。
The ratio of A-L silk to A-11 silk in polyethylene (Al) ranges from 70:30 to 30:7 (), preferably from 60:40 to 40:60.

A −LまたはA −IIO量が7()%を越えると、
分子量分布が狭くなり、加工性、物性のバランスが悪く
なる。
When the amount of A-L or A-IIO exceeds 7()%,
The molecular weight distribution becomes narrow, resulting in poor balance between processability and physical properties.

また、組成物中のポリエチレンtutの量は、重量で1
0〜65重量%の範囲であり、好ましくは15〜55重
景%の範囲にある。(11)の量が10%未満の時は、
加工性、衝撃強度が改善されず、一方65 %を越える
と、分子量分布が狭く、加工性が悪くなり、かつESC
[ζが悪(なり、・ド願発明のポリエチレン組成物の特
徴が損なわれる。
Also, the amount of polyethylene tut in the composition is 1 by weight.
It ranges from 0 to 65% by weight, preferably from 15 to 55% by weight. When the amount of (11) is less than 10%,
Processability and impact strength are not improved; on the other hand, if it exceeds 65%, the molecular weight distribution becomes narrow, processability deteriorates, and ESC
[If ζ is bad, the characteristics of the polyethylene composition of the claimed invention will be impaired.

次にポリエチレン(Alを製造するだめの触媒と(A)
の製造法について説明する。
Next, a catalyst for producing polyethylene (Al) and (A)
The manufacturing method will be explained.

本発明で言うマグネシウム化合物系チーグラー型触媒と
しては、有機マグネシウム、無機マグネシウムに茫くい
ずれの系も用(・ることか出来る。
As the magnesium compound-based Ziegler type catalyst referred to in the present invention, any system capable of producing organic magnesium or inorganic magnesium can be used.

例えは、塩化マグネシウム、ヒドロキシマグネシウムク
ロリド、酸化マグネシウム、水酸化マグネシウム、炭酸
マグネシウム、マグネシウムアルコキシド、−7グイ・
シウムの有機酸塩、又はこれらとアル:J−ル、有機酸
エステル等の電子供与性化合物との錯合体、あるいはこ
れらの混合物、炭素−マグネシウム結合を有する有機マ
グネシウム化合物、たとえば、ジアルキルマグネシウム
、アルキルマダイ・/ウムクロリド、アルギルマグネシ
ウム−J−ルコキシド、アルキルマグネ7ウムシロギシ
ド、又はこれらのイ゛f(泡マグオシウム化合物とエー
テルζ9・の電子供与体との錯合体、Aりるいはこれら
の有機マグイ・ンウム成分とハロゲン化物、んとえば、
塩酸、クロル化炭化水禦、四塩化ケイ素、四塩化スズと
の反応生成物をマグネシウム成分とし°C用い、これと
チタンおよび/又はバナジウム化付物とを反応させ1こ
成分と万機金属化置物とから成る触媒が用いられる。
Examples include magnesium chloride, hydroxymagnesium chloride, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium alkoxide, -7g
Organic acid salts of sium, complexes of these with electron-donating compounds such as alkyl, organic acid esters, or mixtures thereof, organomagnesium compounds having a carbon-magnesium bond, such as dialkylmagnesium, alkyl red sea bream /um chloride, argylmagnesium-J-rukoxide, alkylmagnesium silogide, or these ゛f (complex of a foam magosium compound and an electron donor of ether ζ9), components and halides, for example,
A reaction product of hydrochloric acid, chlorinated hydrocarbon, silicon tetrachloride, and tin tetrachloride is used as a magnesium component at °C, and this is reacted with titanium and/or a vanadium adduct to form a metallized component. A catalyst consisting of a figurine is used.

とくに本願発明において好ましい触媒としては、たとえ
ば(1)一般式M、IMgpR’p R”qXrYll
(式中、αは0または0より大さい数、p十q十r +
S ニア71α+2β の関係を有し、Mは周期律表第
1族ないし第■族に11する金属元素、R1、Btは同
一または異1工っだ炭素原子数の炭化水素基、X、Yは
同一ま1こは異なった基であり、ハロゲン+ OR” 
、08iR’R5R’、 NR’R’。
Particularly preferred catalysts in the present invention include (1) general formula M, IMgpR'p R"qXrYll
(In the formula, α is 0 or a number larger than 0, p10q0r +
S has the relationship of 71α+2β, M is a metal element belonging to Group 1 to Group II of the periodic table, R1 and Bt are hydrocarbon groups having the same or different number of carbon atoms, X and Y are Identical groups are different groups, halogen + OR”
, 08iR'R5R', NR'R'.

SR’なる基を表わし、R3、R4、R5、Re 、 
R? 、 R8は水素原子または炭化水素基、R9は炭
化水素基を表わ′1″)で示される有機マグネシウム化
合物と、(11)少なくとも1個のハロゲン原子を含有
するチタンまたはバナジウム化合物と、(川IA/、 
B 、Si 、Ge 。
Represents a group SR', R3, R4, R5, Re,
R? , R8 represents a hydrogen atom or a hydrocarbon group, and R9 represents a hydrocarbon group; (11) a titanium or vanadium compound containing at least one halogen atom; IA/,
B, Si, Ge.

Sn r Te + S bのハライド化合物の(Il
〜il+00)うち(11と(11)あるいは(1)と
(11)とfllilとを反応させてなる固体触媒成分
〔A〕と有機金属化合物Ln〕からなるものである。有
機金属化合物CDIとしては、周期律表第1〜m族の化
合物で、特に有機アルミニウム化合物および有機マグネ
シウムを含む錯体が好ましい。
Sn r Te + S b halide compound (Il
~il+00) Among them, it consists of (a solid catalyst component [A] formed by reacting 11 and (11) or (1) and (11) with flil and an organometallic compound Ln].As an organometallic compound CDI , compounds of groups 1 to m of the periodic table, and particularly preferred are complexes containing organoaluminum compounds and organomagnesium.

触媒成分CAIと有機合札化合物CB)成分の反応は、
重合系内に両成分を添加し、重合条件下に重合の進行と
ともに行わせることも可能であり、あらかじめ重合に先
立って実施してもよい。また触媒成分の反応比率は、シ
A〕成分11に対しCBI成分1〜300 f)mmo
/の範囲で行なうことが好ましい。
The reaction between the catalyst component CAI and the organic bidder compound CB) is as follows:
It is also possible to add both components into the polymerization system and carry out the reaction under polymerization conditions as the polymerization progresses, or it may be carried out in advance prior to the polymerization. In addition, the reaction ratio of the catalyst components is 1 to 300 f) component CBI to 11 components f) mmo
It is preferable to carry out within the range of /.

触媒成分[A]の代りに、無機の炭化合物にTi化合物
を担持したものでもよい。
Instead of the catalyst component [A], a Ti compound supported on an inorganic carbon compound may be used.

これらの触媒系の中でも、工業的に脱触媒工程を省略出
来るためにどくに望ましいものとして、特公昭52−3
6788号公報、特公昭52−36790号公報、特公
昭52−36791号公報、特公昭52−36792号
公報、特公昭52−50070号公報、特公昭52−3
6794号公報、特公昭52−36795号公報、特公
昭52−36796号公報、特公昭52−36915号
公報、特公昭52−36917号公報、特電F@ 53
−(i 019号公報、特開昭50−21876号公報
、特開昭50−31835号公報、特開昭50−720
.44号公報、特開昭50−78619号公報、特開昭
53−40696号公報のものがある。
Among these catalyst systems, JP-B No. 52-3 is the most desirable system because it can omit the decatalyst step industrially.
6788 Publication, Japanese Patent Publication No. 52-36790, Japanese Patent Publication No. 52-36791, Japanese Patent Publication No. 52-36792, Japanese Patent Publication No. 52-50070, Japanese Patent Publication No. 52-3
6794 Publication, Special Publication No. 52-36795, Special Publication No. 52-36796, Special Publication No. 52-36915, Special Publication No. 52-36917, Special Telephone F@53
-(i019, JP 50-21876, JP 50-31835, JP 50-720
.. 44, JP-A-50-78619, and JP-A-53-40696.

該ポリエチレンか)は懸濁重合、溶液重合、気相重合等
の方法で製造される。
The polyethylene is produced by suspension polymerization, solution polymerization, gas phase polymerization, or the like.

