JPS6036522B2 - boiler equipment - Google Patents

boiler equipment

Info

Publication number
JPS6036522B2
JPS6036522B2 JP20005182A JP20005182A JPS6036522B2 JP S6036522 B2 JPS6036522 B2 JP S6036522B2 JP 20005182 A JP20005182 A JP 20005182A JP 20005182 A JP20005182 A JP 20005182A JP S6036522 B2 JPS6036522 B2 JP S6036522B2
Authority
JP
Japan
Prior art keywords
combustion
air
gas
furnace
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20005182A
Other languages
Japanese (ja)
Other versions
JPS58164912A (en
Inventor
学 折本
彬訓 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP20005182A priority Critical patent/JPS6036522B2/en
Publication of JPS58164912A publication Critical patent/JPS58164912A/en
Publication of JPS6036522B2 publication Critical patent/JPS6036522B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Description

【発明の詳細な説明】 本発明はボィラ装置に係り、特に石炭、石油、ガスなど
を燃焼し蒸気を発生させるボィラ装置であって、その燃
焼排ガス中に含まれる窒素酸化物の量を低減させること
を目的とした、改良された新規な構造よりなるボィラ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler device, and particularly to a boiler device that burns coal, oil, gas, etc. to generate steam, and which reduces the amount of nitrogen oxides contained in the combustion exhaust gas. This invention relates to a boiler device having an improved and novel structure for the purpose of the present invention.

石炭、石油、夫燃ガスなど、イb日系燃料を燃焼させて
蒸気を発生させるボィラ装置においては、環境汚染を防
止し、公害の発生を抑止する見地からその排ガス中に含
まれる窒素酸化物(N○k、以下N○×と記載する)の
量をゼロにするか、あるし、はできるだけ低い量にまで
低減させることが社会的に強く望まれているのである。
In boiler equipment that generates steam by burning Japanese fuels such as coal, oil, and combustion gas, nitrogen oxides ( There is a strong social desire to reduce the amount of N○k (hereinafter referred to as N○×) to zero or to the lowest possible amount.