該ポリエチレン体は2段重合によってつくるのが、工業
的には望ましいが、2段重合の方法はすでに幾つか提案
されている。本願見開においてとくに好ましい方法を以
下に説明する。
It is industrially desirable to produce the polyethylene body by two-stage polymerization, and several two-stage polymerization methods have already been proposed. A particularly preferred method for the present application will be described below.

重合は炭素Dハ子数4〜10個を有づ−る飽相炭化水素
中で行なう。重合の順序は(A−L)−(A−H)ある
いは(A −H) −(A −L )のいずれでもよい
The polymerization is carried out in a saturated hydrocarbon having 4 to 10 carbon atoms. The order of polymerization may be (A-L)-(A-H) or (A-H)-(A-L).

簡単のために(A −L ) −(A −II )のパ
ターンを図面を参照しながら説明する。
For simplicity, the (A-L)-(A-II) pattern will be explained with reference to the drawings.

低分子量部(A−L)は、重合圧力1〜30kI7’a
lG、好ましくは3〜25 kl/′dGで、重合温度
は60〜100℃、好ましくは70〜90℃で行なう。
The low molecular weight part (A-L) has a polymerization pressure of 1 to 30 kI7'a
1G, preferably 3 to 25 kl/'dG, and the polymerization temperature is 60 to 100°C, preferably 70 to 90°C.

高分子量部(A −)1 )は、重合圧力05〜3 o
kttlc3fG、好ましくは0.5〜20 kg、/
crr?Gで、JK重合温度ま40〜110℃、好まし
くは60〜90℃でイ丁なう。
The high molecular weight part (A −) 1) has a polymerization pressure of 05 to 3 o
kttlc3fG, preferably 0.5-20 kg, /
crrr? The polymerization temperature is 40 to 110°C, preferably 60 to 90°C.

重合器1ではライン2より工Pレン、ヘキサン、水素、
触媒成分等が供給され、低分子量のポリエチレン(A−
L)が重合される。乗合器1内σノスラリーはフラッシ
ュドラム3に導かれ、未反応のエチレン、水素が除かれ
る。除去されたエチレン、水素はコンプレッサー4によ
り昇圧され重合器IK戻される。一方、7ラツシユドラ
ム3内のスラリは、ポンプ5により2段目の重合器6に
導入される。重合器6ではライン7よりエチレン、コモ
ノマー、ヘキサン、触媒成分等が供給され、高分子量の
ポリエチレン(’A −)1 )の重合が行なわれ、重
合器6内のポリマーが製品として後処理工程を経てとり
出される。
In polymerization reactor 1, polymer, hexane, hydrogen,
Catalyst components etc. are supplied, and low molecular weight polyethylene (A-
L) is polymerized. The σ slurry in the mixer 1 is led to a flash drum 3, where unreacted ethylene and hydrogen are removed. The removed ethylene and hydrogen are pressurized by the compressor 4 and returned to the polymerizer IK. On the other hand, the slurry in the seven lash drums 3 is introduced into the second stage polymerization vessel 6 by the pump 5. In the polymerization vessel 6, ethylene, comonomer, hexane, catalyst components, etc. are supplied from the line 7, and polymerization of high molecular weight polyethylene ('A-)1) is carried out, and the polymer in the polymerization vessel 6 undergoes a post-treatment process as a product. It is then taken out.

以上説明したフローは、本発明の代表的な例の一つであ
り、場合によっては重合器】で高分子量部(A −H,
)を重合し、重合器6で低分子量部(A−L)を重合し
てもよい。その際には、フラッシュドラム3を省略する
ことが可能である。さらに、後段の11+、合冊6から
前段の重合器1に重合器内容物を循環してもよい。
The flow explained above is one of the typical examples of the present invention, and in some cases, the high molecular weight part (A - H,
) may be polymerized, and then the low molecular weight portion (A-L) may be polymerized in the polymerization vessel 6. In that case, it is possible to omit the flash drum 3. Furthermore, the contents of the polymerization vessel may be circulated from the rear stage 11+ and the bundle 6 to the front stage polymerization vessel 1.

このようなフローシートにより連続的にポリエチレン体
)の重合を行なうことかでざる。
Polyethylene (polyethylene) can be continuously polymerized using such a flow sheet.

このようにして、該ポリエチレン体)は2段重合によっ
てつくられるが、ま1こ別々に低分子iK部と高分子量
部をつくり8i合してもよい。
In this way, the polyethylene body) is produced by two-stage polymerization, but it is also possible to separately prepare a low molecular weight part and a high molecular weight part and then combine them.

このようにしてつくられたポリエチレン体)は分子量分
布は広く、二重結合の量がi 、 ooo炭素数当り0
.5個以下であり、またF; S CIζは良好である
が、一方、耐@撃性が低く、溶融時のバラス効果が低い
The polyethylene body produced in this way has a wide molecular weight distribution, and the amount of double bonds is 0 per i, ooo carbon number.
.. The number of F; S CIζ is good, but on the other hand, the impact resistance is low and the balancing effect during melting is low.

次に、ポリエチレン(Blを製造1−るための触媒と製
造法について説明する。
Next, a catalyst and a manufacturing method for producing polyethylene (Bl) will be explained.

本発明で言う有機金属化合物を組み合せたクロム化合物
担持系触媒は、例えば無機酸化物担体にクロム化合物を
担持した固体成分と有機金ハ化冶物とを組み合せたもの
がある。
The chromium compound-supported catalyst combined with an organometallic compound referred to in the present invention includes, for example, a combination of a solid component in which a chromium compound is supported on an inorganic oxide carrier and an organic gold halide.

以下に、さらに具体的に説明J−る。A more specific explanation will be given below.

本発明に用いる無機酸化物担体としては、シリカ、アル
ミナ、シリカ−アルミナ、ジルコニア、トリア等を用い
ることができるが、シリカ、シリカ−アルミナが好まし
く、市販の高活性触媒用クリ力(高表面積、高多孔容積
ンは特に好ましい。
As the inorganic oxide carrier used in the present invention, silica, alumina, silica-alumina, zirconia, thoria, etc. can be used, but silica and silica-alumina are preferable. High porosity volumes are particularly preferred.

担持するクロム化合物としてはクロムの酸化物、または
焼成によって少ンよくとも部分的に酸化クロムを形成す
る化合物、たとえばクロノ、の/・ロゲン化物、メキシ
ノ・ロゲン化物、硝酸塩、酢酸塩、硫酸塩、シュウ酸塩
、アルコラード等が挙げられ、具体的には三−酸化クロ
ム、塩化クロミル・、重クロム酸カリウム、クロム酸ア
ンモニウl)、硝酸クロム、酢酸クロム、クロムアセチ
刀・アセトネート、ジクーシャリブチルク′ロメート等
が挙げられる。
The supported chromium compounds include chromium oxides, or compounds which at least partially form chromium oxide upon calcination, such as chromium/chloride, mexinochloride, nitrate, acetate, sulfate, Examples include oxalate, alcolade, etc., specifically chromium trioxide, chromyl chloride, potassium dichromate, ammonium chromate), chromium nitrate, chromium acetate, chromium acetate, acetonate, dikusha butyl chloride, etc. Examples include romate.

三酸化クロム、酢酸クロム、クロムアセチルアセトネー
トは特に好ましく用いられる。
Chromium trioxide, chromium acetate, and chromium acetylacetonate are particularly preferably used.

押体にクロム化合物を担持させるには、含浸、溶媒留去
、昇華付着等の公知の方法によって行なわれる。クロム
化合物の種類により、水系k)る(・は非水系のいずれ
か適当な方法で担持すればよ(,1ことえば三酸化クロ
ムを用(・る場合は水を、クロムアセチルアセトネート
を用いる場合はトルエンなどの非水溶媒を用いればよい
。担持するクロムの量は、担体に対するクロム原子のx
i]く−セントで0,05〜5%、好ましくは0,1〜
3%の範囲で友)ろ。
The chromium compound can be supported on the press by known methods such as impregnation, solvent distillation, and sublimation deposition. Depending on the type of chromium compound, it may be supported using an appropriate method, either aqueous or non-aqueous. In this case, a non-aqueous solvent such as toluene may be used.The amount of chromium to be supported is determined by the x
i] 0.05 to 5%, preferably 0.1 to 5%
Friend within the range of 3%).

焼成活性化は、一般に非還元性雰囲気、たとえば酸素の
存在下で行なうが、不活性ガスの存在下あるいは減圧下
で行なうことも白■能である。好ましくは水分身実質的
に含まな(・空気が用いられる。
Firing activation is generally carried out in a non-reducing atmosphere, for example in the presence of oxygen, but it can also be carried out in the presence of an inert gas or under reduced pressure. Preferably, air substantially free of water is used.

焼成温度は300℃以上、好ましくは400〜900℃
の温度範囲で数分〜数十時間、好ましくは30分〜10
時間行なわれる。焼成時には充分乾燥空気を吹込み、流
動状態下で焼成活性化を行なうことが推奨される。
Firing temperature is 300°C or higher, preferably 400-900°C
at a temperature range of several minutes to several tens of hours, preferably 30 minutes to 10
Time is done. During firing, it is recommended to blow in sufficient dry air and activate firing under a fluidized state.

なお、担持もしくは焼成時にチクネート類やフッ素含有
塩類等を添加して、活性へ)分子量等を調節する公知の
方法を併用することも勿論iiJ能である。
Of course, it is also possible to use a known method of controlling molecular weight, etc. by adding ticnates, fluorine-containing salts, etc. during loading or baking.

さらに、シリルクロメート、アミンと三酸化り(bu)
z P−u −Cr −0−P(OR)2などの化合物
を前記の担体に担持して得た触媒を固体成分(n)とし
て用いることもでざる。。
In addition, silylchromate, amine and trioxide (bu)
A catalyst obtained by supporting a compound such as zP-u-Cr-0-P(OR)2 on the above-mentioned carrier may also be used as the solid component (n). .

組み合せに使用する有機亜鉛化合物としては、次のもの
が挙げられる。
Organozinc compounds used in combination include the following:

(al 一般式AIJLnX3−(1(式中、Rは炭化
水素基、Xはハロゲン、OR’または03iIζ2rc
RR4なる基を表わし、R’ 、 R2,It3. R
’は炭化水素であり、nは14 n、43’なる数であ
るンで表わされる有機アルミニウム化合物。
(al General formula AIJLnX3-(1 (wherein, R is a hydrocarbon group, X is a halogen, OR' or 03iIζ2rc
represents a group RR4, R', R2, It3. R
' is a hydrocarbon, and n is a number of 14 n, 43'.

(+1) 一般式ZnRmX2−yrl(式中、Rは炭
化水素基、Xは01L’なる基を表わし、R1は炭化水
素基であり、mは14 m42なる数である)で表わさ
れる有機亜鉛化合物。
(+1) Organozinc compound represented by the general formula ZnRmX2-yrl (wherein R is a hydrocarbon group, X is a group 01L', R1 is a hydrocarbon group, and m is a number 14 m42) .

(c)一般式LiR(式中、Rは炭化水素基を表わすっ
て表わされる有機リチウム化合物。
(c) An organolithium compound represented by the general formula LiR (wherein R represents a hydrocarbon group).

(d+ 一般K BRIIXs −4(式中、Rは炭化
水素基、Xはハロゲン、OR’または08iR2R”R
’なる基を表わし、R’ 、 R3,R’は炭化水素基
、R2は水素原子ま1こは炭化水素基であり、lは14
143なる数である]で表わされる有機ホウ素化合物。
(d+ General K BRIIXs -4 (wherein, R is a hydrocarbon group, X is a halogen, OR' or 08iR2R"R
R', R3, R' are hydrocarbon groups, R2 is a hydrogen atom or a hydrocarbon group, l is 14
An organic boron compound represented by the number 143.

ポリエチレン()3)は、収・/i (K&金属化合物
をlliみ合せたクロム化合物担持系触媒を用いて、懸
濁重合、溶液重合、気相重合等で製造田米る。該ポリエ
チレン(+3)は分子量分イ■」が適度に広く、すなわ
ち、メルトインデックス(RII)か1のとき〜11 
R(Ml測定条件において、荷ル21.(ikfでa+
+1定した値をMIで除した商)が50〜120で、二
jl結合の量が1,000 炭素数当り03〜2個であ
り、かつ、マグネシウム化合物系チーグラー型触奴によ
6ポリエチレンより、高いバジス効果を示す。
Polyethylene (3) is produced by suspension polymerization, solution polymerization, gas phase polymerization, etc. using a chromium compound-supported catalyst containing K and metal compounds. ) has a moderately wide molecular weight (i), that is, when the melt index (RII) is 1 to 11
R (under Ml measurement conditions, load 21. (a+ in ikf)
The quotient obtained by dividing the +1 constant value by MI) is 50 to 120, the amount of 2Jl bonds is 03 to 2 per 1,000 carbons, and the magnesium compound Ziegler type contactor is more than 6 polyethylene. , exhibiting high badis effect.

本願発明におけるポリエチレン47rj脂組成物が、秀
れた成形加工性と物性を示す原因としては、ポリエチレ
ン(/Jの低勺子ぶ、部と品分−J−;t;’(部とを
、分子量分布が比較的広く、バシス効果が適1隻(・し
高いポリエチレンCB+が連結し、うまく分子を格み合
せ、また最適な分子量分布あるいは分才ff5 に一の
形P1をとるところにあるものと考えられる。
The reason why the polyethylene 47rj resin composition of the present invention exhibits excellent moldability and physical properties is that the molecular weight The polyethylene CB+ has a relatively wide distribution and a suitable bathyssis effect, and the polyethylene CB+ is connected and the molecules are well matched, and the optimum molecular weight distribution or distribution ff5 takes the form P1. Conceivable.

ポリエチレン(AIと(81のiト合方法は、ノくウダ
ー状態、スラリー状態、ベレット状態等通′帛の方法が
用いられる。混練する場合は150〜300℃の温度で
、−目111、二軸のす](出機、ig練機等で行なわ
2する。
For mixing polyethylene (AI) and (81), common methods such as powder state, slurry state, pellet state, etc. are used. 2. Do this using a kneading machine, an ig kneading machine, etc.

このようにして製造されるポリエチレン組成物のAI 
I &i0.001〜l Oi/710m1n、にあり
、密度は0.91−〇97汁d好まし、くは0.935
〜0.9657/a!で))る。分子量分布はM I 
Rで60以上、好ましくは75以上である。なお、イン
ジェクション−プロー成形用途に使用1′る場合はM、
Iが05〜35’710 min、が望ましく、中空、
押出成形用にはO,OO5〜17./ 10m1n、が
好ましく、とくに001〜0.59710m1n、が好
ましい。
AI of the polyethylene composition thus produced
I&i0.001~l Oi/710m1n, density is 0.91~097 d preferable, or 0.935
~0.9657/a! Out. The molecular weight distribution is M I
R is 60 or more, preferably 75 or more. In addition, when using 1' for injection-blown molding, M,
I is preferably 05 to 35'710 min, hollow,
O, OO5-17 for extrusion molding. /10 m1n is preferable, and 001 to 0.59710 m1n is particularly preferable.

該ポリエチレン組成物は、熱安定剤、酸化防止剤、紫外
線吸収剤、顔料、帯電防止剤、滑剤、充填剤、他のポリ
オレフィン、熱可塑性樹脂、ゴム等、通常ポリオレフィ
ンに添加、ブレンドされ得る物質は、必要に応じて使用
されることは可能である。また、発泡剤を混入させて発
泡成形することも■]能である。
The polyethylene composition contains substances that can be added or blended with polyolefins, such as heat stabilizers, antioxidants, ultraviolet absorbers, pigments, antistatic agents, lubricants, fillers, other polyolefins, thermoplastic resins, rubbers, etc. , can be used as needed. It is also possible to mix a foaming agent and carry out foam molding.

以」−に詳述したように、本願発明によって得られるポ
リコーナレフ組成物は下記の如き特徴を有する。
As described in detail below, the polyconaref composition obtained by the present invention has the following characteristics.