現在上述の目的のため実施され、あるいはその適用が考
慮されている方式としては次に挙げるようなものがある
。すなわち、‘ィ}二段燃焼法、‘o}ガス再循環法、
し一=1段燃焼法とガス再循環法の組合せなどであるが
、いずれもボィラ内における火炎の温度を下げ、また燃
焼炎の周辺の酸素濃度を低下させることにより、N○×
を低下させることを考慮したものである。その他、ボィ
ラの伝熱面を大きくし、その熱負荷を低下させる方法も
考えられるが、この場合には火炉容積バーナ部における
燃焼効率は低下し、不完全燃焼部分が増大することにな
り、結局、未燃カーボン分が増え、排ガス中の含塵量を
増大させることになる。とくに最近におけるN○k規制
の動きには極めて厳しいものがあり、150ppm程度
の量にまで抑制すべきことが義務づけられるすう勢にあ
る。しかしこれは現在の技術水準をもってしても実現が
きわめて困難な数値であり、単に燃焼方式に改善を加え
る程度では可能性の薄いものであるといわねばならず、
さらには上述のように排ガス中の含塵量が増大するとい
う大きな問題点を含むものである。第1図、第2図は上
述のような問題点を含む、従来技術の構成になるボィラ
装置の構成を示す説明図であるが、燃嘘用空気は空気送
風機1からェアダクト2に導入され、当該ェアダクト2
においてガス再循環ファン3から送られる燃焼排ガスの
一部をミキシング装置4によって混合し、さらに負荷バ
ーナ用ウィンドボックス5と、=J段燃焼用ウィンドボ
ックス6中に送り込まれるが、この際、仕切板10およ
び分配ダンパ11によって配分される。空気配分の際の
微調整は負荷バーナ用ェアレジスタ7および二段燃焼用
ェアレジスタ8によって行なうことになっており、N○
×ガス低減策としては上記負荷バーナ用ヱアレジスタ7
からの空気量の不足分を上記二段燃焼用ヱアレジスタ8
によって補給し、火炉9内の燃焼反応を遅らせ、火炎温
度を低下させることによってNOkガスの生成を減少さ
せるような方法が考えられ、実施されている。しかし以
上に述べた構成のものでは、最下段にあるバーナから上
記=1段燃焼用ェアレジスタ8までの高さが高いため当
該バーナから出た燃料、いわゆる未燃分は空気が不足し
た状態となり、かつ高温度の状態にさらされるため、熱
分解、重合などによりカーボナィズされるものと考えら
れる。しかも上記二段燃焼用ェアレジスタ8からの空気
は、炉断面がほとんど変化しないという理由から、滞留
時間が必要以上に長くしかも炉内ガスと十分に混合、蝿
拝され難く、また一たんカーボナイズされた燃料の燃焼
速度はカーポナイズされていないものに比較して遅くな
り、結局燃焼時間が長くなるという問題が生ずる。した
がって、燃料は上記火炉9内では十分な燃焼が行なわれ
驚くなり、低温域にまで排出され、結局排出ガス中の含
塵量が増加することになるものである。これはまたNO
Kガスの低減策を十分に適用し難いことを意味しており
、結果的にはN○×ガスの効果的な抑制が不可能である
という事態を招来するものである。本発明は上記に詳細
に説明したような従来技術にみられる問題点に鑑みてな
されたものであり、【ィー火炉内の酸素濃度を低下させ
るとNO広ガス濃度は確実に低下するが、反面において
燃料の未燃分が急速に増大する複向のあること、{o仁
1段腕燃焼用空気口(NOボート、以下NOボートと記
載する)からの空気の導入条件が当該NOボート以降に
おける燃焼状態を強く左右すること、し一理論的に算出
した燃焼空気量以下の状態で可燃物が高温下に長時間さ
らされると燃料はカーボナイズされると考えられ、この
カーボナィズされた可燃物が燃焼するために必要となる
時間はカーボナィズされていないものに比較して3〜4
倍長くなり、したがって十分効果的に燃焼しつくされず
、結局含塵量の増大としてあるわれることが理論的な検
討によって確認されたこと、などに基づき検討を加えた
結果、ボィラ装置の構成上、火炉内で相互に対向するア
ーチ状の突出部を設け、この突出部によって形成される
ベンチュリ喉部によって火炉を第1次燃焼室と第2次燃
焼室に区画し、ベンチュリ喉部近傍にNOボートとして
の二次燃焼用空気供V給口を設けることを骨子とし、ま
た望ましい態様として、さらに前記ベンチュリ近傍に補
助バーナ(アフターバーナ)を設けて二次燃焼室におけ
る火炎の安定を計り、さらに負荷用バーナ及び/又は二
次燃焼用空気供給口に排ガスを再循環して効率よくNO
皮の低減を計るものである。
The following methods are currently being implemented or being considered for application for the above purpose. That is, 'i} two-stage combustion method, 'o} gas recirculation method,
1 = A combination of the one-stage combustion method and the gas recirculation method, but both reduce the temperature of the flame in the boiler and reduce the oxygen concentration around the combustion flame to reduce N○×
This is done in consideration of reducing the Another possibility is to increase the heat transfer surface of the boiler and reduce its heat load, but in this case, the combustion efficiency in the volumetric burner section of the furnace will decrease and the incomplete combustion area will increase. , the amount of unburned carbon increases, leading to an increase in the amount of dust in the exhaust gas. In particular, the recent movement to regulate N○k has been extremely strict, and there is a trend that it will be mandatory to suppress the amount to around 150 ppm. However, this is a value that is extremely difficult to achieve even with the current state of technology, and it must be said that the possibility of simply improving the combustion method is slim.
Furthermore, as mentioned above, there is a major problem in that the amount of dust in the exhaust gas increases. FIGS. 1 and 2 are explanatory diagrams showing the configuration of a boiler apparatus having a conventional configuration including the above-mentioned problems. Combustion air is introduced from an air blower 1 into an air duct 2, The air duct 2