(1) 溶融時のθII;動1¥t」7、lh’jす1
11.・11行1−1裏りバランスが良く、成形加工性
に秀才1ている。とくに、中空成形、パイプ、ン〜1・
笠の押出成形、・インジェクションブロー成形等の成ノ
1″:、加土性が良く、成形品の厚4斑が小さい。
(1) θII during melting; dynamic 1\t'7, lh'jsu1
11.・11 rows 1-1 backing has a good balance and has excellent moldability. Especially for hollow molding, pipes, etc.
1" for extrusion molding of hats, injection blow molding, etc.: Good soil filling properties and small unevenness in the thickness of the molded product.

(2)成形品のIr1llfJ、、、il+1 (3j
 m< f4 :L;よぴE s c itが高(、こ
れら全ての特性が実用的によくバランスしている。
(2) Ir1llfJ,,,il+1 (3j
m< f4 :L; YopiEscit is high (all these characteristics are well balanced for practical use.

(3)物性、加工性に秀れCいるため、薄肉成形品がつ
くり易い。このため、省資源、省エネルギー時代に適合
する。
(3) It has excellent physical properties and processability, making it easy to make thin-walled molded products. Therefore, it is suitable for the era of resource saving and energy saving.

(4)外観の良い成形品が得hiする。(4) Molded products with good appearance can be obtained.

(5) 容易に製造出来る。(5) Easy to manufacture.

(6) 射出、フィルム、延伸、11′lJ転および発
泡7”よとの各種成形用途にも適用出来る。
(6) It can also be applied to various molding applications such as injection, film, stretching, 11'lJ rolling, and foaming 7".

以下、実施例を挙げて、本願発明をさらに訂Ni1Jに
説明するが、本願発明はこれらの実施例によって何ら制
限されるものではない。
Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited to these Examples in any way.

本実施例、比較例において示1−記号、測定方法および
測定条件。
1 - Symbols, measurement methods and measurement conditions shown in Examples and Comparative Examples.

(1)Iν1工;メルトインデックスを表わし、AST
、MD123Hにより、温j隻190℃、市几2−16
kfの免件下で6111定した値。
(1) Iν1: represents melt index, AST
, MD123H, temperature 190℃, city 2-16
6111 determined under the exemption of kf.

(Ill l+l r IL ;M 1測定条1′Fに
、16いて荷重21.6に/で測定した値をAI Iで
¥1ミしだ薗・2意1[L、分子量分イ11の1つの尺
度であり、この(IIIが太δい程分子量分布が広いこ
とケ示す。
(Ill l+l r IL; M 1 measurement strip 1'F, 16, load 21.6 / AI The thicker δ is, the broader the molecular weight distribution.

(+in 分子量(btw);デカリン@液を用い、1
35℃で測定した固イj粘度(η)と、ジャーナル・オ
ブ・ポリマーサイエンス36巻01頁(1957)g(
2載)i〜、71 = 6.8 X 10−’ M W
o−”からMWをめた。なお、本願発明における分子量
は全てこのノj法に、」、るものである。
(+in molecular weight (btw); using decalin@liquid, 1
Hardness viscosity (η) measured at 35°C and Journal of Polymer Science, Vol. 36, p. 01 (1957) g(
2) i~, 71 = 6.8 X 10-' M W
The MW was determined from "o". All molecular weights in the present invention are based on this method.

((V) 密f31; ASTIVID−15(15(
c I、タカッテ測定シf−0(vl S%堂強さ; 
A S T M I)−25Gによるノツプ−付アイゾ
ツト衝撃同ン’f −Q e+る。
((V) dense f31; ASTIVID-15(15(
c I, Takatte measurement f-0 (vl S% strength;
Izot shock with knob by ASTM I)-25G.

(’/ll E S CR;見境応力破壊抵抗力を示す
。5011■スタリユ一付中空成形機を用い、シリンダ
ー温Hy 1すOC,金型4反−10’Cにて成形した
200oml容量の把手付きボトル(mi95St)に
、ノニオン系界面活性剤33%の水溶液200m1を充
填、密栓し、60℃のオーブンに入れ、ボトルにクラン
クが発生するまでの時間を測定する。
('/ll E S CR; Indicates stress fracture resistance at random. 200 oml capacity handle molded using a blow molding machine equipped with 5011 Staryu, cylinder temperature Hy 1 OC, mold 4 molds -10'C) A bottle (mi95St) is filled with 200 ml of an aqueous solution of 33% nonionic surfactant, sealed tightly, and placed in an oven at 60° C., and the time until a crank occurs in the bottle is measured.

(vl9 ボトルの耐衝撃性;上記のボトルに冷水(1
3℃)を満し、密栓し、1.9 mの高さからコンクリ
ート面に繰り返し落下し、ボトルが破壊されるまでの回
数を測定する。
(vl9 Shock resistance of bottle; Cold water (1
3°C), tightly capped, and repeatedly dropped from a height of 1.9 m onto a concrete surface to measure the number of times it takes for the bottle to break.

(vIil)押出加工性;上記中空成形(2を用い、シ
リンダ一温度190℃、スクリュー回転数46 rpm
で押出した時の押出量を測定する。
(vIil) Extrusion processability; using the above blow molding (2), cylinder temperature 190°C, screw rotation speed 46 rpm
Measure the amount of extrusion when extruding.

(Ixl ダイ・スウェル;外径16?、内径1F11
1171の中空成形用ダイを用い、上記(Vtll)の
条件で押出した時の20crIL長さのバランスの重量
で表わす。
(Ixl die swell; outer diameter 16?, inner diameter 1F11
It is expressed as the weight of the balance of 20crIL length when extruded using a No. 1171 blow molding die under the above conditions (Vtll).

は) ボトルの肉厚斑;上記(■1)でつくったボトル
について、とくに厚さが薄くなり易いノンドル部のピン
チオフ溶着部の肉厚状態を肉眼で観察し、非常に良好な
状態を◎、良好な状!2月を○、−=J悪い状態を△お
よび非常に悪い状態をXで表わす。
B) Thickness irregularities on the bottle: For the bottle made in (■1) above, the thickness of the pinch-off welded part of the nondle part, which tends to become thinner, was visually observed and found to be in very good condition. Good condition! February is represented by ○, -=J, bad condition is represented by △, and very bad condition is represented by X.

実施例] −1 (l) ポリエチレン(A)用の触媒の合成トリクロル
シラン(1−(S i C1,J 1モル/lのヘキサ
ン溶液21を81のオートクレーブに入れ、50℃に保
った。これに組成A/1Mgo−o (CtHi)t、
o (n−C4H9)[1−5(UO3)+9) s−
i の有機アルミニウムーマグネシウム錯体の1モル/
lのヘキサン溶液21を攪拌下に2時間かげて簡下し、
さらにこの温度で2時間反応さ・枕だ。生成した固体成
分を2ノのへキサンで2回沈降法によって洗浄した。こ
の固体成分を含むスラリーに四塩化チタン2ノを仕込み
、130℃にて2時間反応させた後、固体触媒を即離し
、遊離のハロゲンが検出されなくなるまでヘキサンで洗
浄した。この固体触媒は21%のチタンを含有し壬いた
Examples] -1 (l) Synthesis of catalyst for polyethylene (A) Trichlorosilane (1-(S i C1, J 1 mol/l hexane solution 21 was placed in a 81 autoclave and kept at 50°C. composition A/1Mgo-o (CtHi)t,
o (n-C4H9)[1-5(UO3)+9) s-
1 mole of organoaluminium-magnesium complex of i/
1 of hexane solution 21 was lowered under stirring for 2 hours,
The pillow will react at this temperature for another 2 hours. The solid component produced was washed twice with 2 portions of hexane by the precipitation method. After 2 hours of titanium tetrachloride was added to the slurry containing this solid component and reacted at 130° C. for 2 hours, the solid catalyst was immediately released and washed with hexane until free halogen was no longer detected. This solid catalyst contained 21% titanium.

(2)2段重合によるポリエチレン囚の製造まず、低分
子量部をつくるために、図面に示す反応容積30010
重合器1で重合した。重合温度は83℃、重合圧力は1
1 EI/dGである。この重合器1に、上記の固体触
媒を1.3 mmo/(Ti原子基準) / Hrの連
匪で、2()I1曲o1 (金屈原f−ハ準ン/llr
の速度でトリエチルフルミニウノ・な、40p/ Hr
の速度でイ’T;製ヘキサンを供給し、またエチレンを
7 NA4シ’Hrと分−f−量調節剤として水素を、
気相の水素製置が約90モル%に□な7.)ように供給
し、重合を行なう。重合器1円のポリマースシリー内容
液を圧力1 k11/crfG、温度75℃のフラッシ
ュドラム3に導さ、未反応のエチレン、水素を分離した
後、M上器6にスラリーポンプ5で昇圧し導入−1−Z
、。重合器6では温度80℃、I=1−力8)、y/c
rrF Gで重合を行ブエう。垂f′i器6をよ内イI
稙250pである。
(2) Production of polyethylene particles by two-stage polymerization First, in order to produce a low molecular weight part, a reaction volume of 30,010 mm as shown in the drawing was prepared.
Polymerization was carried out in polymerization vessel 1. Polymerization temperature was 83℃, polymerization pressure was 1
1 EI/dG. Into this polymerization vessel 1, the above solid catalyst was added at a continuous rate of 1.3 mmo/(based on Ti atoms)/Hr.
Triethylfluminiuno at a rate of 40p/Hr
Hexane was supplied at a rate of 100%, and ethylene was added to 7% NA4Hr and hydrogen was added as a quantity regulator.
7. Gas phase hydrogen production is approximately 90 mol%. ) and carry out polymerization. The liquid content of the polymer slurry in the polymerization vessel was led to a flash drum 3 at a pressure of 1 k11/crfG and a temperature of 75°C, and after separating unreacted ethylene and hydrogen, the pressure was increased to the M upper vessel 6 with a slurry pump 5. Introduction-1-Z
,. In the polymerization vessel 6, the temperature is 80°C, I = 1 - force 8), y/c
Polymerization is carried out with rrF G. I'm going to take care of the equipment 6
The size is 250p.

該重合器6にトリエナルアルミニウムを7.5 ryy
no l(金属原子基準) / Hrの速度で、精製ヘ
キサンを40−e/13r、エテレ7 ’;:y 7.
2 NV/1it−の速度でそれぞれ供給し、かつ、水
素とブデンー1を気相の濃度がそれぞれ約2モル゛ん、
約25モル%になるように導入し、重合をイテなった。
7.5 ryy of trienal aluminum was added to the polymerization vessel 6.
Purified hexane at a rate of no l (based on metal atoms) / Hr, 40-e/13r, etele7';:y7.
2 NV/1it-, and hydrogen and budene-1 were each supplied at a gas phase concentration of about 2 mol.
It was introduced at a concentration of about 25 mol %, and the polymerization was unsuccessful.

このようにして2段重合をイjノエい重合器6より得ら
れたポリエチレン込)のパウダーのMlは0.17 ’
J/l 0rnin、、密度は0.956 W7’ct
iであった。
After completing the two-stage polymerization in this way, the Ml of the powder (including polyethylene) obtained from the polymerizer 6 was 0.17'.
J/l 0rnin,, density is 0.956 W7'ct
It was i.

なお、別に同様の条件で行なった一段重合の実験結果か
ら、1段目の重合器1で重合l−たボ1ノエチl/ン(
A+の低分子量部(A−L)は、分子量が約13.0(
10、密度約0.974 i/ct、2段目の重合器6
で重合したポリエチレン(A)の高分子量部(A −H
)は分子共が約54万、密度約0939y/crItで
あるとそれぞれ推定されろ。
In addition, from the results of a separate one-stage polymerization experiment conducted under similar conditions, it was found that the polymerization rate in the first-stage polymerization vessel 1 was
The low molecular weight part (A-L) of A+ has a molecular weight of about 13.0 (
10, density approximately 0.974 i/ct, second stage polymerizer 6
High molecular weight part (A-H) of polyethylene (A) polymerized with
) is estimated to have a molecular weight of about 540,000 and a density of about 0939y/crIt, respectively.

(3) ポリエチレン(B)用触媒固体成分(alの合
成三酸化クロム107−を蒸留水2.0001RAに溶
解し、この溶液中にシリカ(富士デヴインン社製Gra
de 952 ) 500 fを浸漬し、室温にて1時
間撹拌1〜だ。このスラリーを加熱して水を留去し、続
いて120℃にて10時間減圧乾燥を行なった。
(3) Synthesis of catalyst solid component (al) for polyethylene (B) Dissolve chromium trioxide 107- in distilled water 2.0001 RA, and add silica (Gra
de 952) 500 f and stirred at room temperature for 1 hour. This slurry was heated to distill off water, and then dried under reduced pressure at 120° C. for 10 hours.

この固体を乾燥空気流通下、8(〕0℃で5時間焼成し
て固体成分ta+を得た。得られた固体成分(alはク
ロムを13C景%台有し、窒素雰囲気下室温にて貯蔵し
1こ。
This solid was calcined at 8°C for 5 hours under dry air circulation to obtain a solid component ta+.The obtained solid component (al) contained 13% chromium and was stored at room temperature under a nitrogen atmosphere. Shi1ko.

(4) ポリエチレン(+3)の製法 反応容積2F104の重合器を使用し、−花乗合によっ
て、ポリエチレン(13)を製造した。重合温度は83
℃、重合圧力は’ l k&:/(iGで、和合生成量
は10.5 Kp/Hrの生成量どなるように重合をコ
ントロールした。触媒はく3′Jで合成し7’j、 f
i5]体成分(+ilを77 m9/J+の濃度で、ジ
工チルアルミニウムエトキシド((b)成分)を0.0
75 mmo l/l O) (X# I’(で、40
.e/I−1,rの精製ヘキサンとともに尋人した。水
素を分子量調節剤として用い、水素e)度を約30モル
%にし、ブテン−1を加えその気相濃度を約()・1モ
ル%とし、分子量約11万、密度0.96677(ゴの
ポリエチレン(131を製造した。
(4) Method for producing polyethylene (+3) Polyethylene (13) was produced by a polymerization reaction using a polymerization vessel with a reaction volume of 2F104. Polymerization temperature is 83
℃, the polymerization pressure was 'l k&:/(iG, and the amount of combined product was 10.5 Kp/Hr. The polymerization was controlled so that the amount produced was 7'j, f
i5] Body components (+il at a concentration of 77 m9/J+, di-actyl aluminum ethoxide (component (b)) at 0.0
75 mmol l/l O) (X# I'(, 40
.. e/I-1, was carried out together with purified hexane of r. Using hydrogen as a molecular weight regulator, the concentration of hydrogen is about 30 mol%, butene-1 is added to make the gas phase concentration about ().1 mol%, the molecular weight is about 110,000, the density is 0.96677 (G Polyethylene (131) was produced.

(5) ポリエチレン樹脂組成物の製造上記の如くして
製造したポリエチレン(A+および(Blのパウダーを
、重量比で、75¥125の割合で混合し、次いでこの
混合物に熱、酸化防止削として、テトラキス〔メチレン
−5−(,3′、5′−ジーt −〕−f−# −4’
−ヒドロギシフ上ニルラフロビオネ−1−)メタンを3
00ppm、およびジラウリル−3、3’−テオジブロ
ビメン酸ニスデルを3o。
(5) Production of polyethylene resin composition The polyethylene (A+ and (Bl) powders produced as described above were mixed in a weight ratio of 75 yen 125, and then this mixture was heated and treated with anti-oxidation shavings. Tetrakis[methylene-5-(,3',5'-di-t-]-f-#-4'
-hydrogysifoniraflobione-1-) methane 3
00 ppm, and 3o of dilauryl-3,3'-teodibrobimenic acid nisder.

P Pm ヲ添加し、ヘン7エルミキザー中で十分撹拌
混合した。この混合物をファレル社JIJ F CRi
で220℃の温度で混線(7、次いでこの滉耽物な一1
tfill押出機で25 (1℃の温度で押出し、ペレ
タイズをし、ポリエチレン樹月旨甜I成物を製造し7こ
。このポリエチレン樹脂組成物の性能は第1表に示す通
り、成形力11丁性及び物性ともに非常に優れた性能を
示す。
P Pm was added and thoroughly stirred and mixed in a Hen 7 El mixer. This mixture was manufactured by Farrell JIJ F CRi.
At a temperature of 220℃, crosstalk (7, then this
The polyethylene resin composition was extruded and pelletized at a temperature of 25℃ (1℃) using a Tfill extruder to produce a polyethylene resin composition.As shown in Table 1, the performance of this polyethylene resin composition was as follows: It shows very excellent performance in both properties and physical properties.