A part of the combustion exhaust gas sent from the gas recirculation fan 3 is mixed by the mixing device 4, and is further sent into the load burner wind box 5 and the = J stage combustion wind box 6, but at this time, the partition plate 10 and distribution damper 11. Fine adjustments in air distribution are made using the load burner air register 7 and the two-stage combustion air register 8.
× As a measure to reduce gas, use the above load burner resistor 7.
The shortage of air amount from the above two-stage combustion register 8
Methods have been devised and implemented to reduce the production of NOk gas by replenishing NOk gas by replenishing NOk gas, delaying the combustion reaction in the furnace 9, and lowering the flame temperature. However, in the configuration described above, since the height from the bottom burner to the first stage combustion air register 8 is high, the fuel discharged from the burner, so-called unburned fuel, is in a state where there is insufficient air. Since it is exposed to high temperatures, it is thought to be carbonized by thermal decomposition, polymerization, etc. In addition, the air from the air register 8 for two-stage combustion has a residence time longer than necessary because the furnace cross section hardly changes, and it is not easily mixed with the gas in the furnace and is easily carbonized. The burning rate of the fuel is slower than that of non-carbonized fuel, resulting in a problem of longer combustion time. Therefore, the fuel is sufficiently combusted in the furnace 9 and is surprisingly discharged to a low temperature range, resulting in an increase in the amount of dust in the exhaust gas. This is also NO
This means that it is difficult to sufficiently apply measures to reduce K gas, and as a result, it becomes impossible to effectively suppress N○x gas. The present invention has been made in view of the problems seen in the prior art as explained in detail above. On the other hand, there is a double direction in which the unburned content of the fuel increases rapidly, and the conditions for introducing air from the first-stage arm combustion air port (NO boat, hereinafter referred to as NO boat) are such that the unburned content of the fuel increases rapidly. It is believed that if combustible materials are exposed to high temperatures for a long time under conditions that are less than the theoretically calculated amount of combustion air, the fuel will be carbonized, and this carbonized combustible material will The time required to burn is 3 to 4 times longer than that of non-carbonized
As a result of the theoretical study, it was confirmed that due to the increase in the length of the boiler, the combustion was not completed effectively, resulting in an increase in the amount of dust. , arch-shaped protrusions facing each other are provided in the furnace, the venturi throat formed by these protrusions divides the furnace into a primary combustion chamber and a secondary combustion chamber, and NO is placed near the venturi throat. The main point is to provide an air supply V inlet for secondary combustion as a boat, and as a desirable embodiment, an auxiliary burner (afterburner) is further provided near the venturi to stabilize the flame in the secondary combustion chamber. Efficient NO by recirculating exhaust gas to the load burner and/or secondary combustion air supply port
It measures the reduction of skin.