実施例]−2 実施例1−1で製造したポリエチレンパウダー(A+及
び(1))を、第1表に示すような配合量にして混合し
た以外は、添加剤、混合、混練及び押出条件などは、実
施例】−1と同様にしてポリエチレン81脂A、組成物
を製造1.、その性能を評価した結果を第1表に示す。
Example]-2 Except that the polyethylene powders (A+ and (1)) produced in Example 1-1 were mixed in the amounts shown in Table 1, additives, mixing, kneading, extrusion conditions, etc. A composition of polyethylene 81 fat A was produced in the same manner as in Example 1.1. Table 1 shows the results of evaluating the performance.

比較例]−1〜1−4 ’If= Mu例1−1で製造したポリエチレンパウダ
ーい)及び(Blを、第1表に示すような配合量にして
混合した以外は、添加剤、混合、混練及び押出条件など
は、実施例1−1と同様にしてポリエチレン仙脂組成物
を裏遺し、その性能を評価した結果を第1表に示す。
Comparative Examples] -1 to 1-4 'If = Mu polyethylene powder produced in Example 1-1) and (Bl) were mixed in the amounts shown in Table 1. The kneading and extrusion conditions were the same as in Example 1-1, and the performance of the polyethylene resin composition was evaluated. Table 1 shows the results.

実施例2−1 (]) ポポリエチレン81脂の触媒の合成ジ−ハーブ
ナルマグネシウム138tどトリエチルアルミニウム1
9S/−とをローヘプタン24とともに容量4−eo)
攪拌杓に送スt、、、so℃で2時間反応させることに
より、組成”Mga (C21■s )s(n −CJ
lo) +t の有機アルミニウムーマグネシウム錯体
を合成した。この錯体400 mmo/(547)を含
むn−ヘプタン溶液800mffど四塩化チタン400
 mmo#を含有するn−ヘプタン溶液8 fl (O
neを、乾燥窒素置換によって水分と酸素を除去した後
、−20℃で攪拌下4時間反応さぜ1こ。生成した炭化
水素不溶性固体を単離し、n−へブタンで洗浄し106
Iの固体を得た。
Example 2-1 (]) Synthesis of catalyst of polyethylene 81 fat di-herbal magnesium 138t triethylaluminum 1
9S/- with 24 volumes of rhoheptane (4-eo)
The composition "Mga (C21■s)s(n -CJ
lo) +t organoaluminium-magnesium complex was synthesized. 800 mff of n-heptane solution containing 400 mmo/(547) of this complex and 400 mmo/(547) of titanium tetrachloride
8 fl of n-heptane solution containing mmo# (O
After removing moisture and oxygen by purging with dry nitrogen, the mixture was reacted at -20°C for 4 hours with stirring. The resulting hydrocarbon-insoluble solid was isolated and washed with n-hebutane.
A solid of I was obtained.

(2) ポリエチレン(Nの製造 上記の触媒を使用し、低分子量ボIJ エチレン(A−
L)および高分子■ポリエチレン(A−11)を、下記
の方法、条件で各々製造して、ポリエチレン組成物の原
料にした。
(2) Production of polyethylene (N) Using the above catalyst, low molecular weight polyethylene (A-
L) and polymer (1) polyethylene (A-11) were each produced by the method and conditions described below and used as raw materials for a polyethylene composition.

実施例1−1でポリエチレン(1j)を■(合するのに
使用1〜だボ分器を用い、重合温度は86℃、重合圧力
は11 k4I/cw?Gで1合し1こ。触媒はトリエ
チルアルミニウムを0.5 mmovJの濃度で、上記
固体触媒は’TJL合生成量が8’j’/11.rとな
るように301/Hrのヘキサノとともに導入した。水
素を分子iU節剤トして用いた。コモノマーはブテン−
1を用いた。低分子量ポリエチレン(A、 −L )は
、ソノ分子量3万、密[0,967V10r?となるよ
うに気相組成を調節した。水素濃度は約65%であり、
ブテン−J濃Jffiは約1%で、触媒効率は約14万
tポリマー/7Tl であった。烏分子量のポリエチレ
7 (A −)J)は分子i30万、密度0.935 
’t/L00:IrL”となるように気相組成を調節し
た。水素濃度は約9%であり、ブテン−1濃度は約6%
であり、触媒効率は約40万トポリマー/iTiであっ
た。
In Example 1-1, polyethylene (1j) was combined using a dowel divider, the polymerization temperature was 86°C, and the polymerization pressure was 11k4I/cw?G.Catalyst Triethylaluminum was introduced at a concentration of 0.5 mmovJ, and the solid catalyst was introduced together with 301/Hr of hexanoate so that the amount of TJL synthesis was 8'j'/11.r. The comonomer was butene-
1 was used. Low molecular weight polyethylene (A, -L) has a sono molecular weight of 30,000 and a density [0,967V10r? The gas phase composition was adjusted so that The hydrogen concentration is about 65%,
The butene-J concentration was about 1%, and the catalyst efficiency was about 140,000 tons of polymer/7 Tl. Polyethylene 7 (A -) J) with a molecular weight of Karasu has a molecular i of 300,000 and a density of 0.935.
The gas phase composition was adjusted to be 't/L00:IrL'.The hydrogen concentration was about 9% and the butene-1 concentration was about 6%.
The catalyst efficiency was approximately 400,000 topolymer/iTi.

(3) ポリエチレンtBl用触媒固体成分(&)の合
成三酸化クロム105’を用いる代りに酢酸クロム(m
l 1水塩25!7−を用いること、および焼成温度を
600℃に1′−ること以外は、実施例1−1と同様に
して、固体成分(a)の合成を行ない、貯蔵した・(4
ン ポリエチレンfB]の製造 実施例】−1で、ポリエチレン(Blを重合するのに使
用したと同じ1f(分器、重合温度、圧力で触媒は」ユ
記(3)で合成した固体成分ta+を73 m9/lの
濃度で、ジエチル亜鉛を0.075 +nmo e/l
の濃度で、40/、/Ilrのヘキサノとともに導入l
−だ。水素濃度約20モル%、ブテン−1濃度約2七A
・%、分子量12万、密度0.9 s s y7crr
rのポリエチレン+81を製造した。
(3) Synthesis of catalyst solid component (&) for polyethylene tBl Instead of using chromium trioxide 105', chromium acetate (m
Solid component (a) was synthesized and stored in the same manner as in Example 1-1, except that monohydrate 25!7- was used and the calcination temperature was 600°C. (4
Production example of polyethylene fB] In -1, the solid component ta+ synthesized in (3) was prepared by using the same 1f fractionator, polymerization temperature, and pressure as the catalyst used to polymerize polyethylene (Bl). Diethylzinc at a concentration of 0.075 +nmo e/l at a concentration of 73 m9/l
introduced with hexanoyl of 40/, /Ilr at a concentration of
-It is. Hydrogen concentration approximately 20 mol%, butene-1 concentration approximately 27A
・%, molecular weight 120,000, density 0.9 s sy7 crr
Polyethylene +81 of r was produced.

(5) ポリエチレン樹脂組成物の製造上記の如(して
!l!!造シ、1こポリエチレン(Δ−■店(A−H)
および(13−1;)のパウダーを爪J伎比で31.5
対38.5対300割合で混合し、次いでこのa合物に
熱、酸化防止剤どして、n−)フタデジル−β−(4′
−ヒドロキシ−3F 、 s/−ジ−t−ブチルフェニ
ル)プロピオネ−ト500 ppm。
(5) Manufacture of the polyethylene resin composition as described above.
and (13-1;) powder with a nail ratio of 31.5
38.5 to 300, and then this compound a was heated and treated with an antioxidant, n-)phthadecyl-β-(4'
-Hydroxy-3F, s/-di-t-butylphenyl)propionate 500 ppm.

テトラキス(2,4−ジターシャリブチルフェニール)
 、i 、 4F−ビフエニし′ンジフオスフオプーイ
ト200 ppm、およびステアリン酸カルシウl、5
00ppmを添加し、混合、混線および押出等の条件は
実施例1−】と同様にして、ポリエチレン組成物を製造
した。その性能な第2表に示す。
Tetrakis (2,4-ditertibutylphenyl)
, i, 200 ppm of 4F-biphenylene difluoride, and calcium stearate, 5
A polyethylene composition was produced by adding 00 ppm and using the same conditions as in Example 1 for mixing, mixing, extrusion, etc. Its performance is shown in Table 2.

実施例2−2 (]) ポリエチレン(Blの製造 実Mo 例] 1で、ポリエチレン(II)を重合する
のに使用し1こと同じ重合器、■(合温度、圧力で、触
媒は大Mli例2−1で合成した固体成分(al 62
1n9/1の濃度で、ブチルリチウム0. O65mm
ol/lの濃度で、401/■irのヘキサンとともに
導入した。水素a度約25モル%、ブテン−1濃度約1
5モル9bで、分子量16カ、密度0958 Y/cr
dのポリエチレン(13)を製造した。
Example 2-2 () Production of polyethylene (Bl Example) The same polymerization vessel used to polymerize polyethylene (II) in 1. Solid component synthesized in 2-1 (al 62
At a concentration of 1n9/1, butyllithium 0. O65mm
It was introduced at a concentration of ol/l with 401/■ir of hexane. Hydrogen a degree approximately 25 mol%, butene-1 concentration approximately 1
5mol 9b, molecular weight 16ka, density 0958 Y/cr
Polyethylene (13) of d was produced.

エチレン(B−=−4)とを使用した以外は実施例2−
1と同様にしてポリエチレン廻成物を製造した。
Example 2- except that ethylene (B-=-4) was used.
A polyethylene composite was produced in the same manner as in Example 1.

その性能を第2表に示1−0 比較例2−1 実施例2−1で製造し定ポリエチレン(A−L)と(A
 −II )を第2表に示すように配合し、小力l剤、
混合、混練理出榮件は実施例2−1と同6mにしてポリ
エチレン組成物を恥潰しf:。その性能は第2表に示す
The performance is shown in Table 2.1-0 Comparative Example 2-1 Constant polyethylene (A-L) and (A
-II) as shown in Table 2, and
The mixing and kneading conditions were the same as in Example 2-1, and the polyethylene composition was crushed to 6 m. Its performance is shown in Table 2.

比較例2−2 実施例2−1におけるボリエ′ルン(A+をつ(ろのに
使用した触媒を用い、重合器、重合温度、圧力は実施例
1−1のポリエチレン(13+の場合と同様にし、ポリ
エチレン(B−3)を!P!造[7た。水素濃度は約3
5%、ブテン−1の濃度は約05モル3)を使用した以
外は全て実施例2−1と同様にしてポリエチレン組成物
を製造した。その性能は第2表に示す。
Comparative Example 2-2 The catalyst used in polyethylene (A+) in Example 2-1 was used, and the polymerization vessel, polymerization temperature, and pressure were the same as in the case of polyethylene (13+) in Example 1-1. , polyethylene (B-3) was made of !P![7].The hydrogen concentration was about 3
A polyethylene composition was produced in the same manner as in Example 2-1 except that 5% and the concentration of butene-1 was approximately 0.5 mol 3). Its performance is shown in Table 2.

(以不金りり 実施例、匁−1 (l) ポリエチレン(A)の製造 実施例1−1でポリエチレン仏)をつくるのに使用17
た触媒、1合器を使用し2段重合によりポリエチレンを
−)<つプこ。1段目(低分子量部)の重合条件は、エ
チレンを8.5 NMンHrの速度で、水素を約42士
ル%、ブテン−1を約7モル%になるよ5にした以外は
全て、実施例1−]と同様にして重合を行7.c ウ。
(Used to make polyethylene in Example 1-1 for production of polyethylene (A)) 17
Polyethylene was produced by two-stage polymerization using a catalyst and one reactor. The polymerization conditions for the first stage (low molecular weight part) were as follows: ethylene at a rate of 8.5 NM-Hr, hydrogen at about 42 mol%, and butene-1 at about 7 mol%. , Example 1-] Polymerization was carried out in the same manner as in 7. c.

次いで、実施例]−]と同様にフラッシュドラムで、未
反応のエチレン、水素を分離し、2段目(高分子量部ン
の重合は、1シ合温度を70℃、圧力を5’v、/cI
r?aにし、エチレンを6NMンHrの速度で、水素を
約5モル%、オクテン−1を約5」;ル%になろように
した以外は全て実施例1−1と同様にして重合を行ない
ポリエチレン(AJを製造(〜た。このポリエチレン(
AlのパウダーのMlは006、密度+1.941 !
lr/Crn”であった。
Next, unreacted ethylene and hydrogen were separated in a flash drum in the same manner as in Example]-], and in the second stage (for the polymerization of the high molecular weight part, the polymerization temperature was set at 70°C, the pressure was set at 5'V, /cI
r? Polymerization was carried out in the same manner as in Example 1-1, except that ethylene was used at a rate of 6 nm Hr, hydrogen was added at about 5 mol %, and octene-1 was added at about 5 mol %. (Produced AJ. This polyethylene (
Ml of Al powder is 006, density +1.941!
lr/Crn”.

なお、別に同様の条件で行なった単独重上の実験から、
ポリエチレン(蜀の低分子量部(A−]1mは、分子量
が約41,000.密度は約(1945’!/cIL”
、島分子置部(A−117は、分子量が約−)1万、密
度が約0.93577cm”であるとそれぞれ11(定
される。
In addition, from a separate experiment conducted under similar conditions,
Polyethylene (low molecular weight part (A-) of Shu) 1 m has a molecular weight of approximately 41,000.The density is approximately (1945'!/cIL"
, the island molecular location (A-117) has a molecular weight of about -10,000 and a density of about 0.93577 cm'', respectively.

(2) ポリエチレンtn+の製造 実施例1−1において、ポリエチレン(Blをつくるの
に使用した触媒、重合器により、ブテン−1を約2モル
%、水素な0モル′3′Oにした以外は、実施例1−1
と同様の重合条件でポリニー′7〜レン(13)をつく
った。このポリエチレン(Blは分子量が25万、密度
が0.954j/−/σ3であつムニ。
(2) Production of polyethylene tn+ In Example 1-1, the catalyst and polymerization vessel used to produce polyethylene (Bl) were used except that butene-1 was reduced to about 2 mol % and hydrogen to 0 mol '3'O. , Example 1-1
Polynye'7-Ren (13) was prepared under the same polymerization conditions. This polyethylene (Bl) has a molecular weight of 250,000 and a density of 0.954j/-/σ3.

混合し、その他の条件は実施911 1と同様にしてポ
リエチレン組成物を製造した。その性能は第3表に示1
−0 比較例3−1 ポリエチレン(AJを、添加ハ1」、σイイ1、ill
利こ刊1出争件は実施例1−1と同様にして、ポリエチ
レン仏)の性能を評価した。それを第3表にノjk −
j−6
A polyethylene composition was produced in the same manner as in Example 9111 except for mixing. Its performance is shown in Table 31
-0 Comparative Example 3-1 Polyethylene (added AJ, σ 1, ill
The performance of polyethylene was evaluated in the same manner as in Example 1-1 for Rikokan No. 1. Write it in Table 3.
j-6

【図面の簡単な説明】[Brief explanation of drawings]

図σ」目j1、本願発ツJの実施例の一部である2BM
合のフローの一例の概略図である。図中;1は重合器、
2はライン、3は7ラソシユドラム、4はコンプレッサ
ー、5はポンプ、6は重合器、′7はジインを示す。 特約量Mft人 旭化成工業株式会社 図 面
Figure σ" eye j1, 2BM which is part of the embodiment of the invention J
FIG. In the figure; 1 is a polymerization vessel;
2 is a line, 3 is a 7-layer drum, 4 is a compressor, 5 is a pump, 6 is a polymerization vessel, and '7 is a diine. Special contract amount Mft person Asahi Kasei Industries Co., Ltd. drawing

Claims (1)