以下に添付の図面を参照しながら本発明のボィラ装置に
ついてさらに詳細に説明する。
The boiler apparatus of the present invention will be described in further detail below with reference to the accompanying drawings.

第3図は本発明のボィラ装置の一実施例の構成を示す説
明図であるが、既に説明したように火炉を一次燃焼室3
1と二次燃焼室32とに分離し、当該一次燃焼室31と
二次燃焼室32とを連絡する炉断面部分がアーチ状の突
出部で形成されるベンチュリ状の構造になっており、ベ
ンチュリ喉部33を構成している。
FIG. 3 is an explanatory diagram showing the configuration of one embodiment of the boiler apparatus of the present invention. As already explained, the furnace is connected to the primary combustion chamber 3.
The furnace is separated into a combustion chamber 1 and a secondary combustion chamber 32, and the cross section of the furnace that connects the primary combustion chamber 31 and the secondary combustion chamber 32 has a venturi-like structure formed by an arch-shaped protrusion. It constitutes the throat section 33.

これにより火炉ガスは縮流となり、流速が速められて滞
留時間が短か〈なる。また当該ベンチュリ喉部33には
二段燃焼用空気口(ェアレジスタNOボート)38が設
けられ、火炉ガスと燃焼用空気はベンチュリ効果により
急速に均一に混合される。この場合、ベンチュリ喉部に
は吸引作用が生じるため二段(二次)燃焼用空気は従釆
の押し込み圧で充分である。また一次燃焼室31の上部
空間隅部では突出部がアーチ状のため渦流が生じること
なく、スムーズにベンチュリ喉部が通過するので未燃分
の力−ボナィズの進行を抑制できる。また突出部がアー
チ状に形成されているので流体の圧力損失が小さくなり
、伝熱管を有するボィラの場合有利である。さらに補助
用バーナ(アフターバーナ)34が当該=J鞍燃焼用空
気口38と同一水平面内に、相互に平行状かまたは上記
一次燃焼室31側に向けて配備されている。これにより
二次空気室における燃焼を安定にすることができる。燃
焼用空気は空気送風機(図示せず)からェアダクトを経
て、ガス再循環ファンから送られてくる燃焼用排ガスの
一部と混合され、負荷バーナ用ェアレジスタ37および
上記=J段甥窓焼用空気口38から送入されるが、これ
は第1図および第2図に関連して説明した上記従来技術
になる構造のボィラ装置におけるものと本質的には変ら
ないが、本発明のものにおいては上記NOボート38か
らの空気と、火炉ガスとの混合条件が上記従来技術にな
るものに比較して効果的に改善される。したがって上記
一次燃焼室31で消費される酸素の量を低い値に抑制す
ることが可能であり、結局N○×濃度を低い値に保持す
ることになる。さらに、上記NOボート38からの空気
と、火炉ガスとの混合条件が改良されることとあいまっ
て、上記補助バーナ34と、上許NOボート38からの
空気の混合条件が改良され、結局上記二次燃焼室32内
において燃科中の禾燃分を完全に燃焼させ、排ガス中の
含塵量を低下させることになる。以上に詳細に説明した
ように、本発明によれば、きわめて簡単な構造にもかか
わらず、排ガス中に含まれるN○×ガスの量を効果的に
低減させ、しかも排ガス中の含塵量をも低下させるなど
、画期的な効果が得られ、環境汚染の防止、公害発生の
抑止に大きく寄与する。
As a result, the furnace gas becomes a contracted flow, the flow velocity is increased, and the residence time is shortened. Further, the venturi throat 33 is provided with a two-stage combustion air port (air register NO port) 38, and the furnace gas and combustion air are rapidly and uniformly mixed by the venturi effect. In this case, since a suction action occurs at the venturi throat, the pushing pressure of the slave is sufficient for the second stage (secondary) combustion air. Further, since the protrusion is arch-shaped in the corner of the upper space of the primary combustion chamber 31, the venturi throat passes smoothly without generating a vortex, so that the progress of the force-bonization of unburned components can be suppressed. Further, since the protruding portion is formed in an arch shape, the pressure loss of the fluid is reduced, which is advantageous in the case of a boiler having heat exchanger tubes. Further, an auxiliary burner (afterburner) 34 is arranged in the same horizontal plane as the J saddle combustion air port 38, either parallel to each other or facing the primary combustion chamber 31 side. This makes it possible to stabilize combustion in the secondary air chamber. Combustion air passes through an air duct from an air blower (not shown) and is mixed with a portion of the combustion exhaust gas sent from a gas recirculation fan, and is then mixed with a portion of the combustion exhaust gas sent from the gas recirculation fan, and is then transferred to the air register 37 for the load burner and the above-mentioned J-stage window burning air. It is fed through the port 38, which is essentially the same as in the boiler device of the prior art structure described in connection with FIGS. 1 and 2, but in the case of the present invention. The mixing conditions of the air from the NO boat 38 and the furnace gas are effectively improved compared to the prior art. Therefore, it is possible to suppress the amount of oxygen consumed in the primary combustion chamber 31 to a low value, and as a result, the N○× concentration is maintained at a low value. Furthermore, as the mixing conditions of the air from the NO boat 38 and the furnace gas are improved, the mixing conditions of the air from the auxiliary burner 34 and the upper NO boat 38 are improved, and eventually the two The fuel in the combustion chamber 32 is completely combusted, thereby reducing the amount of dust in the exhaust gas. As explained in detail above, according to the present invention, despite the extremely simple structure, the amount of N○× gas contained in the exhaust gas can be effectively reduced, and the amount of dust contained in the exhaust gas can be reduced. It has revolutionary effects such as lowering the amount of carbon dioxide, which greatly contributes to preventing environmental pollution and suppressing the occurrence of pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来技術になるボィラ装置の構成
を示す説明図、第3図は本発明のボィラ装置の一実施例
の構成を示す説明図である。 31…・・・一次燃焼室、32・・・・・・二次燃焼室
、33・・・・・・ベンチュリ喉部、34・・…・補助
バーナ、35・・・・・・負荷バーナ用ウィンドボック
ス、37・・・…負荷バーナ用ェアレジスタ、38・・
・・・・コ段燃焼用エアレジス夕。 第1図 第3図 第2図
FIGS. 1 and 2 are explanatory diagrams showing the configuration of a boiler apparatus according to the prior art, and FIG. 3 is an explanatory diagram showing the configuration of an embodiment of the boiler apparatus of the present invention. 31...Primary combustion chamber, 32...Secondary combustion chamber, 33...Venturi throat, 34...Auxiliary burner, 35...For load burner Wind box, 37...Load burner air resistor, 38...
...Air register for low-stage combustion. Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】 1 火炉内で相互に対向するアーチ状の突出部を設け、
この突出部間に形成されるベンチユリ喉部の火炉ガス上
流側に一次燃焼室、下流側に二次燃焼室を形成し、前記
一次燃焼室に燃焼用空気不足状態で燃焼する負荷用バー
ナを設け、前記ベンチユリ喉部近傍に前記負荷用バーナ
における不足分燃焼用空気を補う二次燃焼用空気供給口
を設けたことを特徴とするボイラ装置。 2 前記負荷用バーナ及び/又は二次燃焼用空気口にボ
イラ装置の燃焼排ガスの一部を供給するように構成した
ことを特徴とする特許請求の範囲第1項記載のボイラ装
置。
[Claims] 1. Arch-shaped protrusions facing each other in the furnace are provided,
A primary combustion chamber is formed on the upstream side of the furnace gas at the throat of the bench lily formed between the protrusions, and a secondary combustion chamber is formed on the downstream side, and a load burner that burns in a state of insufficient combustion air is provided in the primary combustion chamber. . A boiler device characterized in that a secondary combustion air supply port is provided near the throat of the bench lily to supplement the insufficient combustion air in the load burner. 2. The boiler device according to claim 1, wherein a part of the combustion exhaust gas of the boiler device is supplied to the load burner and/or the secondary combustion air port.
JP20005182A 1982-11-15 1982-11-15 boiler equipment Expired JPS6036522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20005182A JPS6036522B2 (en) 1982-11-15 1982-11-15 boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20005182A JPS6036522B2 (en) 1982-11-15 1982-11-15 boiler equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP48071701A Division JPS586843B2 (en) 1973-06-27 1973-06-27 boiler