【特許請求の範囲】 1 エチレンの単独重合体およびエチレンとα−オレフ
ィンの共重合体からなる群から選ばれるポリエチレン込
】および(Blとからなり、(11ポリエチレン(A+
は、マグネシウム化合物系チーグラー型触媒によって重
合されブこものであり、ポリエチレンCB+は有機金属
化合物を組み合せたクロム化合物担持系触媒によって重
合されたものであり、 (11ポリエチレン(Nは分子量が0.5〜9万の低分
子量部(A−L)と分子量が10〜150万の高分子量
部(A−H)とから成り、(A−H)の分子量/ (A
−L )の分子量が4〜200であり、且つ、(A、−
L)の量対(A −H)の量は重量比で70対30から
30対70の範囲であり、組成物中のポリエチレンtA
lの量は90〜35M量%であり、 (11υ ポリエチレン(IIの分子量は5〜50万で
あり、組成物中のtB)の量は1O−65重量%の範囲
であることを特徴と1″るポリエチレン樹脂組成物2 
ポリエチレン囚が、2段重合によってつ(られている特
許請求の範囲第1項記載のポリエチレン樹脂組成物 3、 ポリエチレン(13)の分子量が、8〜・40万
であり、ポリエチレン(BJの分子量/(〕〜−L )
の分子量が12以」二であり、ポリエチレン(BJの分
子量/(バーH)の分子量が09以下でA・・る0許請
求の範囲第1、または2項記載のポリエチレン樹脂組成
物 4、 ポリエチレンtB)の密匹が、0.94〜0.9
75’/dである特許請求の範囲第1,2、又は3項記
載のポリエチレン樹脂組成物 5 組成物の密度が、0.935〜0.9655’7’
7である特許請求の範囲第1.2.3又は4項記載のポ
リエチレン組成物
[Scope of Claims] 1 Polyethylene selected from the group consisting of an ethylene homopolymer and a copolymer of ethylene and α-olefin] and (Bl), (11 polyethylene (A+
is polymerized using a magnesium compound-based Ziegler type catalyst, and polyethylene CB+ is polymerized using a chromium compound-supported catalyst combined with an organometallic compound. It consists of a low molecular weight part (A-L) with a molecular weight of 90,000 and a high molecular weight part (A-H) with a molecular weight of 100,000 to 1.5 million, and the molecular weight of (A-H) / (A
-L) has a molecular weight of 4 to 200, and (A, -
The amount of L) to the amount of (A-H) ranges from 70:30 to 30:70 by weight, and the amount of polyethylene tA in the composition ranges from 70:30 to 30:70.
The amount of (11υ) polyethylene (the molecular weight of II is 50,000 to 500,000, and the amount of tB in the composition is in the range of 10-65% by weight). Polyethylene resin composition 2
The polyethylene resin composition 3 according to claim 1, in which the polyethylene resin is formed by two-stage polymerization, wherein the molecular weight of the polyethylene (13) is from 80,000 to 400,000, and the molecular weight of the polyethylene (the molecular weight of BJ/ (〕~-L)
The polyethylene resin composition 4 according to claim 1 or 2, wherein the molecular weight of polyethylene (BJ molecular weight/(bar H) is 09 or less and the molecular weight of polyethylene (BJ) is 09 or less, tB) density of 0.94 to 0.9
Polyethylene resin composition 5 according to claim 1, 2, or 3, wherein the density of the composition is 0.935 to 0.9655'7'
7. The polyethylene composition according to claim 1.2.3 or 4, which is
JP14438583A 1983-04-21 1983-08-09 Polyethylene resin composition Pending JPS6036546A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14438583A JPS6036546A (en) 1983-08-09 1983-08-09 Polyethylene resin composition
US06/599,401 US4536550A (en) 1983-04-21 1984-04-12 Polyethylene composition
CA000451826A CA1218181A (en) 1983-04-21 1984-04-12 Polyethylene composition
DE8484302681T DE3470168D1 (en) 1983-04-21 1984-04-19 Polyethylene composition
EP84302681A EP0129312B1 (en) 1983-04-21 1984-04-19 Polyethylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14438583A JPS6036546A (en) 1983-08-09 1983-08-09 Polyethylene resin composition

Publications (1)

Publication Number Publication Date
JPS6036546A true JPS6036546A (en) 1985-02-25

Family

ID=15360901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14438583A Pending JPS6036546A (en) 1983-04-21 1983-08-09 Polyethylene resin composition

Country Status (1)

Country Link
JP (1) JPS6036546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154753A (en) * 1986-12-18 1988-06-28 Nippon Oil Co Ltd Polyethylene composition
US5731393A (en) * 1994-02-18 1998-03-24 Mitsui Petrochemical Industries, Ltd. Ethylene polymer, process for preparing the same, solid titanium catalyst component for ethylene polymerization and ethylene polymerization catalyst
US5962615A (en) * 1994-03-02 1999-10-05 Mitsui Chemicals, Inc. Ethylene polymer
US6054542A (en) * 1994-02-18 2000-04-25 Mitsui Petrochemical Industries, Ltd. Ethylene polymer and process for preparing the same
JP2003510429A (en) * 1999-09-24 2003-03-18 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Polyethylene molding material, its production method and its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731945A (en) * 1980-08-04 1982-02-20 Asahi Chem Ind Co Ltd Polyethylene composition and preparation of the same
JPS57159834A (en) * 1981-03-30 1982-10-02 Idemitsu Petrochem Co Ltd Ethylene polymer composition
JPS5869195A (en) * 1981-09-04 1983-04-25 エリツク・フオン・ミハロフスキ Electroacoustic energy converter
JPS5869196A (en) * 1981-10-20 1983-04-25 Matsushita Electric Ind Co Ltd Diaphragm for speaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731945A (en) * 1980-08-04 1982-02-20 Asahi Chem Ind Co Ltd Polyethylene composition and preparation of the same
JPS57159834A (en) * 1981-03-30 1982-10-02 Idemitsu Petrochem Co Ltd Ethylene polymer composition
JPS5869195A (en) * 1981-09-04 1983-04-25 エリツク・フオン・ミハロフスキ Electroacoustic energy converter
JPS5869196A (en) * 1981-10-20 1983-04-25 Matsushita Electric Ind Co Ltd Diaphragm for speaker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154753A (en) * 1986-12-18 1988-06-28 Nippon Oil Co Ltd Polyethylene composition
US5731393A (en) * 1994-02-18 1998-03-24 Mitsui Petrochemical Industries, Ltd. Ethylene polymer, process for preparing the same, solid titanium catalyst component for ethylene polymerization and ethylene polymerization catalyst
US6054542A (en) * 1994-02-18 2000-04-25 Mitsui Petrochemical Industries, Ltd. Ethylene polymer and process for preparing the same
US5962615A (en) * 1994-03-02 1999-10-05 Mitsui Chemicals, Inc. Ethylene polymer
US6080828A (en) * 1994-03-02 2000-06-27 Mitsui Petrochemical Industries, Ltd. Polymerization catalyst and process for preparing an ethylene polymer
JP2003510429A (en) * 1999-09-24 2003-03-18 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Polyethylene molding material, its production method and its use

Similar Documents

Publication Publication Date Title
RU2207347C2 (en) Ethylene polymer composition production process
US4536550A (en) Polyethylene composition
JPS63154753A (en) Polyethylene composition
US10301409B2 (en) Ethylene-based polymer, manufacturing method of ethylene-based polymer and manufacturing method of catalyst for polymerization, and molded article of hollow plastics containing ethylene-based polymer and use thereof
US4511704A (en) Process for producing polyolefin
JPH0112778B2 (en)
JP2006241451A (en) Polyethylene composition
JPS59196345A (en) Polyethylene composition
JPS6036546A (en) Polyethylene resin composition
JP5606545B2 (en) Compositions, films and methods for their preparation
JPH0112780B2 (en)
JP3989066B2 (en) Blow molding
JPH0112781B2 (en)
JP4596510B2 (en) Polyethylene composition
JPS6026051A (en) Polyethylene composition
EP0894098B1 (en) High impact lldpe films
US5840244A (en) High impact LLDPE films with high stalk extrusion
JP2003213053A (en) Polyethylene composition
JP4108415B2 (en) Polyethylene composition
EP2322567A1 (en) Process for the polymerisation of olefins
JPH06299009A (en) Polyethylene composition
JP2004091739A (en) Polyethylene composition
JPS60212439A (en) Polyethylene composition
JP2004059650A (en) Polyethylene composition
EP2322564A1 (en) Process for the polymerisation of olefins