Publications (2)

Publication Number Publication Date
JPS58164912A JPS58164912A (en) 1983-09-29
JPS6036522B2 true JPS6036522B2 (en) 1985-08-21

Family

ID=16418006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20005182A Expired JPS6036522B2 (en) 1982-11-15 1982-11-15 boiler equipment

Country Status (1)

Country Link
JP (1) JPS6036522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004086B2 (en) * 2004-06-17 2006-02-28 General Electric Company Injection of overfire air through the upper furnace arch for penetration and mixing with flue gas
JP7042960B1 (en) * 2021-11-04 2022-03-28 三菱重工パワーインダストリー株式会社 Combustion equipment

Also Published As

Publication number Publication date
JPS58164912A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JPS62155422A (en) Multistage combustion apparatus and operating method thereof
JPH01217109A (en) Pulverized coal burner for coal of high fuel ratio
JPS5864409A (en) Pulverized coal firing boiler
JPS587884B2 (en) Gasification combustion method and its equipment
JPS6036522B2 (en) boiler equipment
JPH03286906A (en) Boiler
CN212339653U (en) High-efficiency water heater fully utilizing oxygen
Straitz III et al. Combat NOx with better burner design
JPS586843B2 (en) boiler
JP2773831B2 (en) Low NOx boiler
JP2667607B2 (en) Structure of low NOx boiler
JPH0449449Y2 (en)
JPS604704A (en) Combustion device
JP3893677B2 (en) Furnace with regenerative burner
JPH0263124B2 (en)
JP2648600B2 (en) Solid fuel combustion method
JPS6011286B2 (en) Combustion method and combustion device
JPH0522803B2 (en)
JPS5840410A (en) Gasification/combustion device with reducing chamber having non-cooled heat conductive plane
KR200172447Y1 (en) Low-pollution furnace
JP3835966B2 (en) Waste fluidized bed incinerator
JPH0240921B2 (en)
JPS63267806A (en) Low nox combustion method for coal
JPS60162108A (en) Low nox high efficiency combustion chamber
JPS58138906A (en) Low nox combustion device